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Abstract
In this paper we propose an OWL encoded context 

ontology (CONON) for modeling context in pervasive 

computing environments, and for supporting logic-

based context reasoning. CONON provides an upper 

context ontology that captures general concepts 

about basic context, and also provides extensibility 

for adding domain-specific ontology in a 

hierarchical manner. Based on this context ontology, 

we have studied the use of logic reasoning to check 

the consistency of context information, and to reason 

over low-level, explicit context to derive high-level, 

implicit context. By giving a performance study for 

our prototype, we quantitatively evaluate the 

feasibility of logic based context reasoning for non-

time-critical applications in pervasive computing 

environments, where we always have to deal 

carefully with the limitation of computational 

resources.

1. Introduction 
Recent years have witnessed rapid advances in the 

enabling technologies for pervasive computing. It is 

widely acknowledged that an important step in 

pervasive computing is context-awareness. 

Computational entities in pervasive environments 

need to be context-aware so that they can adapt 

themselves to changing situations. With the advance 

of context aware computing, there is a increasing 

need for developing formal context models to 

facilitate context representation, context sharing and 

semantic interoperability of heterogeneous systems.  

In previous works, both informal and formal 

context models have been proposed. Informal context 

models are often based on proprietary representation 

schemes which have no facilities to ease shared 

understanding about context between different 

systems. Among systems with informal context 

models, Context Toolkit [1] represents context in 

form of attribute-value tuples, and Cooltown [2] 

proposed a Web based model of context in which 

each object has a corresponding Web description. 

Formal context models commonly employ formal 

modeling approaches to manipulate context. Karen et 

al. [3] model context using both ER and UML 

models; context can be easily managed with 

relational databases. Anand et al.[4] represented 

context in Gaia system as first-order predicates 

written in DAML+OIL. Existing formal context 

models support formality and address a certain level 

of context reasoning.  However, none of them has 

addressed formal knowledge sharing, or has shown a 

quantitative evaluation for the feasibility of context 

reasoning in pervasive computing environments, 

where we always have to face resource-constraint 

devices.  

In this paper, we present an ontology-based 

formal context model to address critical issues 

including formal context representation, knowledge 

sharing and logic based context reasoning.  We will 

present the detailed design of our context model and 

logic based context reasoning scheme. Through 

performance analysis, we will show a quantitative 

evaluation for context reasoning in pervasive 

computing environments.  The rest of this paper is 

divided into five sections. In section 2, we introduce 

ontology definitions and Semantic Web. In section 3 

we describe the design of our context model 

(CONON). Section 4 shows how logic based context 

reasoning can be used to enhance context-awareness. 

Section 5 describes our prototype implementation; 

followed by the performance evaluation. Section 6 

summarizes this paper. 

2. Ontology and Semantic Web
The term “ontology” has a long history in 

philosophy, in which it refers to the subject of 

existence. In the context of knowledge management, 

ontology is referred as the shared understanding of 

some domains, which is often conceived as a set of 

entities, relations, functions, axioms and instances. 

There are several reasons for developing context 

models based on ontology: 

Knowledge Sharing. The use of context ontology 

enables computational entities such as agents and 

services in pervasive computing environments to 

have a common set of concepts about context while 

interacting with one another. 

Logic Inference. Based on ontology, context-

aware computing can exploit various existing logic 
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reasoning mechanisms to deduce high-level, 

conceptual context from low-level, raw context, 

and to check and solve inconsistent context 

knowledge due to imperfect sensing. 

Knowledge Reuse. By reusing well-defined Web 

ontologies of different domains (e.g., temporal and 

spatial ontology), we can compose large-scale 

context ontology without starting from scratch. 

Semantic Web [5] is an effort that has been going 

on in the W3C to provide richer and explicit 

descriptions of Web resources. The essence of SW is 

a set of standards for exchanging machine-

understandable information. Among these standards, 

Resource Description Framework (RDF) provides 

data model specifications and XML-based 

serialization syntax, Web Ontology Language 

(OWL) [6] enables the definition of domain 

ontologies and sharing of domain vocabularies. OWL 

is modeled through an object-oriented approach, and 

the structure of a domain is described in terms of 

classes and properties. From a formal point of view, 

OWL can be seen to be equivalent to description 

logic (DL), which allows OWL to exploit the 

considerable existing body of DL reasoning 

including class consistency and consumption, and 

other ontological reasoning.  

We believe that Web ontology and other Semantic 

Web technologies can also be employed in modeling 

and reasoning about context information in pervasive 

computing environments. 

3. CONON: The Context Ontology
In this section we present an extensible CONtext 

ONtology (CONON) for modeling context in 

pervasive computing environments.   

Due to evolving nature of context aware 

computing, completely formalizing all context 

information is likely to be an in-surmountable task. 

However, we found that location, user, activity and 

computational entity are most fundamental context 

for capturing the information about the executing 

situation. These contextual entities not only form the 

skeleton of context, but also act as indices into 

associated information. The objectives of our context 

model include modeling a set of upper-level entities, 

and providing flexible extensibility to add specific 

concepts in different application domains.  

In realistic pervasive computing environments, 

applications and services are usually grouped as a 

collection of sub-domains for different intelligent 

environments (e.g., home, office or vehicle). Context 

in each domain shares common concepts that can be 

modeled using a general context model, while differs 

significantly in detailed features. Therefore, the 

separation of application domains encourages the 

reuse of general concepts, and provides a flexible 

interface for defining application-specific knowledge. 

We divide our context model into upper ontology and 

specific ontology. The upper ontology is a high-level 

ontology which captures general features of basic 

contextual entities. Specific ontology is a collection 

of ontology set which define the details of general 

concepts and their features in each sub-domain.  
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   Figure 1. Partial Definition of CONON upper ontology 
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Figure 2.  Partial definition of a specific ontology for 

home domain 

Figure 1 shows the upper context ontology (the 

partial OWL serialization is show in figure 3). The 

context model is structured around a set of abstract 

entities, each describing a physical or conceptual 

object including Person, Activity, Computational 

Entity (CompEntity) and Location, as well as a set of 
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abstract sub-classes. Each entity is associated with its 

attributes (represented in owl:DatatypeProperty) and 

relations with other entities (represented in 

owl:ObjectProperty). The built-in OWL property 

owl:subClassOf allows for hierarchically structuring 

sub-class entities, thus providing extensions to add 

new concepts that are required in a specific domain.  

Figure 2 shows a partial definition of specific 

ontology for a smart home application domain.  

Besides general classes defined in CONON upper 

ontology, a number of concrete sub-classes are 

defined to model specific context in a given 

environment (e.g., the abstract class IndoorSpace of 

home domain is classified into four sub-classes 

Building, Room, Corridor and Entry).

<owl:Class rdf:ID="ContextEntity"/> 
 <owl:Class rdf:ID="Location"> 
    <rdfs:subClassOf rdf:resource="#ContextEntity"/>
 </owl:Class> 
 <owl:ObjectProperty rdf:ID="longtitude"> 
    <rdf:type rdf:resource="FunctionalProperty"> 
    <rdfs:domain rdf:resource="Location"> 
    <rdfs:range rdf:resource="xsd:double"> 
 </owl:ObjectProperty> ... 
<owl:Class rdf:ID="IndoorSpace"> 
    <rdfs:subClassOf rdf:resource="#Location"/> 
    <owl:disjointWith rdf:resource="#OutdoorSpace"/>
 </owl:Class> 
 <owl:ObjectProperty rdf:ID="locatedIn">    
    <rdf:type="owl:TransitiveProperty"/> 
    <rdfs:domain rdf:resource="#Entity"/> 
    <rdfs:range rdf:resource="#Location"/> 
    <owl:inverseOf rdf:resource="#contains "/> 
  </owl:ObjectProperty>   ...

Figure 3. Partial OWL serialization of the upper ontology 

4. Context Reasoning 
When taking a formal approach to model context, 

context can be processed with logical reasoning 

mechanisms. The use of context reasoning has two 

folds: Checking the consistency of context, and 

deducing high-level, implicit context from low-level, 

explicit context.  

To explain the role of context reasoning in 

context-aware computing, we present a smart phone 

scenario in which a mobile phone can adapt to a 

user’s current situation. By defining preference 

profiles, users can customize the behaviors of the 

augmented mobile phone. For example, when the 

user is sleeping in the bedroom or taking a shower in 

the bathroom, incoming calls are forwarded to voice 

mail box; when the user is cooking in the kitchen or 

watching TV in the living room, the volume of the 

ring is turned up; when the user is having dinner with 

the family in the dining room, the phone is set to 

vibrate mode.  Obviously, high-level context can not 

be directly acquired from sensors; it is reasoned from 

sensor-driven, low-level context such as physical 

location and environmental information.  

 In this section, we will describe context reasoning 

based on CONON to demonstrate the key feature of 

the ontology based context model. We choose to 

implement context reasoning by using first-order 

predicates. The structure of the first-order predicate 

has tree fields - a subject an object and a verb. For 

example, the physical location context “Wang is 

located in the bed room” can be described as (Wang, 

locatedIn, Bedroom). We believe that logics are very 

powerful tools for reasoning with context knowledge, 

and they are sufficient for general pervasive context-

aware systems as is demonstrated later.  

The reasoning tasks in our work are grouped into 

two categories: ontology reasoning using description 

logic, and user-defined reasoning using first-order 

logic. 

4.1. Ontology Reasoning 
Description Logic allows specifying a 

terminological hierarchy using a restricted set of first-

order formulas. The equivalence of OWL and 

description logic allows OWL to exploit the 

considerable existing body of DL reasoning fulfill 

important logical requirements. These requirements 

include concept satisfiability, class subsumption, class 

consistency, and instance checking. 

Table 1 shows a sub-set of reasoning rules that 

support OWL-Lite entailed semantics.  

Table 1. Parts of OWL ontology reasoning rules 

Transitive-
Property 

(?P rdf:type owl:TransitiveProperty) (?A ?P ?B) 

(?B ?P ?C) (?A ?P ?C) 

subClassOf (?a rdfs:subClassOf ?b) (?b rdfs:subClassOf ?c) 

(?a rdfs:subClassOf ?c) 

subProperty-
Of 

(?a rdfs:subPropertyOf ?b) 

 (?b rdfs:subPropertyOf ?c)  

 (?a rdfs:subPropertyOf ?c) 

disjointWith (?C owl:disjointWith ?D)  (?X rdf:type ?C)  

 (?Y rdf:type ?D)  

 (?X owl:differentFrom ?Y) 

inverseOf (?P owl:inverseOf ?Q)  (?X ?P ?Y)  

 (?Y ?Q ?X) 

In addition, ontology reasoning is also useful in 

other aspects of context aware computing. For 

example, in the example context ontology described 

in previous section, we define the relation ‘locatedIn’

between a ‘ContextEntity’ and a ‘Location’ as an 

‘owl:TransitiveProperty’ relation, and the relation 

‘contains’ as the ‘inverse property’ of ‘locatedIn’.

Therefore, we can make use of the rules entailed by 

OWL to reason with physical location. An example 
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result is shown in Table 3. Explicit context is 

acquired from context sources directly, while implicit 

context is the additional information deduced from 

explicit context. For example, knowing the user 

‘Wang’ is currently ‘locatedIn’ the room ‘Bedroom’,

which in turn is a part of the ‘Home’ building, 

description logic can be used to conclude that ‘Wang’

is located in ‘Home’ building as the spatial relation 

‘locatedIn’ is transitive. 

Table 2. Reasoning about location using ontology  

(?P rdf:type owl:TransitiveProperty) 

(?A ?P ?B) (?B ?P ?C) (?A ?P ?C)  

DL
Reasonin
g Rules 

(?P owl:inverseOf ?Q)  (?X ?P ?Y)  

 (?Y ?Q ?X) 

   
   

   
IN

P
U

T

Explicit
Context

<owl:ObjectProperty rdf:ID="locatedIn"> 
     <rdf:type="owlTransitiveProperty"/> 
     <owl:inverseOf  rdf:resource="#contains"/> 
</owl:ObjectProperty> 
<Person rdf:ID="Wang"> 
   <locatedIn rdf:resource="#Bedroom"/> 
</Person > 
< Room rdf:ID="Bedroom"> 
    < locatedIn rdf:resource="#Home"/> 
</ Room>  

   
  O

U
T

P
U

T
 

Implicit 
Context

<Person rdf:ID="Wang"> 
    <locatedIn rdf:resource="#Home"/> 
</Person > 
<Building rdf:ID="Home"> 
   < contains rdf:resource="#Bedroom"/> 
   < contains rdf:resource="#Wang"/> 
</Building>
<Room rdf:ID="Bedroom"> 
   < contains rdf:resource="#Wang"/> 
</Room> 

Table 3. User-defined context reasoning rules
Situation Reasoning Rules 

Sleeping (?u locatedIn Bedroom)  (Bedroom lightLevel LOW)  

 (Bedroom drapeStatus CLOSED)  

(?u situation SLEEPING) 

Shower-
ing

(?u locatedIn Bathroom)  

 (WaterHeater locatedIn Bathroom) 

 (Bathroom doorStatus CLOSED)  

 (WaterHeater status ON) 

(?u situation SHOWERING) 

Cooking (?u locatedIn Kitchen)  (ElectricOven locatedIn 
Kitchen) 

 (ElectricOven status ON)

(?u situation COOKING) 

Watching-
TV

(?u locatedIn LivingRoom)  

 (TVSet locatedIn LivingRoom) 

 (TVSet status ON)

(?u situation WATCHINGTV) 

Having-
Dinner

(?u locatedIn DiningRoom)  

(?v locatedIn DiningRoom) 

(?u owl:differentFrom ?v) 

(?u situation HAVINGDINNER) 

4.2. User-Defined Reasoning 

A more flexible reasoning mechanism is user-

defined reasoning. Through the creation of user-

defined reasoning rules within the entailment of first-

order logic, a wide range of higher-level, conceptual 

context such as “what the user is doing” can be 

deduced from relevant low-level context. Table 3 

shows the user-defined context reasoning rules that 

are employed to derive user’s situation in the smart 

phone scenario.   

5. Prototype Implementation 
In this section, we will present results of our 

preliminary experiments with context reasoning. The 

objectives of these experiments are to conduct a 

quantitative feasibility study for logic reasoning in 

pervasive computing environments, and provide 

useful information for the implementation of context 

reasoning.  

We used our prototype implementation of two 

context reaonsers (description logic based ontology 

reasoner and first-order logic based situation 

reasoner) to carry out experiments. Context reasoners 

are built using Jena2 Semantic Web Toolkit [7], 

which supports rule-based inference over OWL/RDF 

graphs. To synthesize large-scale context dataset, we 

have merged CONON and CYC Upper Ontology [8] 

to create several context datasets ranging from small-

scale (about 1K RDF triples) to large-scale (more 

than 10K RDF triples). The size of the dataset is 

measured in term of the number of RDF triples, each 

of which represents a single S-V-O predicate. For 

example, a datasets containing 2534 OWL classes 

and instances is parsed into 10234 RDF triples. 

Current version of CONON containing 197 OWL 

classes (or 790 triples) can be seen as a small-scale 

context dataset, while CYC Upper Ontology 

containing 2885 classes (or 18777 triples) is a large-

scale context dataset.  The experiments have been 

conducted on a set of Linux workstations with 

different hardware configurations (512 MB RAM 

with P3/600 MHz, P3/1.2 GHz, and P4/2.4 GHz). 

The ontology reasoner we have tested is associated 

with the DL rule set consisting of all 111 axioms 

entailed by OWL-Lite, and the situation reasoner 

applies a rule set containing of 10 forward-chaining 

rules that we have partially described in table 2.  

Figure 4 shows the results of the experiments. It is 

not surprising to see that the run time performance of 

logic-based context reasoning depends on three major 

factors: size of context information, complexity of 

reasoning rules, and CPU speed.  The difference of 

performance between different datasets shows that 

context reasoning based on logics is a computational-

intensive task. However, reasoning under current CPU 

speed is still feasible for non-time-critical applications. 
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For example, the real-time requirement for the smart 

phone service is not likely to be critical so that the delay 

of context reasoning (several seconds) is acceptable. 

The results also shows that run time of context 

reasoning largely depends on the complexity of rule 

sets. The user-defined reasoner using small rule set 

greatly outperforms the OWL reasoner with a large DL 

rule set over identical context datasets. 

Figure 4. Run time performance of context reasoning. 

From the quantitative study of runtime 

performance, we have a number of observations that 

are useful for the design of context model and 

context reasoning mechanism: 

First, context reasoning is generally feasible for 

non-time-critical applications. For time-critical 

applications such as security and navigating systems, 

we need to control the scale of context dataset and 

the complexity of rule set. A tentative solution is to 

perform static, complex reasoning tasks (e.g., 

description logic reasoning for checking 

inconsistency) in an off-line manner. 

Second, from system deployment point of view, 

we need to de-couple context processing and context 

usage in order to achieve satisfactory performance. In 

this way, context reasoning is independently 

performed by resource-rich devices such as a 

residential gateway; ubiquitous services hosted by 

thin clients can acquire high-level context from a 

centralized service, instead of perform excessive 

computation themselves.  

Finally, the design of context model should take 

account of scalability issue. Context aware services 

in different domains shares most general concepts, 

while there exists significant difference between the 

ontologies they need. Hence, a scalable context 

model should be able to separate domain-specific 

ontologies for different system environments. The 

design of upper-level and domain-specific ontologies 

would take a promising step to control the scale of 

context dataset. 

6. Conclusion 
Our study in this paper shows that ontology based 

context model is feasible and necessary for supporting 

context modeling and reasoning in pervasive computing 

environments. We have implemented the CONON and 

logic based context reasoning schemes. In addition, we 

have conducted a performance study to evaluate the 

feasibility for context reasoning in pervasive computing 

environments. The work of this paper is a part of our 

ongoing context aware service infrastructure [9], which 

aims to provide an open, reusable infrastructure for 

essential context aware mechanisms. In particular, our 

design explores Web Ontology Language for context 

modeling and knowledge sharing, hybrid reasoning and 

learning for context interpretation, and Semantic Web 

query for expressive context query and resource 

discovery.  
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