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ABSTRACT

GPS-equipped taxis can be viewed as pervasive sensors and
the large-scale digital traces produced allow us to reveal many
hidden “facts” about the city dynamics and human behav-
iors. In this paper, we aim to discover anomalous driving
patterns from taxi’s GPS traces, targeting applications like
automatically detecting taxi driving frauds or road network
change in modern cites. To achieve the objective, firstly
we group all the taxi trajectories crossing the same source-
destination cell-pair and represent each taxi trajectory as a
sequence of symbols. Secondly, we propose an Isolation-
Based Anomalous Trajectory (iBAT) detection method and
verify with large scale taxi data that iBAT achieves remark-
able performance (AUC>0.99, over 90% detection rate at
false alarm rate of less than 2%). Finally, we demonstrate
the potential of iBAT in enabling innovative applications by
using it for taxi driving fraud detection and road network
change detection.
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INTRODUCTION

With recent advances in sensing, communication, storage
and computing, the digital traces left by people while inter-
acting with cyber-physical spaces are accumulating at an un-
precedented rate. The scale and richness of different digital
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traces provides us with new opportunities to understand so-
ciety behaviours and community dynamics in different con-
texts, showing great potential to revolutionize the services in
various areas ranging from public safety, urban planning to
transportation management [10, 27].

In modern cities, more and more vehicles, such as taxis, have
been equipped with GPS devices for localization and navi-
gation. Gathering and analyzing the large-scale GPS traces
have provided us a great opportunity to reveal the hidden
“facts” about the city dynamics and human behaviors, en-
abling diverse innovative applications [22, 13, 18, 30, 26, 21,
23, 28, 24]. Recent years have witnessed an increasing in-
terest in trajectory anomaly detection [14, 6, 9], which aims
to detect suspicious moving objects automatically. However,
while several aspects of abnormality of moving objects have
been investigated, there are very few works on discovering
anomalous driving patterns by mining GPS traces with prac-
tical applications examined. In this paper, we intend to mo-
tivate our research on anomalous taxi driving trajectory de-
tection with the following potential applications:

EXAMPLE 1. Many people, mostly tourists, are victims of
taxi driving frauds committed by greedy taxi drivers who
overcharge passengers by deliberately taking unnecessary
detours. To ensure quality taxi services, it is crucial to de-
tect and penalize such frauds. Currently, detecting taxi driv-
ing frauds is often done by experienced staff via manually
checking the GPS trajectories corresponding to the taxi rides,
based on complaints from passengers, but this is costly and
not very effective because many frauds are not even noticed
by passengers. As the traces of driving frauds often signif-
icantly deviate from normal ones, it is possible to automat-
ically detect the anomalous driving trajectories by mining
taxi GPS traces and hence taxi driving frauds.

EXAMPLE 2. Urban road networks often change over time
in developing cities, it is important to update these changes
in the digital map. If this is done manually by digital map
providers, it would be expensive and also difficult to cap-
ture the changes in time. If GPS-equipped taxis are viewed
as moving sensors probing the real-time information about
urban road network, then the taxi traces accumulated in a
new and different area might indicate a sudden road network



Figure 1. An illustration of taxi trajectories between S and D.

change, i.e. a newly-built or blocked road segment nearby.
Hence, detecting anomalous taxi driving trajectories can be
helpful in identifying road network changes promptly.

Consider the taxi trajectories between two places S (source)
and D (destination) as shown in Fig. 1. Assume that the
three clusters of trajectories between the (S; D) pair are de-
fined as normal ones, then the four trajectories (o, t1, t2, t3)
are considered as anomalies since they are “few” and “differ-
ent” from the normal ones. Detecting driving anomalies is a
non-trivial task because of the following challenging issues.

e First, as shown in Fig. 1, there might be different sets of
normal trajectories between each (S; D) pair and these
trajectory clusters usually have different densities or dis-
tance distributions. If we exploit traditional anomaly de-
tection techniques [14, 6, 9] based on distance or density,
it is hard to choose the parameters and identify all anoma-
lous trajectories.

e Second, multiple normal routes between each (S; D) pair
also mean different driving distances. If we directly model
driving distance for anomalous trajectories detection, it is
not able to discover those anomalies whose driving dis-
tance is close to that of the normal trajectories (like ¢3).

e Third, the road network often changes over time in devel-
oping cities: a new (anomalous) route may become nor-
mal and an old road segment can be blocked. Hence, it
is important to be able to detect an emerging cluster of
anomalous trajectories and incorporate these changes in
the model.

o Finally, some traditional anomaly detection methods often
require that the taxi trajectories be represented as fixed-
length feature vectors. However, the real taxi trajectories
are variable-length sequences of points, thus traditional
methods can not be directly used. If we transform them
into fixed-length feature vectors, spatial information can
be lost. Moreover, GPS traces often suffer from the low-
sampling-rate problem since GPS devices usually send
data at a low and changing frequency.

In this paper, we aim to propose a novel anomalous driv-
ing trajectory detection method which addresses the four
challenges above. Firstly, we extract valid taxi rides from
all the taxi GPS traces, split the city map into grid-cells of
equal size, group all the taxi rides crossing the same source-
destination cell-pair, and augment and represent each taxi
trajectory in each source-destination pair as an ordered se-

quence of traversed cell symbols. In such a way, the prob-
lem of anomalous driving trajectory detection is converted to
that of finding anomalous trajectories from all the trajecto-
ries with the same source-destination cell pair. Secondly, for
all the taxi trajectories between a certain source-destination
cell-pair, we define those trajectories that are “few” and “dif-
ferent” from the normal trajectory clusters as anomalies. In-
stead of profiling the normal trajectories and detecting the
anomalies by employing the similarity or density measure,
this paper proposes an Isolation-Based Anomalous Trajec-
tory (iBAT) detection method which exploits the property
that anomalies are susceptible to a mechanism called isola-
tion [20]. Finally, we perform an empirical evaluation of
iBAT with real-world taxi GPS data and show how the two
applications (i.e., taxi driving fraud detection and road net-
work change detection) can be enabled by using iBAT. In
summary, the main contributions of this paper include:

e We identify a new kind of anomalous trajectory detection
problem based on two motivating applications with taxi
GPS traces. We further propose a series of techniques
to transform the problem of anomalous driving trajectory
detection into an easy-to-solve form: finding anomalous
trajectories from all the trajectories with the same source-
destination cell pair, with each taxi trajectory represented
as a sequence of cell symbols.

e To solve the above mentioned problem, we propose an
Isolation-Based Anomalous Trajectory (iBAT) detection
method which exploits the property that anomalies are
susceptible to a mechanism called isolation. To our best
knowledge, this is the first work applying the isolation
mechanism in the trajectory anomaly detection.

e We evaluate iBAT with real-world GPS traces collected
from 7,600 taxis for one month. It achieves remarkable
detection rate with low processing-time, it also outper-
forms the density-based method as a baseline approach in
terms of AUC (i.e., the Area Under the ROC Curve) [4].

e By using two examples (i.e., taxi driving fraud detection
and road network change detection), we show how inno-
vative applications can be achieved by using iBAT.

RELATED WORK

In this section, we briefly review the related work which
can be grouped into three categories. The first category in-
cludes the work on analyzing or exploiting GPS traces with
research issues other than anomaly detection. For instance,
Patterson, Liao, et al. [22, 18] used GPS traces to infer an
individual’s mode of transportation and daily routine, pro-
viding reminders for persons with mild cognitive disabili-
ties when they, for instance, take the wrong bus; Krumm et
al. [13, 8] showed it is possible to predict the destination and
entire route of a vehicle based on historical GPS traces, and
recently reported further results building routable road net-
works from raw GPS traces [7]. Based on the observation
that taxi drivers are experienced in finding the best route to a
destination, Ziebart et al. [30] and Yuan et al. [26] designed
PROCAB and T-Drive, respectively, providing driving direc-
tion guidance by leveraging taxis’ GPS traces. Zheng et



al. [29] gave travel location recommendation to new visitors
by mining GPS data left by previous tourists. Liu et al. [21]
developed a novel methodology to reveal taxi drivers’ opera-
tion patterns by analyzing their GPS traces. Zheng et al. [28]
mined GPS traces to discover interesting locations and pos-
sible activities that can be performed there for recommenda-
tions. Phithakkitnukoon et al. [23] derived a model to predict
vacant taxis. Qi et al. [24] measured social functions of city
regions by analyzing taxi’s GPS traces. Li et al. [15] stud-
ied the passenger-finding strategies of taxi drivers. While
these works target research problems different from ours,
they have inspired us to motivate our research with inno-
vative applications using taxi GPS traces.

The second category focuses on anomalous trajectory detec-
tion, which is highly related to our work. In the literature,
some solutions for trajectory outlier detection have already
been reported, each addressing certain aspects of abnormal-
ity. For instance, Lee et al. [14] proposed the partition-and-
detect framework to detect outlying sub-trajectories, they
used both distance and density for anomaly detection. For
a similar problem to Lee et al.’s, Ge et al. [9] detected the
evolving trajectory outliers by computing the outlying score,
based on the evolving direction and density of trajectories.
Bu et al. [6] presented an outlier detection framework for
monitoring anomalies over continuous trajectory streams. The
key idea is to build local clusters upon trajectory streams and
detect anomalies by a cluster join mechanism. Li et al. [17],
instead, developed a temporal outlier detection approach for
vehicle traffic data, which aimed to discover the abnormal
traffic change in the road network. In addition, there are also
some learning-based approaches reported [16, 25, 19], but
they all require training data which is expensive to label. In
contrast, we define a different trajectory anomaly problem
from previous ones, i.e., given all the taxi trajectories be-
tween a certain source-destination cell-pair, our objective is
to discover those trajectories that are “few” and “different”
from the normal trajectory clusters.

The third category includes anomaly detection methods that
are not designed for trajectory data. This category of work
has its deep roots in database, data mining, computer vi-
sion, etc. The proposed methods range from supervised ap-
proaches [1] to distance-based [12, 3], density-based [5], and
model-based methods [11], each having a specific formu-
lation of the problem with different anomaly measures and
notions. Among these approaches, one new and fundamen-
tally different anomaly detection method directly inspiring
this work is iForest [20]. By assuming anomalies are “few
and different”, they found that anomalies are susceptible to a
mechanism called “isolation”, with which iForest can detect
anomalies without employing any distance or density mea-
sure. It has been shown that iForest outperforms the state-
of-the-art outlier detection techniques like one-class SVM
in terms of AUC and processing time, at a low time and
space complexity. It also deals with the effects of swamping
and masking effectively. However, as iForest is designed for
anomaly detection problems with fixed-length feature vector
as input, it can not be directly applied to handle the trajec-
tory data. In this paper, we first adapt the idea of iForest to

Figure 2. One taxi’s GPS trace in two hours, where red (solid) or green
(dashed) indicates the taxi is occupied or vacant.

trajectory data, and improve it by considering the character-
istics of the sequence of trajectories so that it can manage
more anomalous cases.

PROBLEM STATEMENT

A taxi’s GPS trace consists of a sequence of GPS points (i.e.,
latitude and longitude) generated by the taxi GPS device, the
time stamp, the estimated speed and the operation status (i.e.,
vacant or occupied) associated with each time stamp. On a
two dimensional plane, a taxi’s moving trajectory over a time
interval can be depicted by connecting these GPS points. For
instance, Fig. 2 shows one taxi’s moving trajectory in two
hours, where red (solid) lines and green (dashed) lines cor-
respond to the taxi’s occupied and empty status, respectively.
As the taxi driving fraud occurs only when the taxi is occu-
pied by passengers, in this paper we only consider the taxi
trajectories corresponding to the taxi rides (red lines, where
taxi’s operation status is occupied).

DEFINITION 1. A taxi trajectory is a sequence of GPS
points pertaining to an occupied taxi ride, i.e.,

t:pr—>p2— ... = Dn,

where p;’s are GPS points, p; and p,, are source and desti-
nation of the trajectory, respectively.

By extracting valid taxi rides from all the taxi GPS traces
based on operation status, we can obtain a large collection
of taxi trajectories. If we split the city map into equal sized
grid-cells and group all the taxi trajectories crossing the same
source destination cell-pair, then we can have many taxi tra-
jectories between two cells (e.g., S and D) as shown in Fig. 1.
Assume that the three clusters of trajectories (the majority
of trajectories with similar routes) correspond to normal taxi
rides, the rest of the scattered trajectories are considered to
be anomalous. The anomalous trajectories can be long de-
tours made by greedy taxi drivers like fpand ¢; in Fig. 1,
they can also be short-cuts or new routes taken by experi-
enced drivers like t9 and t3. Our goal is to find these anoma-
lous trajectories, based on which new applications can be
enabled. Formally, the problem is defined as follows.

PROBLEM. Given a set of trajectories T' = {t1,ta,...,tn}
between two locations .S and D, find those in 7" that are sig-
nificantly different from the majority.

In this paper, by exploiting the “few and different” proper-
ties of anomalous trajectories, we propose an isolation-based
anomalous trajectory detection method.
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Figure 3. Overview of our approach.

OUR PROPOSED APPROACH

A Three-Step Procedure

As shown in Fig. 3, our approach to detecting anomalous
taxi trajectories consists of three main steps. In the first step,
after extracting taxi trajectories from GPS traces, we split the
city map into grid-cells of equal size, then we group all taxi
trajectories crossing the same source-destination cell-pair,
augment and represent each trajectory as a sequence of tra-
versed cells.In the second step, we present our iBAT method
to discover anomalous trajectories for a specific source desti-
nation cell-pair. Specifically, we exploit the “few and differ-
ent” properties of anomalous trajectories, and apply the iso-
lation mechanism to detect anomalous trajectories. Finally,
we perform further analysis on detected anomalous trajecto-
ries, and demonstrate their effectiveness in enabling the two
innovative applications, i.e., taxi driving fraud detection and
road network change detection. We describe each step of our
approach below.

Preprocessing GPS traces

Extracting and Augmenting Taxi Trajectories

Given a large collection of GPS traces, our first task is to ex-
tract taxi ride trajectories by partitioning GPS traces accord-
ing to the taxi operation status. As we split the city map into
grid-cells of equal size, then each taxi trajectory is mapped
to the cell grid and become a sequence of traversed cells.
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Figure 4. An illustrative example of augmenting trajectory.

In practice, GPS devices usually report data at a low fre-
quency, for example, about one record per minute in our real-
world dataset. This results in a non-detailed representation
of taxi trajectories, because one taxi may traverse multiple
consecutive cells without GPS points recorded. As shown
in Fig. 4, due to the low-sampling-rate problem, a taxi tra-
jectory often consists of a series of GPS points (shown as
black cells) which are not adjacent to each other (like p2 and
p3). In such a way, if two taxis take the same route, their tra-
jectories can be different. In order to ensure that same taxi

trajectories are represented equally in the system, we need
to argument the trajectory. In this paper, we take a simple
method to augment taxi trajectories. That is, along the line
defined by two GPS cells, we insert pseudo cells between
them. For example, in Fig. 4, three pseudo cells (shown as
gray cells) are inserted between ps and ps . Eventually, such
an augmenting process will allow us to obtain a cascaded
cell sequence for the representation of each trajectory.

Finding Trajectories between a Source-Destination Cell-Pair
In practice, the extracted taxi trajectories have various sources
and destinations. Given a source-destination cell-pair, we
need to find all the related taxi trajectories. For a given pe-
riod of time and grid cell size, we may face the problem
that there are not sufficient taxi trajectories between certain
source-destination pairs to form “normal” trajectory clusters.
To alleviate this problem, we not only count the set of taxi
trajectories with exactly the same source-destination pair we
also add all those taxi trajectories which pass through the
source-destination cell-pair. For example, given two taxi tra-
jectories

ty : p1 — p2 — p3 — ps,
ta: p3 —> p1 — Pa — D5 — P2,

both of them will be counted if we want to find trajectories
with p; and ps as source and destination (for ¢5, only the
segment p; — p4 — ps is included). To achieve this, we
employ the inverted index mechanism [31], which is popu-
larly used in information retrieval, to index all the taxi trajec-
tories, As an analogy, the taxi trajectory and cell correspond
to the document and word [31], respectively. As an illustra-
tive example, given ¢; and ¢4 as above, we have the inverted
index as

p1: {(tlv 1)7 (t272)}7 b2 {(t1;2)7 (t275)}7
p3:{(t1,3), (t2, )}, pa:{(t2,3)},
b5 - {(t1’4)7 (t274)}7

where, for instance, p; : {(¢1,1), (t2,2)} means that p;
appears in t1 and ¢, at the Ist and 2nd place, respectively.
Then, if we want to get trajectories whose source and des-
tination are p; and ps, both ¢; and ¢, will be sorted out be-
cause both p; and p5 appear in ¢; and ¢5 in the correct order
(i.e., 1 < 4 and 2 < 4); but if p; and p3 are the concerned
source and destination, only ¢; will be returned because the
order of p; and ps is incorrect in ¢, although they both ap-
pear in in ¢; and ¢o.

As the number of taxi trajectories between two cells is a
function of time given a fixed cell size, apparently another
effective way to get more taxi trajectories is to use more his-
torical data (with longer period of time). As the focus of the
paper is on the anomalous trajectory detection method, here
we just simply assume that we have sufficient taxi trajecto-
ries to form “normal” routes between our interested source
and destination cell-pair. Moreover, we can further alleviate
this problem by using more historical data. It is worth noting
that all above operations allow online updates, thus newly
generated taxi trajectories can be easily incorporated.
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Figure 5. An illustrative example of isolation tree for trajectories partition. (a) cells that are traversed by trajectories (gray, 1 to 14); (b) nine
trajectories from S to D, where ¢y and t¢g are significantly different from others; (c) an isolation tree, where the randomly selected cell is shown at
each node, the anomalous trajectory to has much shorter path length than other trajectories.
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Figure 6. An example of eliminating trajectories by randomly selecting
cells from the concerned trajectory, where at each step only the ones
that passed the selected cell (superscript of arrow) are kept.

Isolation-Based Anomalous Trajectory Detection
Now, we present our proposed iBAT (i.e., Isolation-Based
Anomalous Trajectory detection) method.

Characterizing Anomalous Trajectories

Before trying to detect anomalous trajectories, we need to
characterize anomalous trajectories precisely. This is not
straightforward in practice, because anomalous trajectories
can be varied and normal ones can fall into several different
clusters (as illustrated in Fig. 1).

Instead of using distance or density measure, we exploit the
following two intrinsic properties of anomalous trajectories:

1. anomalous trajectories are few in number ;

2. they are different from the majority, in particular, they
pass different locations, or pass similar locations in dif-
ferent orders.

Since anomalous trajectories are “few and different”, nor-
mal ones are “many and similar”. Hence, it is not difficult
to find that separating a normal trajectory from the rest re-
quires more effort, since there are “many” “similar’ ones;
while anomalous trajectories are easier to be separated from
the majority of the trajectories, i.e., they are susceptible to
isolation. This constitutes the basis of our proposed method.

Adapting iForest for Trajectory Data

Isolation Forest (iForest) [20] is a novel anomaly detection
method, which adopts a fundamentally different approach
to take advantage of anomalies’ intrinsic properties of be-
ing “few and different”. It applies a data-induced random
tree to partition all the instances until all of them are iso-

lated (iTree). This random partitioning produces noticeable
shorter paths for anomalies and long paths for normal in-
stances. When a forest of i7rees collectively produce shorter
path lengths for some particular points, then these instances
are highly likely to be anomalies. By exploiting sub-sampling,
iForest achieves state-of-the-art performance with low linear
time-complexity and small memory-requirement. Unfortu-
nately, iForest is designed in the traditional anomaly detec-
tion framework where instances are fixed-width vectors, thus
it cannot be directly used for anomalous trajectory detection.

Noting that anomalous trajectories often contain points (cells)
that are not always contained by other trajectories, we adapt
iForest to handle our trajectory data based on this property.
Specifically, we use a randomly selected cell to recursively
divide the data in each node of the iTree until the node has
only one trajectory or all trajectories at the node are the
same. The trajectories that have short path lengths in iTree
are suspicious to be anomalous. For example, Fig. 5 (b)
shows a set of nine trajectories, among which ¢y is signif-
icantly different from others; Fig. 5 (a) shows all the 14 cells
(gray) that traversed by at least one trajectory; Fig. 5 (c)
shows an adapted iTree, where a cell is randomly selected
at each node for partition. If the trajectory contains this cell,
it falls into its left child node, else right child node. For in-
stance, the cell 3 is selected at root node, then ¢ falls to its
right child node since it does not pass the cell 3. Finally, we
can obtain an iTree in Fig. 5 (c), where the path length of the
anomalous trajectory ¢ is 1, much smaller than other trajec-
tories. Consequently, after such an adaption, iForest can be
used for anomalous trajectory detection.

This adapted iForest can detect anomalous trajectories that
traverse different cells from the majority; but it fails if anoma-
lous trajectories detour in cells that are always contained by
other trajectories. For example, the trajectory tg is defini-
tively an anomalous trajectory since it detours a lot in the
top right area of Fig. 5 (a); but if we build iTree as Fig. 5 (c),
the path length of ¢g will be not smaller than any other tra-
jectory, which suggests it is a normal trajectory. Obviously,
this results is not correct, and a better method is needed.

iBAT: Applying Isolation in a Lazy Learning Manner

Now, we present the iBAT method which improves the adapted
iForest via lazy learning [2]. Lazy learners do not train a
model until presented with a test sample, they usually achieve



(a) Isolating normal trajectory t;

(b) Isolating anomalous trajectory tq

(c) Isolating anomalous trajectory ¢1

Figure 7. Anomalous trajectories are easier to be isolated. In each sub-figure, the test trajectory is highlighted in solid red, while others are in dashed
gray. Given a set of 593 trajectories from S to D, (a) a normal trajectory ¢, requires 11 randomly selected cells (solid black cells) to be isolated; (b)
the anomalous trajectory to requires only 2 randomly selected cells to be isolated. (c) the anomalous trajectory ¢; requires only 3 cells.
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Figure 8. Average number of cells used for isolation, where as in Fig. 7,
t; is a normal trajectory, to and ¢; are anomalous.

competitive performance in practical problems, and can triv-
ially adapt to evolving training data.

In particular, rather than building i7ree based on all the tra-
jectories at hand, iBAT focuses on the test trajectory, and
tries to separate it from the rest trajectories by randomly se-
lecting cells solely from the test trajectory. For example, let
T = {to,...,ts} where t;’s are defined in Fig. 5 (b). If ¢y is
a test trajectory, we randomly select one cell from ¢( and re-
move the trajectories that do not pass the selected cell from
the set T\{to}, this process is repeated until no trajectory
is left or all the trajectories left contain all the cells ¢y has.
As shown in Fig. 6, t( is separated from other trajectories
after one test; tg is isolated after two tests; while £3 is not
separated even after selecting four cells. This indicates that
to and tg are anomalous, while ¢35 is normal. Thus, we can
see that the proposed method properly addresses the problem
of detecting anomalous trajectories that detour in cells that
are always contained by other trajectories (like tg). In addi-
tion, for the loop detours, like tg that loops at 4, 5, 8, 7 and
tg=1—22—23—-2—-23—-2—-3—=24—-5—->8—=10
that loops at 2, 3, it is easy to detect them simply by counting
the number of each passed cell.

In Fig. 7, we show a real-world example of isolating trajecto-
ries, where the isolation is performed by randomly selecting
cells from the test trajectory. It can be observed that a normal
trajectory t; requires 11 randomly selected cells to be iso-
lated, while anomalous trajectory ¢y requires only two cells
and another anomalous trajectory t; requires three cells to
be isolated. In particular, ¢y requires less cells to be isolated
because it contains cells that are not always contained by

other trajectories, ¢; is easy to be isolated because it passes
cells in a quite different order although these cells are always
contained by other trajectories. Subsequently, we denote the
number of cells used for isolating the trajectory ¢ as n(t).

Since each cell is randomly selected in each individual isola-
tion process, we estimate the expected number of used cells
by averaging the number of used cells over multiple isola-
tion processes. Fig. 8 shows that the average number of
used cells for ¢;, tp and t; when the number of isolation
processes increases. After repeating the random isolation
process for 200 times, we can see that the average number
of cells needed to isolate ¢; converges to 13.11, while those
of g and ¢; are both less than 3. This shows that the average
number of cells used for isolating anomalous trajectories is
less than the average used for that of isolating normal ones.

Following [20], we define the anomaly score of a trajectory
t as a normalization of the average number of used cells, i.e.,

_E(n(t)

s(t, N) =27 "<, ey
where E(n(t)) is average number of cells used for isolating
t, N is the number of trajectories from which we separate ¢,
and ¢(N) is the average of n(t) given N (it equals to the av-
erage path length of unsuccessful searches in a binary search
tree). In particular,

¢(N) = 2H(N — 1) — 2(N —1)/N,

where H (i) is the harmonic number that can be estimated
as In(i) + 0.57721566 (Euler’s constant). Obviously, when
E(n(t)) — 0, s(t, N) — 1, meaning that ¢ is definitely an
anomalous trajectory; when E(n(t)) > c¢(N), s(t,N) <
0.5, meaning that ¢ can safely be categorized as a normal
trajectory.

In practice, given a large amount of of taxi trajectories, we do
not need to isolate our trajectory ¢ from the rest, and the iso-
lating process is able to work well with a small sub-sample
of all trajectories. Specifically, given one trajectory, our
iBAT method repeats the isolation process on different sub-
samples of all trajectories and computes the anomaly score
according to Eq. 1. The pseudo code of the iBAT method
is summarized in Algorithm 1. Besides the test trajectory
t and the set of trajectories 7', it has two parameters, i.e.,
number of running trials m and sub-sample size ). Un-
less otherwise stated, we use m = 100 and @) = 256 in
our experiments. An analysis on these two parameters can



Algorithm 1 The iBAT method

Input: ¢ — test trajectory
T — set of trajectories to be separated from
m — number of running trials
1) — sub-sample size
Process:
let n be a vector of m zeros (n;’s are zeros)
for i = 1tomdo
T’ < randomly sample ¢ trajectories from T'
repeat
n; < n; +1
randomly choose a cell p from ¢
T’ < select the trajectories that include p from 7"
until 77 is empty
end for
compute s(t, 1)) according to Equation 1
Output: anomaly score s(t, )

be found in the experiments which shows that the perfor-
mance is nearly optimal at this setting and insensitive to a
wide range of values. Furthermore, each isolation process is
independent, thus they can be performed in parallel, making
iBAT suitable for parallel processing.

Discussion

By applying the isolation mechanism in a lazy learning man-
ner, our proposed iBAT method solves the problem of anoma-
lous trajectory detection with the following characteristics:

e By exploiting anomalous trajectories’ intrinsic properties
of being “few and different”, it is able to detect different
kinds of anomalous trajectories.

e By applying the isolation mechanism, it provides a simple
but effective way for detecting anomalous trajectories, no
distance or density measure is needed.

e By working in a lazy learning manner, it naturally incor-
porates newly-generated taxi trajectories, thus can detect
an emerging cluster of anomalous trajectories and hence
the road network change promptly.

e By utilizing sub-sampling, it has the capacity to handle
very large-scale set of trajectories, whilst keeping high
performance and low processing-time..

Applications Based on Anomalous Trajectory Detection

With the anomalous trajectories detected and the character-
istics of iBAT, different applications can be developed. For
instance, if the travel distance of an anomalous trajectory is
close to or shorter than that of the normal trajectories, then
the route can be recommended to mission critical drivers in
emergency cases; if the route is detected as a new path with
many similar trajectories accumulating, then it can be used
to update the road network change in the digital map. If
the travel distance is much longer than normal ones, it is
suspicious to be a driving fraud; further evidences can be
collected to see if the case is caused by a traffic jam, or un-
familiarity with the area, or intentional fraud. Two potential
applications will be further elaborated in next section.

EMPIRICAL EVALUATION

In this section, we provide an empirical evaluation of our
proposed approach, and demonstrate its potential to enable
practical applications.

Experimental Setup

In the experiments, we use a real-world taxi GPS dataset,
which is collected from more than 7600 taxis served in a
large city in China (Hangzhou) for one year (actually, the
data in March 2010 has been used and found sufficient for
this experiments). In this dataset, each taxi is equipped with
a GPS device with a sampling-rate of about one record per
minute. For each record, there are four fields: latitude, lon-
gitude, passenger status and timestamp. For the sake of sim-
plicity in computation and visualization, we restrict our in-
terest within the metropolitan area of Hangzhou with lon-
gitude [120.0°E, 120.5°E] and latitude [30.15°N, 30.40°N],
the invalid records and those beyond this area are discarded.
We discretize the area into a 100 x 200 grid cells, each cor-
responding to a 250m x 250m square.

To provide a quantitative evaluation, we pick up five source-
destination cell-pairl, and ask three volunteers to manually
label whether the trajectories are anomalous or not, in par-
ticular, if one volunteer thinks a taxi trajectory is anomalous,
it is labeled to be anomalous. The datasets are summarized
in Table 1, and visualized in Fig. 9.

Table 1. Datasets used in our experiments.

| # Trajectories  # Anomalies  Ratio

T-1 1418 41 2.89%
1-2 895 58 6.48%
T-3 593 43 7.25%
-4 669 33 4.93%
T-5 649 36 5.55%
Table 2. The contingency table.
Real Value
Anomalous | Normal
Detection | Anomalous TP FP
Result Normal FN TN

For comparison purposes, we use the density-based method
as a baseline, whose basic idea is to rank trajectories accord-
ing to its density. Specifically, the density of a trajectory is
the averaged density of all its cells, and the density of a cell
is the number of trajectories that pass through it.

The evaluation criteria we use is AUC (Area Under ROC
Curve) [4]. In practice, detection rate (dr, i.e., the fraction
of anomalous trajectories that are successfully detected) and
false alarm rate (flr, i.e., the fraction of normal ones that
are predicted to be anomalous) are two important measures
to evaluate the performance of an anomaly detection method.
Based on Table 2, they are defined as

TP e EP
“TP+FN M I T EPYITN

'The source and destination are 5001 x 500m grid-cells.

dr




(b) manually labeled anomalous trajectories on 7-1, 7-2, 7-3, T-4, T-5 (left to right)
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(c) anomalous trajectories detected by iBAT on 7-1, T-2, T-3, T-4, T-5 (left to right)

Figure 9. Visualization of taxi trajectories, where S and D are source and destination. (top row: all trajectories; center row: manually labeled
anomalous trajectories; bottom: anomalous trajectories detected by iBAT, which is of the same number of manually labeled anomalies)
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Figure 10. The ROC curves of iBAT. For better illustration, the ranges
of false alarm rate and detection rate are set to [0, 0.2] and [0.4, 1].

Obviously, a good anomaly detection method should have
both high detection rate and low false alarm rate. The ROC
curve shows the detection rate (y-axis) against the false alarm
rate (x-axis), and the AUC value is defined as the area under
the ROC curve. As a statistical explanation, the AUC value
is equal to the probability that a randomly chosen anomalous
trajectory is ranked higher than a randomly chosen normal
one. Obviously, if the AUC value is close to 1, the anomaly
detection method is of high quality.

The experiments are run in Matlab on an Intel Xeon W3500
PC with 4GB RAM running Windows 7.

Experimental Results

We first provide a visualization of the detection results in
Fig. 9, where manually labeled anomalous trajectories and
the anomalous trajectories detected by iBAT (the same num-
ber of manually labeled anomalies) are depicted. We can see
that the visualization of detected results are very similar to
that of manually labeled data, which indicates that iBAT is
effective in detecting anomalous trajectories.

Table 3. The AUC value of iBAT and density-based method.
T-1 T-2 T-3 T-4 T-5

0.9972 09936 0.9923 0.9970 0.9958
0.9448 09491 0.9435 0.9712 0.9386

iBAT
Density

Fig. 10 depicts the ROC curves of iBAT on each dataset.
We can find that iBAT is able to achieve high detection rate
whilst keeping low false alarm rate. For all datasets, over
90% of anomalous trajectories can be detected at the false
alarm rate of 2%; especially on 7-4, 100% detection rate is
achieved at the false alarm rate of less than 1%.

Table 3 compares the AUC value of iBAT with that of the
density-based method. We can see that iBAT achieves quite
high AUC values (>0.99 on all datasets) and the density-
based method achieves lower AUC values (<0.95 on 4 datasets,
0.97 on T-4), suggesting that iBAT makes a better ranking
than the density-based method. This is not difficult to under-
stand, because the density-based method can only detect tra-
jectories that pass through low-density cells and it ranks tra-
jectories that detour on high-density cells lower, but our pro-
posed method can detect both these two types of anomalous
trajectories. In fact, this is also the reason why the density-
based method achieves relatively higher AUC value on 7-4
than on other datasets, because there are less anomalous tra-
jectories that detour on high-density cells.

In addition, we study iBAT’s performance and time efficiency
in relation to the number of running trails m and sub-sampling
size 1. Specifically, we run experiments on the largest dataset
T-1, and record the AUC value and processing time for m &
[1,200] and ¢ € {2,4,8,16,...,1024}. Fig. 11 shows how
the AUC value and processing time change with respect to
m, where 1 is set to 256. It can be seen that the AUC value
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Figure 11. The AUC value (left y-axis, red solid) converges at a small
m (z-axis), and processing time (right y-axis, green dashed) increases
linearly with m.
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Figure 12. A small sub-sampling size provides both high AUC (left y-
axis, red solid) and low processing time (right y-axis, green dashed).

(@) (b)

Figure 13. Avoiding excuses for taxi driving fraud detection. (a) the
anomalous trajectory (red solid) is compared with previous trips of the
same driver (green dashed); (b) the anomalous trajectory is compared
with trajectories in 5 minutes (green dashed).

converges at a small m, and processing time increases lin-
early with m. Also, iBAT is quite efficient, for instance,
when m = 100 the overall precessing time is about 100 sec-
onds, about 0.07 second per trajectory. Of course, this can
be further improved by parallel computing since every trial
of iBAT is independent. In Fig. 12, we show how the perfor-
mance changes with respect to ¢, where m is set to 100. It
can be seen that both high AUC and low processing time can
be obtained at a small sub-sample size.

Taxi Driving Fraud

As Fig. 9 shows, many detected anomalous trajectories are
long-distance detours, which may correspond to taxi driving
frauds. Therefore, detecting anomalous taxi trajectories can
help building taxi driving fraud detection systems.

For detecting taxi driving frauds, a practical challenge is that
some taxi drivers, responsible for anomalous taxi trajecto-
ries, may be truly unfamiliar with this area and some cun-

(a) Considered trajectories (b) Similar trajectories with tg

Figure 14. Trajectories considered for road network change detection.
(a) three trajectories considered: two anomalous trajectories ¢y and
(red solid and blue solid), one normal trajectory ¢; (green dashed); (b)
160 trajectories (dark red dashed) that are similar to ¢.
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Figure 15. The anomaly score of ¢y decrease rapidly when similar tra-
jectories are accumulating, but that of ¢; and ¢; keeps almost the same.

ning drivers may use this as an excuse. Moreover, for some
suspected frauds, someone may argue that they took a differ-
ent route due to unexpected car accidents or heavy traffic. In
this case, more evidence is needed to verify the fraud. Here,
since we have all taxi trajectories between source and des-
tination, if an anomalous trajectory is detected, we can get
all previous trajectories of the corresponding driver to check
whether he used to travel frequently in this area; meanwhile,
we can also find all the trajectories that took place around
the same time to check the traffic related excuses. For exam-
ple, given an anomalous trajectory (red solid) in Fig. 13 (a),
we compare it with the driver’s previous trips (green dashed)
between the same source and destination in Fig. 13 (b) and
can see that this driver often operates in this area. Mean-
while, in Fig. 13 (b) we compare it with all the trips (green
dashed) that happened around that time, and can see many
other drivers did not detour. Based on these, we can deny
possible excuses and confirm the fraud.

Road Network Change

As mentioned before, if more and more similar anomalous
trajectories are accumulating, it may be an indication that a
new road has been built or an old road is blocked in the area.
We explain this via an example. As shown in Fig. 14 (a), we
consider two anomalous trajectories ¢y and ¢; and one nor-
mal trajectory ¢,. In addition, Fig. 14 (b) depicts a set of 160
trajectories that are similar to ¢g. Then, to see the impact
of accumulating trajectories, we add these 160 trajectories
into the original trajectory set one by one, and study how
the anomaly score of ¢y, t1 and ¢; changes. The result is
shown in Fig. 15, where we can see that the anomaly score
of t; and t; remain basically unchanged, while that of %,
is reduced from about 0.9 to 0.3, which means that ¢y has
definitively become a normal trajectory from an anomalous



one. In particular, after adding 18 similar trajectories, the
anomaly score is reduced from 0.9 to 0.5. Hence, in real-
world applications, if an anomalous trajectory becomes nor-
mal, like ¢, it corresponds to a change in the road network.

CONCLUSION AND FUTURE WORK
In this paper, we have investigated the problem of detecting
anomalous driving trajectories from taxi’s GPS trace, which

is

motivated by the fact that anomalous trajectories can re-

veal many hidden “facts” about the city dynamics and hu-
man behaviors and thus can be used to enable innovative
applications. To solve the problem, we first grouped taxi tra-

jectories crossing the same source-destination cell-pair and

represented each taxi trajectory as a sequence of symbols.
We then proposed the iBAT method to detect anomalous tra-
jectories. Specifically, instead of profiling the normal tra-

jectories or utilizing the distance or density measure, iBAT

exploits anomalous trajectories’ intrinsic properties of be-

ing “few and different”, and applied the isolation mechanism

to

detect anomalous trajectories. We validate our approach

in real-world taxi GPS data, and show that it achieves re-

markable performance (AUC>0.99, detecting over 90% of

anomalous trajectories at the false alarm rate of less than
2%). Furthermore, we show the potential of anomalous tra-
jectories in enabling innovative applications, by two exam-

ples: taxi driving fraud detection and prompt road network

change detection.

In the future, we plan to broaden this work in several di-

rections. First, we will attempt to exploit other information

enclosed in GPS traces such as driving speed for anoma-
lous trajectories detection. Second, we would like to de-

velop practical taxi driving fraud detection and road network

change detection systems. Third, we are interested in detect-
ing anomalous trajectories when the trajectory is ongoing.
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