
A Peer-to-Peer Architecture for Context Lookup

Tao Gu, Edmond Tan, Hung Keng Pung
School of Computing

 National University of Singapore
{gutao, tanyikho, punghk}@comp.nus.edu.sg

Daqing Zhang
Institute for Infocomm Research

daqing@i2r.astar.edu.sg

Abstract

As computing technology moves towards pervasive
computing, many applications are beginning to make
use of context information to adapt to and respond
appropriately to their environments. Such a trend
necessitates efficient search for context information in
wide-area networks. In this paper, we propose a
semantic P2P context lookup system. Peers are
grouped based on the semantics of their local data
which are extracted according to a set of schemas and
are self-organized as a semantic overlay network.
Context search requests are only routed to the
appropriate nodes that have relevant data, reducing
unnecessary query traffic and increasing the chances
that the context data will be found quickly. To reduce
maintenance overheads incurred by high-dimensional
semantic overlay networks, we propose a one-
dimensional ring space to construct peers and
facilitate efficient query routing. Our simulation
studies demonstrate the effectiveness of our proposed
routing techniques.

1. Introduction

Computing technology is moving towards pervasive
computing. In the pervasive computing paradigm,
devices, applications and humans are able to interact
naturally and seamlessly with each other. In order for
this to be possible, it is necessary to augment the
capabilities of applications to include awareness of and
sensitivity towards their environments, which are often
dynamic in nature. This enables applications to
respond and adapt appropriately to environmental
changes and conditions. Applications that possess
these qualities are known as context-aware
applications. Context-aware applications typically
acquire context information from context providers
and subsequently manipulate this information to
perform various context-sensitive tasks. Context

information is characterized as an application's
environment or situation [1], and as a combination of
features of the execution environment, including
computing, user and physical features [2]. Information
on users (name, address, role, etc.), locations
(coordinate, temperature, etc.), computational entities
(device, network, application, etc.) and activities
(scheduled activities, etc.) are some examples of
context information. Context data can be represented
in different ways. Previous systems have made use
attribute-value pairs and Java programming objects to
describe and model context data respectively.
However, such approaches have limitations. In
particular, they have limited semantic interoperability,
which is the capability to exchange and share context
data between different systems across different
domains. To circumvent this problem, we have chosen
to model context data using an ontology-based
approach. This approach makes use of Resource
Description Framework (RDF) statements to represent
context data. Each RDF statement is a triple of the
form <subject predicate object>.

Context information is usually stored in wide-area
networks and consumed by users and applications in
different domains. It is therefore necessary to have
efficient storage and search mechanisms for context
information. Broadly speaking, these services can be
provided either via centralized or distributed
approaches. Although centralized systems such as
RDFStore [3] generally provide faster query responses,
the use of a central server subjects the system to
limitations such as single points of failure and single
processing bottlenecks. Distributed systems on the
other hand do not suffer from such limitations. A
possible way of building a distributed system is to
leverage on Peer-to-Peer (P2P) technology. Such an
approach enables distributed context data storage in a
network as well as distributed query routing. P2P
systems can be structured or unstructured. Structured
models such as Chord [4], CAN [5] and Pastry [6], rely
on distributed hash functions to determine where data

should be stored. This means that each piece of data
would be mapped to and subsequently stored at a
particular location on the network, regardless of where
the data is originally generated. Unstructured models
such as Gnutella [7] do not restrict the placement of
data. Edutella [8] and its successor [9] are examples of
RDF-based meta-data infrastructures and routing
schemes based on Gnutella-like P2P networks. Nodes
in this system are organized as a hypercube. However
in Edutella, a query has to be flooded to all nodes in
the network which may include many nodes that do
not contain the relevant context data. It is more
efficient to forward a query to nodes which are likely
to contain the relevant type of context data. This can
potentially lead to a lower network load and better
search performance.

In this paper we propose the use of multiple
semantic overlays to group various context producer
nodes. Each overlay "ties" and manages a set of
producer nodes with similar categories of context
information. By contacting the nodes in one overlay or
multiple overlays in parallel, context queries can be
resolved quickly. This approach works efficiently
(demonstrated in our simulation) when the
dimensionality is reasonably low. However, when the
number of semantic overlays increases, the
maintenance cost becomes non-trivial or expensive. To
reduce the maintenance cost and facilitate efficient
search in high-dimensional semantic spaces, we
propose a one-dimensional ring space to group and
arrange peers upon their joining. The ring structure
enables the mapping of the clusters in a k-dimensional
semantic space to a one-dimensional semantic space,
hence reducing overlay maintenance overhead.

The rest of the paper is organized as follows. We
describe related work in Section 2. We then discuss
ContextBus in Section 3, and discuss the ring space in
Section 4. We present the performance evaluation in
Section 5, and conclude the work in Section 6.

2. Related Work

Centralized RDF repositories and lookup systems
such as RDFStore, Jena [10] and Sesame [11] have
been implemented to support the storing and querying
of RDF documents. These systems are very fast and
can scale up to many millions of triples. However, they
have the same limitations as other centralized
approaches, such as single processing bottlenecks and
single points of failure. Cai et al. [12] proposed a
distributed RDF repository that stores each triple at
three places in a multi-attribute addressable network
which extends Chord by applying a globally known

hash function. Queries can then be efficiently routed to
those nodes in the network where the triples in
question are known to be stored if they exist. However,
storing each RDF triple multiple times in the network
increases the storage cost. Schema-based P2P
networks such as Edutella and Piazza [13] that
combine P2P computing and the Semantic Web are
potential candidates for distributed context lookup
systems. These systems build upon peers that use
explicit schemas to describe their contents. However,
current schema-based P2P networks still have some
shortcomings, e.g. queries still have to be flooded to
every node in the network, making it difficult for the
system to scale. Unstructured P2P systems with
multiple overlays have also been proposed. In [14],
these multiple overlays are called Semantic Overlay
Networks (SONs); queries are routed to the
appropriate SONs, increasing the chances that
matching objects will be found quickly and reducing
the search load. We use the concept of multiple
semantic overlays in context-aware computing to
cluster context producer nodes based on pre-defined
schemas; and we mainly focus on the query routing
issues both within and across overlay networks. We
aim to reduce the overlay maintenance cost incurred by
high dimensional semantic overlays. Kleinberg [15]
proposed a two-dimensional grid where every node
maintains four links to each of its closest neighbors
and one long distance link to a node chosen from a
probability function. He showed that a query can be
routed to any node in O(log2n) hops. Our work is
inspired by Kleinberg's small world construction. We
show how the basic idea can be applied to a semantic
P2P context lookup system.

3. ContextBus Architecture

In this section we describe the use of multiple
semantic overlays to organize nodes in our system. The
idea behind this scheme is to classify a wide range of
context producer nodes into certain groups based on
the kind of context data they store. Upon creation,
every node will be associated with meta-data and may
participate in one or more groups. Nodes in the same
group will form an overlay which we call a
ContextBus. A query will first be preprocessed and
mapped into one particular ContextBus or a subset of
ContextBuses, and then routed to these ContextBuses
based on the inter-ContextBus routing technique which
we will describe in Section 3.2. The overall
performance of context search can be improved by
forwarding a query only to the nodes which contain the

same type of context information as requested in the
query.

The meta-data for classifying context data are
defined in context ontologies. As context information
has a limited scope compared to other network
resources, we should be able to classify a wide range
of context data into a manageable number of categories
using domain ontologies. We have classified context
information into person, location, activity, device,
network, etc, and defined the domain ontology for each
category [16].

The ContextBus architecture is shown in Figure 1.
A peer (which we call a ContextPeer) can act as a
context producer, a context consumer, or both. Context
producers provide various kinds of context data;
whereas context consumers obtain context data by
submitting their context queries and receiving query
results. Upon creation, context producer peers will be
clustered according to their data semantics and
associated with one or more ContextBuses. The
ContextPeers within the same ContextBus are
interconnected and organized using an overlay
network. Upon receiving a query, a ContextPeer
extracts the semantics from the query, maps it to the
relevant ContextBuses, and then routes the query to
these ContextBuses. When the query reaches a
designated ContextBus, it will be flooded to all peers
within this overlay. ContextPeers that receive the
query will do a local search and return results
appropriately. Each ContextPeer maintains a local
context data repository which supports RDF-based
semantic query using RDQL [17].

Figure 1. ContextBus architecture

For the rest of this section, we discuss the

bootstrapping mechanism that takes place when a new
ContextPeer joins the network, followed by the routing
strategy across ContextBuses. Then we describe the
maintenance of routing tables. In the sections that
follow, we will refer to ContextPeers as nodes.

3.1 Bootstrapping

When a new node is created, it will first go through
the bootstrapping process to join the network. A
bootstrap server maintains information on available
nodes in a certain region. We recognize the fact that
nodes have different capability constraints, such as the
maximum degree (i.e. the number of active
connections per node). We classify nodes into two
classes: high-degree and low-degree. We define M as
the maximum degree of a node and C as the total
number of ContextBuses in the system. A node is
called a high-degree node if M ≥ C and a low-degree
node if M < C. A node's entry in the bootstrap server is
a pair of <nodeID, nodeClass> indicating the node's
ID and its class information. Entries are grouped
according to the ContextBuses which nodes participate
in. Duplicate entries may exist across different
ContextBuses as nodes may join multiple
ContextBuses.

When a node x joins the network, it will first
contact a bootstrap server and attempt to join certain
ContextBuses. It does this by obtaining one or more
node IDs for these ContextBuses from the bootstrap
server and then connecting to each of these nodes.
These node IDs will be stored in node x's routing table.
For a high-degree node, the bootstrap process ensures
that it is connected to at least one node in each
ContextBus. For a low-degree node, it will not be able
to connect all ContextBuses due to a limited number of
available connections. In this case, we will first satisfy
those ContextBuses which provide the same type of
context data as provided by the node, and then assign
the remaining connections to nodes in other
ContextBuses. This ensures that a query for a
particular type of context data reaches all nodes
providing that type of context data. Here, we assume
that the maximum degree of a low-degree node is
greater than the number of ContextBuses providing the
same types of context data as the node. For the
assignment of the remaining connections, a low-degree
node must connect to at least one high-degree node.
This ensures that a low-degree node is able to route
queries to any ContextBus either by itself or through a
high-degree node.

Recently, researchers in [18] have realized the
topology mismatching problem which limits the
performance of various search and routing techniques.
To ensure that the ContextBuses mirror the physical
network as much as possible, we perceive that it is
more efficient to perform topology optimization within
each ContextBus upon node joining and leaving. This
optimization requires the knowledge of link costs
between every two nodes. In [19], a technique has

been proposed to determine these link costs, using the
latency between each node to multiple servers. This
technique can thus be employed to optimize the
topologies of ContextBuses.

3.2 Inter-ContextBus Routing

Upon entry into the system, each node x creates a
routing table containing a set of node IDs that are
grouped according to ContextBus IDs. These nodes are
the direct (or one-hop) neighbors of node x. As a high-
degree node connects to at least one node in each
ContextBus, it is able to forward any query to any
ContextBus. If a query is generated at a low-capacity
node, it will forward the query to a high-degree node if
the query is destined for ContextBuses that it is not
able to connect to directly. In this case the high-degree
node will act as a bridge (which we call a BridgePeer
as shown in Figure 1) for the low-degree node that will
route the query to the appropriate ContextBuses.

3.3 Routing Table Maintenance

In the event of nodes joining and leaving the
system, the routing tables of all affected nodes have to
be updated to reflect the current state of the system as
accurately as possible. The maintenance of routing
tables makes use of the Ping and Pong messages.

In our system, nodes may or may not leave
gracefully. In the case of graceful node leaving, the
node deciding to leave the system will inform all its
neighbors of its intention prior to leaving. Each of its
neighbors can then delete the entries corresponding to
this node from their tables and perform bootstrapping
as necessary. However, if a node does not leave the
system gracefully, this node's entries in the routing
tables of neighboring nodes will become invalid. To
remove such outdated entries, a node periodically
sends a Ping to each direct neighbor in its routing table
to check its availability. An active neighbor will
respond to the Ping with a Pong. A neighbor that does
not respond with a Pong is considered dead. The node
will then purge that neighbor’s entry from its routing
table and may proceed to perform bootstrapping for the
affected ContextBuses.

4. One-dimensional Ring Space

The ContextBus approach works efficiently when
the dimensionality is reasonably low. However, when
the number of semantic clusters increases, the
maintenance cost becomes non-trivial or expensive. In
addition, as the ratio of low-degree nodes to high-

degree nodes increases, processing bottlenecks may
exist at the high-degree nodes, subsequently
decreasing the search efficiency.

In this section, we present a new approach aiming
to reduce maintenance cost and facilitate efficient
navigation and search in a high-dimensional semantic
context space. We build an overlay network using a
one-dimensional ring structure which enables the
mapping from k-dimensional semantic space into a
one-dimensional semantic space. We now discuss how
to construct the ring space.

4.1 Peer Placement

In our design, one crucial issue is how to design a
naming space to facilitate efficient routing and support
cluster splitting and merging. We distinguish the
concepts of cluster and semantic cluster. A cluster
refers to a partition which consists of a set of nodes
bundled together such as cluster C0 and C1 in Figure
2. A semantic cluster, on the other hand, refers to a set
of clusters corresponding to the same semantics. For
example, cluster C0, C1, C2, and C3 belongs to
semantic cluster SC0. We propose our cluster
encoding scheme as follows. A Cluster ID which is
represented by an k-bit binary string (where k = m + n)
is an unique ID that identifies a cluster. The first m-bit
binary string (we call it Semantic Cluster ID) is used to
identify a semantic cluster which corresponds to one
particular domain context ontology. Hence, the system
can have a maximum of 2k clusters and 2m semantic
clusters. An example which assumes k = 5 and m = 3 is
illustrated in Figure 2. The rational behind this
encoding scheme is that, for a given query, we need to
obtain the appropriate Semantic Cluster ID (rather than
Cluster ID) to match the same semantics of the query
and route the query among semantic clusters. Semantic
clusters can be viewed as an additional semantic layer
on top of actual clusters. A query has to reach all
clusters within a semantic cluster for search
completeness.

Upon joining the network, a peer needs to obtain
the semantics from its local context data and place
itself into an appropriate semantic cluster. The
computation is done locally at each peer and requires
global information (i.e. a set of domain context
ontologies) to function. Each of the domain ontologies
corresponds to a unique Semantic Cluster ID. A new
Semantic Cluster ID is sequentially generated and
placed inside an ID pool when a new type of context
data is introduced to the system. Every new node that
joins the system will be dynamically assigned an ID
from this pool. As a peer may obtain multiple
semantics extracted from its context data, we choose

the semantic cluster corresponding to the largest set
(i.e. majority) of context data and place the peer into
this semantic cluster. In order for a query to reach all
nodes that provide the same semantics, we adopt index
publishing. A peer selects a node from each semantic
cluster excluding the one it joins and publishes its
index (i.e. reference pointer) to these nodes. For
example, Peer 1 publishes its index to semantic cluster
SC1 by putting its index to Peer 3 in cluster C4 which
is selected in random within SC1. As a result, a
particular semantic cluster can be viewed as a set of
interconnected nodes separated by clusters and a
collection of references stored in these nodes which
point to the other nodes in other clusters where context
data is physically stored.

Figure 2. One-dimensional ring space

The above scheme has several positive effects. For

example, if a peer has homogeneous data in its local
repository, most of its data will fall into one
corresponding semantic cluster, therefore reducing the
cost to publish data indices. This is likely to be the
case in context-aware environments, i.e. a context
producer node usually provides homogeneous context
data in a real scenario. Such nodes can be, for
example, an in-house location node that provides
location information for all users in a smart home or a
node stationed in an organization that provides
personal profiles for all employees. Furthermore, in
many cases, a query issued by a peer shares the same
semantics as those of its nearby peers. For example,
many context-ware applications are designed in such a
way that a node is likely to query for context data
available in its nearby nodes. By placing a node based
on the majority of its context data into one particular
cluster, context search can be performed efficiently.
While we assume single cluster joint points here,
multi-cluster joint points can also be used.

4.2 Ring Construction

In this system, clusters are placed in the ring based
on their cluster IDs. Each node maintains a set of node
entries in its routing table for the purpose of both intra-
cluster routing and inter-cluster routing. A node, say x,
decides which semantic cluster to participate in based
on its context data and randomly picks a cluster within
this semantic cluster to join. It joins the cluster by
connecting to and keeping track of a number of nodes
in the cluster. The nodes within this cluster are
interconnected. These node entries (called x's
neighbors in its own cluster) will be maintained in x's
routing table as intra-cluster routing information. Node
x also maintains two node entries in each of its
adjacent clusters. We call these two nodes x's
neighbors in its adjacent clusters. For example, Peer 1
keeps track of a node in its own cluster C0 and another
two nodes in its adjacent clusters - C1 and C28
respectively. Each new node that wishes to join the
network will perform this operation. This results in all
the clusters being linked linearly in a ring fashion.
With this ring structure, a k-dimensional semantic
space can be reduced to one-dimensional semantic
space. Maintaining two neighbors in the adjacent
clusters for every node also ensures that a query
generated at any node will be able to reach any other
cluster by navigating the ring space. However, queries
have to be passed around the ring linearly until the
destination cluster is reached. This approach may not
be efficient when the number of semantic clusters is
large. To accelerate search across clusters, node x also
maintains a set of nodes in other semantic clusters
other than the two adjacent clusters. These nodes
provide random shortcuts (similar to long contacts in
Kleinberg's small world) for node x to route a query to
other semantic clusters quickly. For example, in Figure
2, node x creates and keeps track of a shortcut to Peer
4.

4.3 Cluster Splitting and Merging

The operations of cluster splitting and merging
enable our system to scale to a large number of peers.
Let M represent the maximum cluster size. If a cluster
size exceeds M, the splitting process is invoked to split
the cluster into two. When a node x joins the network,
it sends a join request message to an existing node,
says y. If y falls into the same semantic cluster that x
wishes to join, x will then join y's cluster by
connecting to y if the cluster size is below M;
otherwise y performs a search to direct the request to a
node z in the semantic cluster that x wishes to join, and

subsequently x connects to z if z's cluster size does not
exceed M. If the cluster size exceeds M, the node (i.e.
y or z, which we call an initial node) will initiate the
cluster splitting process. Cluster splitting partitions a
cluster into two clusters of equal size. A semantic
cluster can be split into a maximum number of 2n

clusters. After splitting, a node updates its cluster ID
and also the neighbors list in both its own cluster and
its adjacent cluster.

When a node x leaves the network, it first checks
whether the current cluster size has dropped down to a
threshold Mmin. If the current size is above Mmin, x
simply leaves the network by transferring its indices to
a randomly selected node in its cluster. Otherwise, this
cluster needs to be merged with one of its neighboring
clusters within the same semantic cluster. The leaving
node triggers cluster merging which is an inversed
process of cluster splitting. If the last node in a
semantic cluster leaves, it initiates two messages to all
the nodes in its two adjacent clusters informing them
to update their neighbor lists. Subsequently, the
semantic cluster will be removed from the system.

4.4 Query Routing

In this section, we describe the search operation. As
described above, each node x maintains a routing table
with a set of node entries <NodeID, ClusterID> in x's
own cluster, two adjacent clusters and shortcuts. It
also keeps the state information about its own cluster,
consisting of a k-bit ClusterID which indicates the
cluster it resides in and ClusterSize which is the
number of nodes in the cluster. In addition, a node also
maintains a number of indices. The query routing
process involves two steps: inter-cluster routing and
intra-cluster routing. When node x receives a query, a
Semantic Cluster ID is generated based on the
semantics of the query. This ID, denoted as D, is the
destination semantic cluster the query is searching for.
Node x will first check whether D falls into its own
semantic cluster by comparing D against the most
significant m-bits of its ClusterID. If that is the case, x
will flood the query to all the nodes in its own cluster
and also forward the query to the nodes in its adjacent
clusters corresponding to D. The first node in each of
these adjacent clusters is always responsible for
flooding the query in its cluster and forwarding the
query to its adjacent cluster. The forwarding processes
are recursively carried out until all the clusters
corresponding to D are covered. Every node, upon
receiving a query, will check its local data repository
and return any matching context data and indices. If D
falls into x's adjacent semantic cluster, the query will
be forwarded to D and flooded to all the clusters

corresponding to D. If D neither falls into x's own
cluster nor its adjacent semantic cluster, x will rely on
its shortcuts to route the query across clusters.

In the design of these shortcuts, we have several
design options. We need to decide which semantic
cluster each shortcut points to and how many shortcuts
each node maintains. An intuitive strategy is to select a
set of semantic clusters randomly and assign each
shortcut to a node in each of the semantic clusters.
Each node can have s shortcuts (s ≥ 1) with the
tradeoff that the cost of creating and maintaining these
shortcuts is proportional to s. Upon receiving a query,
if the distance between D and the semantic cluster that
its shortcuts point to falls below a threshold (a preset
minimum distance in terms of number of hops) the
query will be forwarded to the closest semantic cluster.
Subsequently the query will hop towards the
destination semantic cluster. If not, node x selects a
shortcut randomly, and forwards the query to this
node. The same process is invoked until the distance to
D is below the threshold. This approach is similar to
Kleinberg's Small World network model where each
node maintains four links to each of its closest
neighbors and one long distance link to a node chosen
with a probability function.

5. Evaluation

In this section, we use simulations to evaluate the
effectiveness of our system, and compare its
performance to the Gnutella protocol. We first describe
our simulation model and the metrics. Then we report
some preliminary results from a range of experiments.

5.1 Simulation Model and Metrics

In our simulation model, we have two types of
network topologies: physical topology and P2P overlay
topology. The physical topology represents the real-
world Internet topology. The P2P overlay topology is
built on top of the physical topology. Previous studies
have shown that both Internet physical topologies [20]
and P2P overlay topologies [21] follow the small
world and power law properties. We generate these
topologies using the AS model since it has both small
world and power law properties.

Context data are classified into a set of categories.
There are different sets of keywords for different
categories. Each of these keywords maps to a set of
context data in each category. Context queries are
modeled as searches for specific keywords. All context
data associated with a specific keyword are potential
hits for a query with that keyword. Context data are

randomly replicated on nodes at a fraction α. Thus,
querying for a keyword with fraction α implies that a
query hit can be found at a fraction α of all the nodes
in the system. Each node x is also assigned a query
generation rate, which is the number of queries that
node x generates per unit time. In our experiments,
each node generates queries at a constant rate. If a
node receives queries at a rate that exceeds its capacity
to process them, the excess queries are queued in its
buffer until the node is ready to read the queries from
the buffer. In our simulation study, we use a Gnutella
overlay network to organize nodes within a cluster or a
ContextBus.

For the evaluation of ContextBus, each node in our
system is assigned a class ID (1: high-degree or 0: low-
degree) based on the number of degrees they have and
the total number of ContextBuses in the system. In our
system, a high-degree node may not necessarily be a
high-capacity node. For the evaluation of the ring
space, the simulation is started by having a pre-existing
node in the network and then performing a series of
join operations invoked by new coming nodes. A node
joins a semantic cluster based on its local context data
and publishes its data indices. Various context data are
mapped into different semantic clusters and each
cluster is associated with a unique ID ranging from 0 ~
2m. If a semantic cluster exceeds the maximum size M,
it will be split into two clusters and this operation may
continue until the number of clusters reaches 2n. After
the network reaches a certain size, a mixture of node
joining and leaving operations are invoked to simulate
the dynamic nature of the overlay network. We use the
following performance metrics:

Number of nodes contacted per query: this captures
the efficiency of a search system.

Search path length: the average number of hops
traversed by a query to the destination.

Search cost: the average number of query messages
incurred during a search operation in the network.

Maintenance cost: the average number of messages
incurred when a node joins or leaves the network. It
consists of the costs of node joining and leaving,
cluster splitting and merging as well as index
publishing. We measured these costs in terms of
number of messages.

Search completeness: the ratio of the number of
nodes contacted per query to the total number of nodes
in a particular cluster or ContextBus. Its value lies in
the range 0 to 1.

5.2 Search Efficiency

The efficiency of executing a search request is
captured in the fraction of nodes contacted and search

path length during the search. For a given query, the
ring space only needs to contact a fraction N/2m of
nodes where N is the total number of nodes in the
system as well as those nodes pointed to by a set of
indices. The fraction of nodes contacted per query in
the ring space decreases as m increases. In the case of
ContextBus, the fraction of nodes contacted is equal to
C / Cmax, where C is the average number of
ContextBuses each node participates in and Cmax is the
maximum number of ContextBuses in the system. In
the experiments, we set Cmax to 32 and vary the
average number of ContextBuses each node
participates in from 4 to 32. The average fraction of
nodes contacted per query is shown in Table 1. As
expected, ContextBus only contacts a fraction of the
nodes depending on C . The smaller the value of C ,
the fewer the number of nodes that will be contacted
for a query. Notice that for a search request, Gnutella
has to contact every node in the network. With less
nodes contacted by ContextBus and the ring space, the
network traffic load incurred by a query will also be
reduced. The search completeness for both the ring
space and ContextBus are equal to 1.

Table 1. Average fraction of nodes
contacted per query

 Gnutella ContextBus

Avg ContextBuses
per Node (C) N.A. 4 8 16

Avg Nodes
Contacted per

Query
100% 11% 25.7% 48.6%

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 256 512 1024 2048 4096 8192

se
ar

ch
 p

at
h

le
ng

th

of nodes

Gnutella
ContextBus

The Ring Space

Figure 3. Search path length

Figure 3 shows the search path length comparing

the ring space, ContextBus and Gnutella when the
network size is varied from 28 to 213. We set M to 1

and n to 0, so that there will be no flooding within a
semantic cluster. As shown in Figure 3, the search path
lengths for both the ring space and ContextBus
increase slowly with the network size as compared to
Gnutella. The search path length for the ring space is
almost identical to the one for ContextBus, showing
that they have the same search effectiveness.

5.2 Overheads

In this experiment, we evaluated search cost by
comparing search costs among the ring space,
ContextBus and Gnutella. We set the number of
semantic clusters to 16 and 32 respectively, and varied
the network size from 28 to 213. As shown in Figure 4,
the search cost of Gnutella increases rapidly when the
network size grows. In contrast, the ring space and
ContextBus significantly reduce the search cost with
the settings of 16 and 32 semantic clusters.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 256 512 1024 2048 4096 8192

se
ar

ch
 c

os
t (

10
3)

of nodes

Gnutella
ContextBus; 16 clusters
ContextBus; 32 clusters

The Ring Space; 16 clusters
The Ring Space; 32 clusters

Figure 4. Search cost

Subsequently, we evaluate the average maintenance

cost by comparing the ring space and ContextBus. The
maintenance cost of ContextBus only includes the cost
of node joining and leaving. As shown in Figure 5, the
maintenance cost for ContextBus increases rapidly
when the number of semantic clusters (dimensions)
grows. This is because the required number of
outgoing degrees for a node in ContextBus increases in
proportion to the dimension. In the case of the ring
space (M = 32 and n = 2), the average maintenance
cost of a node consists of the costs of node joining and
leaving, cluster splitting and merging as well as index
publishing. The maintenance cost in the ring space also
increases with respect to the dimension, but much
more gradually. This confirms our design goal of
reducing maintenance overheads incurred by high-
dimensional semantic overlay networks.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 1 2 4 8 16 32 64 128 256

av
g

m
ai

nt
en

an
ce

 c
os

t

semantic clusters (2m)

The Ring Space
ContextBus

Figure 5. Average maintenance cost

6. Conclusions and Future Work

We have proposed ContextBus and the ring
structure to group peers based on pre-defined
ontologies. It is important to know that this concept
can be well applied to any P2P searching systems
where schemas are explicitly defined such as P2P
searching for RDF-based web information. Our
preliminary simulation results show that our system
works effectively. We are currently optimizing the
performance of our system. In this paper we assume
the use of Gnutella-like overlay networks to organize
peers within a cluster; a DHT-based overlay network
can be used to provide a more efficient routing scheme
as compared to flooding within a cluster. We are also
studying how our proposed techniques can be
effectively applied to other P2P systems such as
CHORD and CAN. We also plan to build a prototype
system to deploy our proposed techniques in real life
applications.

7. References

[1] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards
Situated Computing. In Proceedings of the 1st International
Symposium on Wearable Computers, Cambridge, October
1997.

[2] B. Schilit, N. Adams, and R. Want. Context-aware
Computing Applications. In Proceedings of Workshop on
Mobile Computing Systems and Applications, Santa Cruz,
December 1994.

[3] RDFStore. http://rdfstore.sourceforge.net.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proceedings of ACM
SIGCOMM, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker. A Scalable Content Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[6] A. Rowstron and P. Druschel. Pastry: Scalable,
Distributed Object Location and Routing for Large-scale
peer-to-peer systems. In Proceedings of IFIP/ACM
International Conference on Distributed Systems Platforms,
Lecture Notes in Computer Science, 2218:161–172,
November 2001.

[7] Gnutella, http://gnutella.wego.com

[8] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. S. A. Naeve, M.
Nilsson, M. Palmer, and T. Risch. EDUTELLA: A P2P
Networking Infrastructure based on RDF. In Proceedings of
the 11th World Wide Web Conference, 2002.

[9] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M.
Schlosser, I. Brunkhorst, and A. Lser. Super-peer-based
Routing and Clustering Strategies for RDF-based Peer-to-
Peer Networks. In Proceedings of the 12th World Wide Web
Conference, May 2003.

[10] Jena 2 - A Semantic Web Framework,
http://www.hpl.hp.com/semweb/jena2.htm

[11] J. Broekstra and A. Kampman and F. van Harmelen.
Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Proc. of the 1st International
Semantic Web Conference, Sardinia, Italia, June, 2002.

[12] M. Cai and M. Frank. RDFPeers: A Scalable Distributed
RDF Repository based on A Structured Peer-to-Peer
Network. In Proceedings of the13th International World
Wide Web Conference, New York, May 2004.

[13] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov.
Piazza: Data Management Infrastructure for Semantic Web

Applications. In Proceedings of the 12th International World
Wide Web Conference, Budapest, Hungary, May 2003.

[14] A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks for P2P Systems. Technical report. Stanford
University.

[15] J. Kleinberg. The Small-World Phenomenon: an
Algorithm Perspective. In Proc. of the 32nd ACM
Symposium on Theory of Computing, 2000.

[16] T. Gu, H. K. Pung, and D. Zhang. A Service-Oriented
Middleware for Building Context-Aware Services. Journal of
Network and Computer Applications, Vol. 28, Issue 1, pp. 1-
18, January 2005.

[17] RDQL, http://www.w3.org/Submission/2004/SUBM-
RDQL-20040109/

[18] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang.
Location-Aware Topology Matching in P2P Systems. In
Proceedings of IEEE INFOCOM 2004, Hong Kong, China,
March 2004

[19] Z. Xu, C. Tang, and Z. Zhang. Building Topology-
Aware Overlays using Global Soft-State. In Proceedings of
International Conference on Distributed Computing Systems,
2003.

[20] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker,
and W. Willinger, Network Topology Generators: Degree-
Based vs. Structural, in Proceedings of ACM SIGCOMM'02,
2002.

[21] S. Saroiu, P. Gummadi, and S. Gribble, A Measurement
Study of Peer-to-Peer File Sharing Systems, in Proceedings
of Multimedia Computing and Networking, 2002.

