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Abstract 
 

As computing technology moves towards pervasive 
computing, many applications are beginning to make 
use of context information to adapt to and respond 
appropriately to their environments. Such a trend 
necessitates efficient search for context information in 
wide-area networks. In this paper, we propose a 
semantic P2P context lookup system. Peers are 
grouped based on the semantics of their local data 
which are extracted according to a set of schemas and 
are self-organized as a semantic overlay network. 
Context search requests are only routed to the 
appropriate nodes that have relevant data, reducing 
unnecessary query traffic and increasing the chances 
that the context data will be found quickly. To reduce 
maintenance overheads incurred by high-dimensional 
semantic overlay networks, we propose a one-
dimensional ring space to construct peers and 
facilitate efficient query routing. Our simulation 
studies demonstrate the effectiveness of our proposed 
routing techniques.  
 
1. Introduction 
 

Computing technology is moving towards pervasive 
computing. In the pervasive computing paradigm, 
devices, applications and humans are able to interact 
naturally and seamlessly with each other. In order for 
this to be possible, it is necessary to augment the 
capabilities of applications to include awareness of and 
sensitivity towards their environments, which are often 
dynamic in nature. This enables applications to 
respond and adapt appropriately to environmental 
changes and conditions. Applications that possess 
these qualities are known as context-aware 
applications. Context-aware applications typically 
acquire context information from context providers 
and subsequently manipulate this information to 
perform various context-sensitive tasks. Context 

information is characterized as an application's 
environment or situation [1], and as a combination of 
features of the execution environment, including 
computing, user and physical features [2]. Information 
on users (name, address, role, etc.), locations 
(coordinate, temperature, etc.), computational entities 
(device, network, application, etc.) and activities 
(scheduled activities, etc.) are some examples of 
context information. Context data can be represented 
in different ways. Previous systems have made use 
attribute-value pairs and Java programming objects to 
describe and model context data respectively. 
However, such approaches have limitations. In 
particular, they have limited semantic interoperability, 
which is the capability to exchange and share context 
data between different systems across different 
domains. To circumvent this problem, we have chosen 
to model context data using an ontology-based 
approach. This approach makes use of Resource 
Description Framework (RDF) statements to represent 
context data. Each RDF statement is a triple of the 
form <subject predicate object>. 

Context information is usually stored in wide-area 
networks and consumed by users and applications in 
different domains. It is therefore necessary to have 
efficient storage and search mechanisms for context 
information. Broadly speaking, these services can be 
provided either via centralized or distributed 
approaches. Although centralized systems such as 
RDFStore [3] generally provide faster query responses, 
the use of a central server subjects the system to 
limitations such as single points of failure and single 
processing bottlenecks. Distributed systems on the 
other hand do not suffer from such limitations. A 
possible way of building a distributed system is to 
leverage on Peer-to-Peer (P2P) technology. Such an 
approach enables distributed context data storage in a 
network as well as distributed query routing. P2P 
systems can be structured or unstructured. Structured 
models such as Chord [4], CAN [5] and Pastry [6], rely 
on distributed hash functions to determine where data 



should be stored. This means that each piece of data 
would be mapped to and subsequently stored at a 
particular location on the network, regardless of where 
the data is originally generated. Unstructured models 
such as Gnutella [7] do not restrict the placement of 
data. Edutella [8] and its successor [9] are examples of 
RDF-based meta-data infrastructures and routing 
schemes based on Gnutella-like P2P networks. Nodes 
in this system are organized as a hypercube. However 
in Edutella, a query has to be flooded to all nodes in 
the network which may include many nodes that do 
not contain the relevant context data. It is more 
efficient to forward a query to nodes which are likely 
to contain the relevant type of context data. This can 
potentially lead to a lower network load and better 
search performance.  

In this paper we propose the use of multiple 
semantic overlays to group various context producer 
nodes. Each overlay "ties" and manages a set of 
producer nodes with similar categories of context 
information. By contacting the nodes in one overlay or 
multiple overlays in parallel, context queries can be 
resolved quickly. This approach works efficiently 
(demonstrated in our simulation) when the 
dimensionality is reasonably low. However, when the 
number of semantic overlays increases, the 
maintenance cost becomes non-trivial or expensive. To 
reduce the maintenance cost and facilitate efficient 
search in high-dimensional semantic spaces, we 
propose a one-dimensional ring space to group and 
arrange peers upon their joining. The ring structure 
enables the mapping of the clusters in a k-dimensional 
semantic space to a one-dimensional semantic space, 
hence reducing overlay maintenance overhead. 

The rest of the paper is organized as follows. We 
describe related work in Section 2. We then discuss 
ContextBus in Section 3, and discuss the ring space in 
Section 4. We present the performance evaluation in 
Section 5, and conclude the work in Section 6.  
 
2. Related Work 
 

Centralized RDF repositories and lookup systems 
such as RDFStore, Jena [10] and Sesame [11] have 
been implemented to support the storing and querying 
of RDF documents. These systems are very fast and 
can scale up to many millions of triples. However, they 
have the same limitations as other centralized 
approaches, such as single processing bottlenecks and 
single points of failure. Cai et al. [12] proposed a 
distributed RDF repository that stores each triple at 
three places in a multi-attribute addressable network 
which extends Chord by applying a globally known 

hash function. Queries can then be efficiently routed to 
those nodes in the network where the triples in 
question are known to be stored if they exist. However, 
storing each RDF triple multiple times in the network 
increases the storage cost. Schema-based P2P 
networks such as Edutella and Piazza [13] that 
combine P2P computing and the Semantic Web are 
potential candidates for distributed context lookup 
systems. These systems build upon peers that use 
explicit schemas to describe their contents. However, 
current schema-based P2P networks still have some 
shortcomings, e.g. queries still have to be flooded to 
every node in the network, making it difficult for the 
system to scale. Unstructured P2P systems with 
multiple overlays have also been proposed. In [14], 
these multiple overlays are called Semantic Overlay 
Networks (SONs); queries are routed to the 
appropriate SONs, increasing the chances that 
matching objects will be found quickly and reducing 
the search load. We use the concept of multiple 
semantic overlays in context-aware computing to 
cluster context producer nodes based on pre-defined 
schemas; and we mainly focus on the query routing 
issues both within and across overlay networks. We 
aim to reduce the overlay maintenance cost incurred by 
high dimensional semantic overlays. Kleinberg [15] 
proposed a two-dimensional grid where every node 
maintains four links to each of its closest neighbors 
and one long distance link to a node chosen from a 
probability function. He showed that a query can be 
routed to any node in O(log2n) hops. Our work is 
inspired by Kleinberg's small world construction. We 
show how the basic idea can be applied to a semantic 
P2P context lookup system. 
 
3. ContextBus Architecture  
 

In this section we describe the use of multiple 
semantic overlays to organize nodes in our system. The 
idea behind this scheme is to classify a wide range of 
context producer nodes into certain groups based on 
the kind of context data they store. Upon creation, 
every node will be associated with meta-data and may 
participate in one or more groups. Nodes in the same 
group will form an overlay which we call a 
ContextBus. A query will first be preprocessed and 
mapped into one particular ContextBus or a subset of 
ContextBuses, and then routed to these ContextBuses 
based on the inter-ContextBus routing technique which 
we will describe in Section 3.2. The overall 
performance of context search can be improved by 
forwarding a query only to the nodes which contain the 



same type of context information as requested in the 
query.  

The meta-data for classifying context data are 
defined in context ontologies. As context information 
has a limited scope compared to other network 
resources, we should be able to classify a wide range 
of context data into a manageable number of categories 
using domain ontologies. We have classified context 
information into person, location, activity, device, 
network, etc, and defined the domain ontology for each 
category [16].  

The ContextBus architecture is shown in Figure 1. 
A peer (which we call a ContextPeer) can act as a 
context producer, a context consumer, or both. Context 
producers provide various kinds of context data; 
whereas context consumers obtain context data by 
submitting their context queries and receiving query 
results. Upon creation, context producer peers will be 
clustered according to their data semantics and 
associated with one or more ContextBuses. The 
ContextPeers within the same ContextBus are 
interconnected and organized using an overlay 
network. Upon receiving a query, a ContextPeer 
extracts the semantics from the query, maps it to the 
relevant ContextBuses, and then routes the query to 
these ContextBuses. When the query reaches a 
designated ContextBus, it will be flooded to all peers 
within this overlay. ContextPeers that receive the 
query will do a local search and return results 
appropriately. Each ContextPeer maintains a local 
context data repository which supports RDF-based 
semantic query using RDQL [17]. 

 

 

Figure 1.  ContextBus architecture 

 
For the rest of this section, we discuss the 

bootstrapping mechanism that takes place when a new 
ContextPeer joins the network, followed by the routing 
strategy across ContextBuses. Then we describe the 
maintenance of routing tables. In the sections that 
follow, we will refer to ContextPeers as nodes. 
 

3.1 Bootstrapping 
 

When a new node is created, it will first go through 
the bootstrapping process to join the network. A 
bootstrap server maintains information on available 
nodes in a certain region. We recognize the fact that 
nodes have different capability constraints, such as the 
maximum degree (i.e. the number of active 
connections per node). We classify nodes into two 
classes: high-degree and low-degree. We define M as 
the maximum degree of a node and C as the total 
number of ContextBuses in the system. A node is 
called a high-degree node if M ≥ C and a low-degree 
node if M < C. A node's entry in the bootstrap server is 
a pair of <nodeID, nodeClass> indicating the node's 
ID and its class information. Entries are grouped 
according to the ContextBuses which nodes participate 
in. Duplicate entries may exist across different 
ContextBuses as nodes may join multiple 
ContextBuses. 

When a node x joins the network, it will first 
contact a bootstrap server and attempt to join certain 
ContextBuses. It does this by obtaining one or more 
node IDs for these ContextBuses from the bootstrap 
server and then connecting to each of these nodes. 
These node IDs will be stored in node x's routing table. 
For a high-degree node, the bootstrap process ensures 
that it is connected to at least one node in each 
ContextBus. For a low-degree node, it will not be able 
to connect all ContextBuses due to a limited number of 
available connections. In this case, we will first satisfy 
those ContextBuses which provide the same type of 
context data as provided by the node, and then assign 
the remaining connections to nodes in other 
ContextBuses. This ensures that a query for a 
particular type of context data reaches all nodes 
providing that type of context data. Here, we assume 
that the maximum degree of a low-degree node is 
greater than the number of ContextBuses providing the 
same types of context data as the node. For the 
assignment of the remaining connections, a low-degree 
node must connect to at least one high-degree node. 
This ensures that a low-degree node is able to route 
queries to any ContextBus either by itself or through a 
high-degree node. 

Recently, researchers in [18] have realized the 
topology mismatching problem which limits the 
performance of various search and routing techniques. 
To ensure that the ContextBuses mirror the physical 
network as much as possible, we perceive that it is 
more efficient to perform topology optimization within 
each ContextBus upon node joining and leaving. This 
optimization requires the knowledge of link costs 
between every two nodes. In [19], a technique has 



been proposed to determine these link costs, using the 
latency between each node to multiple servers. This 
technique can thus be employed to optimize the 
topologies of ContextBuses. 
 
3.2 Inter-ContextBus Routing 
 

Upon entry into the system, each node x creates a 
routing table containing a set of node IDs that are 
grouped according to ContextBus IDs. These nodes are 
the direct (or one-hop) neighbors of node x. As a high-
degree node connects to at least one node in each 
ContextBus, it is able to forward any query to any 
ContextBus. If a query is generated at a low-capacity 
node, it will forward the query to a high-degree node if 
the query is destined for ContextBuses that it is not 
able to connect to directly. In this case the high-degree 
node will act as a bridge (which we call a BridgePeer 
as shown in Figure 1) for the low-degree node that will 
route the query to the appropriate ContextBuses. 
 
3.3 Routing Table Maintenance 
 

In the event of nodes joining and leaving the 
system, the routing tables of all affected nodes have to 
be updated to reflect the current state of the system as 
accurately as possible. The maintenance of routing 
tables makes use of the Ping and Pong messages. 

In our system, nodes may or may not leave 
gracefully. In the case of graceful node leaving, the 
node deciding to leave the system will inform all its 
neighbors of its intention prior to leaving. Each of its 
neighbors can then delete the entries corresponding to 
this node from their tables and perform bootstrapping 
as necessary. However, if a node does not leave the 
system gracefully, this node's entries in the routing 
tables of neighboring nodes will become invalid. To 
remove such outdated entries, a node periodically 
sends a Ping to each direct neighbor in its routing table 
to check its availability. An active neighbor will 
respond to the Ping with a Pong. A neighbor that does 
not respond with a Pong is considered dead. The node 
will then purge that neighbor’s entry from its routing 
table and may proceed to perform bootstrapping for the 
affected ContextBuses. 
 
4. One-dimensional Ring Space 
 

The ContextBus approach works efficiently when 
the dimensionality is reasonably low. However, when 
the number of semantic clusters increases, the 
maintenance cost becomes non-trivial or expensive. In 
addition, as the ratio of low-degree nodes to high-

degree nodes increases, processing bottlenecks may 
exist at the high-degree nodes, subsequently 
decreasing the search efficiency. 

In this section, we present a new approach aiming 
to reduce maintenance cost and facilitate efficient 
navigation and search in a high-dimensional semantic 
context space. We build an overlay network using a 
one-dimensional ring structure which enables the 
mapping from k-dimensional semantic space into a 
one-dimensional semantic space. We now discuss how 
to construct the ring space.  

 
4.1 Peer Placement 
 

In our design, one crucial issue is how to design a 
naming space to facilitate efficient routing and support 
cluster splitting and merging. We distinguish the 
concepts of cluster and semantic cluster. A cluster 
refers to a partition which consists of a set of nodes 
bundled together such as cluster C0 and C1 in Figure 
2. A semantic cluster, on the other hand, refers to a set 
of clusters corresponding to the same semantics. For 
example, cluster C0, C1, C2, and C3 belongs to 
semantic cluster SC0. We propose our cluster 
encoding scheme as follows. A Cluster ID which is 
represented by an k-bit binary string (where k = m + n) 
is an unique ID that identifies a cluster. The first m-bit 
binary string (we call it Semantic Cluster ID) is used to 
identify a semantic cluster which corresponds to one 
particular domain context ontology. Hence, the system 
can have a maximum of 2k clusters and 2m semantic 
clusters. An example which assumes k = 5 and m = 3 is 
illustrated in Figure 2. The rational behind this 
encoding scheme is that, for a given query, we need to 
obtain the appropriate Semantic Cluster ID (rather than 
Cluster ID) to match the same semantics of the query 
and route the query among semantic clusters. Semantic 
clusters can be viewed as an additional semantic layer 
on top of actual clusters. A query has to reach all 
clusters within a semantic cluster for search 
completeness. 

Upon joining the network, a peer needs to obtain 
the semantics from its local context data and place 
itself into an appropriate semantic cluster. The 
computation is done locally at each peer and requires 
global information (i.e. a set of domain context 
ontologies) to function. Each of the domain ontologies 
corresponds to a unique Semantic Cluster ID. A new 
Semantic Cluster ID is sequentially generated and 
placed inside an ID pool when a new type of context 
data is introduced to the system. Every new node that 
joins the system will be dynamically assigned an ID 
from this pool. As a peer may obtain multiple 
semantics extracted from its context data, we choose 



the semantic cluster corresponding to the largest set 
(i.e. majority) of context data and place the peer into 
this semantic cluster. In order for a query to reach all 
nodes that provide the same semantics, we adopt index 
publishing. A peer selects a node from each semantic 
cluster excluding the one it joins and publishes its 
index (i.e. reference pointer) to these nodes. For 
example, Peer 1 publishes its index to semantic cluster 
SC1 by putting its index to Peer 3 in cluster C4 which 
is selected in random within SC1. As a result, a 
particular semantic cluster can be viewed as a set of 
interconnected nodes separated by clusters and a 
collection of references stored in these nodes which 
point to the other nodes in other clusters where context 
data is physically stored. 

 

 

Figure 2.  One-dimensional ring space 

 
The above scheme has several positive effects. For 

example, if a peer has homogeneous data in its local 
repository, most of its data will fall into one 
corresponding semantic cluster, therefore reducing the 
cost to publish data indices. This is likely to be the 
case in context-aware environments, i.e. a context 
producer node usually provides homogeneous context 
data in a real scenario. Such nodes can be, for 
example, an in-house location node that provides 
location information for all users in a smart home or a 
node stationed in an organization that provides 
personal profiles for all employees. Furthermore, in 
many cases, a query issued by a peer shares the same 
semantics as those of its nearby peers. For example, 
many context-ware applications are designed in such a 
way that a node is likely to query for context data 
available in its nearby nodes. By placing a node based 
on the majority of its context data into one particular 
cluster, context search can be performed efficiently. 
While we assume single cluster joint points here, 
multi-cluster joint points can also be used. 
 

4.2 Ring Construction  
 

In this system, clusters are placed in the ring based 
on their cluster IDs. Each node maintains a set of node 
entries in its routing table for the purpose of both intra-
cluster routing and inter-cluster routing. A node, say x, 
decides which semantic cluster to participate in based 
on its context data and randomly picks a cluster within 
this semantic cluster to join. It joins the cluster by 
connecting to and keeping track of a number of nodes 
in the cluster. The nodes within this cluster are 
interconnected. These node entries (called x's 
neighbors in its own cluster) will be maintained in x's 
routing table as intra-cluster routing information. Node 
x also maintains two node entries in each of its 
adjacent clusters. We call these two nodes x's 
neighbors in its adjacent clusters. For example, Peer 1 
keeps track of a node in its own cluster C0 and another 
two nodes in its adjacent clusters - C1 and C28 
respectively. Each new node that wishes to join the 
network will perform this operation. This results in all 
the clusters being linked linearly in a ring fashion. 
With this ring structure, a k-dimensional semantic 
space can be reduced to one-dimensional semantic 
space. Maintaining two neighbors in the adjacent 
clusters for every node also ensures that a query 
generated at any node will be able to reach any other 
cluster by navigating the ring space. However, queries 
have to be passed around the ring linearly until the 
destination cluster is reached. This approach may not 
be efficient when the number of semantic clusters is 
large. To accelerate search across clusters, node x also 
maintains a set of nodes in other semantic clusters 
other than the two adjacent clusters. These nodes 
provide random shortcuts (similar to long contacts in 
Kleinberg's small world) for node x to route a query to 
other semantic clusters quickly. For example, in Figure 
2, node x creates and keeps track of a shortcut to Peer 
4.  

 
4.3 Cluster Splitting and Merging  
 

The operations of cluster splitting and merging 
enable our system to scale to a large number of peers. 
Let M represent the maximum cluster size. If a cluster 
size exceeds M, the splitting process is invoked to split 
the cluster into two. When a node x joins the network, 
it sends a join request message to an existing node, 
says y. If y falls into the same semantic cluster that x 
wishes to join, x will then join y's cluster by 
connecting to y if the cluster size is below M; 
otherwise y performs a search to direct the request to a 
node z in the semantic cluster that x wishes to join, and 



subsequently x connects to z if z's cluster size does not 
exceed M. If the cluster size exceeds M, the node (i.e. 
y or z, which we call an initial node) will initiate the 
cluster splitting process. Cluster splitting partitions a 
cluster into two clusters of equal size. A semantic 
cluster can be split into a maximum number of 2n 

clusters. After splitting, a node updates its cluster ID 
and also the neighbors list in both its own cluster and 
its adjacent cluster.  

When a node x leaves the network, it first checks 
whether the current cluster size has dropped down to a 
threshold Mmin. If the current size is above Mmin, x 
simply leaves the network by transferring its indices to 
a randomly selected node in its cluster. Otherwise, this 
cluster needs to be merged with one of its neighboring 
clusters within the same semantic cluster. The leaving 
node triggers cluster merging which is an inversed 
process of cluster splitting. If the last node in a 
semantic cluster leaves, it initiates two messages to all 
the nodes in its two adjacent clusters informing them 
to update their neighbor lists. Subsequently, the 
semantic cluster will be removed from the system. 
 
4.4 Query Routing  
 

In this section, we describe the search operation. As 
described above, each node x maintains a routing table 
with a set of node entries <NodeID, ClusterID> in x's 
own cluster, two adjacent clusters and shortcuts. It 
also keeps the state information about its own cluster, 
consisting of a k-bit ClusterID which indicates the 
cluster it resides in and ClusterSize which is the 
number of nodes in the cluster. In addition, a node also 
maintains a number of indices. The query routing 
process involves two steps: inter-cluster routing and 
intra-cluster routing. When node x receives a query, a 
Semantic Cluster ID is generated based on the 
semantics of the query. This ID, denoted as D, is the 
destination semantic cluster the query is searching for. 
Node x will first check whether D falls into its own 
semantic cluster by comparing D against the most 
significant m-bits of its ClusterID. If that is the case, x 
will flood the query to all the nodes in its own cluster 
and also forward the query to the nodes in its adjacent 
clusters corresponding to D. The first node in each of 
these adjacent clusters is always responsible for 
flooding the query in its cluster and forwarding the 
query to its adjacent cluster. The forwarding processes 
are recursively carried out until all the clusters 
corresponding to D are covered. Every node, upon 
receiving a query, will check its local data repository 
and return any matching context data and indices. If D 
falls into x's adjacent semantic cluster, the query will 
be forwarded to D and flooded to all the clusters 

corresponding to D. If D neither falls into x's own 
cluster nor its adjacent semantic cluster, x will rely on 
its shortcuts to route the query across clusters. 

In the design of these shortcuts, we have several 
design options. We need to decide which semantic 
cluster each shortcut points to and how many shortcuts 
each node maintains. An intuitive strategy is to select a 
set of semantic clusters randomly and assign each 
shortcut to a node in each of the semantic clusters. 
Each node can have s shortcuts (s ≥ 1) with the 
tradeoff that the cost of creating and maintaining these 
shortcuts is proportional to s. Upon receiving a query, 
if the distance between D and the semantic cluster that 
its shortcuts point to falls below a threshold (a preset 
minimum distance in terms of number of hops) the 
query will be forwarded to the closest semantic cluster. 
Subsequently the query will hop towards the 
destination semantic cluster. If not, node x selects a 
shortcut randomly, and forwards the query to this 
node. The same process is invoked until the distance to 
D is below the threshold. This approach is similar to 
Kleinberg's Small World network model where each 
node maintains four links to each of its closest 
neighbors and one long distance link to a node chosen 
with a probability function.  
 
5. Evaluation 
 

In this section, we use simulations to evaluate the 
effectiveness of our system, and compare its 
performance to the Gnutella protocol. We first describe 
our simulation model and the metrics. Then we report 
some preliminary results from a range of experiments. 

 
5.1 Simulation Model and Metrics 
 

In our simulation model, we have two types of 
network topologies: physical topology and P2P overlay 
topology. The physical topology represents the real-
world Internet topology. The P2P overlay topology is 
built on top of the physical topology. Previous studies 
have shown that both Internet physical topologies [20] 
and P2P overlay topologies [21] follow the small 
world and power law properties. We generate these 
topologies using the AS model since it has both small 
world and power law properties. 

Context data are classified into a set of categories. 
There are different sets of keywords for different 
categories. Each of these keywords maps to a set of 
context data in each category. Context queries are 
modeled as searches for specific keywords. All context 
data associated with a specific keyword are potential 
hits for a query with that keyword. Context data are 



randomly replicated on nodes at a fraction α. Thus, 
querying for a keyword with fraction α implies that a 
query hit can be found at a fraction α of all the nodes 
in the system. Each node x is also assigned a query 
generation rate, which is the number of queries that 
node x generates per unit time. In our experiments, 
each node generates queries at a constant rate. If a 
node receives queries at a rate that exceeds its capacity 
to process them, the excess queries are queued in its 
buffer until the node is ready to read the queries from 
the buffer. In our simulation study, we use a Gnutella 
overlay network to organize nodes within a cluster or a 
ContextBus. 

For the evaluation of ContextBus, each node in our 
system is assigned a class ID (1: high-degree or 0: low-
degree) based on the number of degrees they have and 
the total number of ContextBuses in the system. In our 
system, a high-degree node may not necessarily be a 
high-capacity node. For the evaluation of the ring 
space, the simulation is started by having a pre-existing 
node in the network and then performing a series of 
join operations invoked by new coming nodes. A node 
joins a semantic cluster based on its local context data 
and publishes its data indices. Various context data are 
mapped into different semantic clusters and each 
cluster is associated with a unique ID ranging from 0 ~ 
2m. If a semantic cluster exceeds the maximum size M, 
it will be split into two clusters and this operation may 
continue until the number of clusters reaches 2n. After 
the network reaches a certain size, a mixture of node 
joining and leaving operations are invoked to simulate 
the dynamic nature of the overlay network. We use the 
following performance metrics: 

Number of nodes contacted per query: this captures 
the efficiency of a search system.  

Search path length: the average number of hops 
traversed by a query to the destination. 

Search cost: the average number of query messages 
incurred during a search operation in the network. 

Maintenance cost: the average number of messages 
incurred when a node joins or leaves the network. It 
consists of the costs of node joining and leaving, 
cluster splitting and merging as well as index 
publishing. We measured these costs in terms of 
number of messages. 

Search completeness: the ratio of the number of 
nodes contacted per query to the total number of nodes 
in a particular cluster or ContextBus. Its value lies in 
the range 0 to 1. 
 
5.2 Search Efficiency 
 

The efficiency of executing a search request is 
captured in the fraction of nodes contacted and search 

path length during the search. For a given query, the 
ring space only needs to contact a fraction N/2m of 
nodes where N is the total number of nodes in the 
system as well as those nodes pointed to by a set of 
indices. The fraction of nodes contacted per query in 
the ring space decreases as m increases. In the case of 
ContextBus, the fraction of nodes contacted is equal to 
C / Cmax, where C  is the average number of 
ContextBuses each node participates in and Cmax is the 
maximum number of ContextBuses in the system. In 
the experiments, we set Cmax to 32 and vary the 
average number of ContextBuses each node 
participates in from 4 to 32. The average fraction of 
nodes contacted per query is shown in Table 1. As 
expected, ContextBus only contacts a fraction of the 
nodes depending on C . The smaller the value of C , 
the fewer the number of nodes that will be contacted 
for a query. Notice that for a search request, Gnutella 
has to contact every node in the network. With less 
nodes contacted by ContextBus and the ring space, the 
network traffic load incurred by a query will also be 
reduced. The search completeness for both the ring 
space and ContextBus are equal to 1. 
 

Table 1. Average fraction of nodes 
contacted per query 

 Gnutella ContextBus 

Avg ContextBuses 
per Node (C ) N.A. 4 8 16 

Avg Nodes 
Contacted per 

Query 
100% 11% 25.7% 48.6% 
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Figure 3.  Search path length  

 
Figure 3 shows the search path length comparing 

the ring space, ContextBus and Gnutella when the 
network size is varied from 28 to 213. We set M to 1 



and n to 0, so that there will be no flooding within a 
semantic cluster. As shown in Figure 3, the search path 
lengths for both the ring space and ContextBus 
increase slowly with the network size as compared to 
Gnutella. The search path length for the ring space is 
almost identical to the one for ContextBus, showing 
that they have the same search effectiveness.  
 
5.2 Overheads  
 

In this experiment, we evaluated search cost by 
comparing search costs among the ring space, 
ContextBus and Gnutella. We set the number of 
semantic clusters to 16 and 32 respectively, and varied 
the network size from 28 to 213. As shown in Figure 4, 
the search cost of Gnutella increases rapidly when the 
network size grows. In contrast, the ring space and 
ContextBus significantly reduce the search cost with 
the settings of 16 and 32 semantic clusters.  
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Figure 4.  Search cost  

 
Subsequently, we evaluate the average maintenance 

cost by comparing the ring space and ContextBus. The 
maintenance cost of ContextBus only includes the cost 
of node joining and leaving. As shown in Figure 5, the 
maintenance cost for ContextBus increases rapidly 
when the number of semantic clusters (dimensions) 
grows. This is because the required number of 
outgoing degrees for a node in ContextBus increases in 
proportion to the dimension. In the case of the ring 
space (M = 32 and n = 2), the average maintenance 
cost of a node consists of the costs of node joining and 
leaving, cluster splitting and merging as well as index 
publishing. The maintenance cost in the ring space also 
increases with respect to the dimension, but much 
more gradually. This confirms our design goal of 
reducing maintenance overheads incurred by high-
dimensional semantic overlay networks. 
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Figure 5.  Average maintenance cost   

 
6. Conclusions and Future Work 
 

We have proposed ContextBus and the ring 
structure to group peers based on pre-defined 
ontologies. It is important to know that this concept 
can be well applied to any P2P searching systems 
where schemas are explicitly defined such as P2P 
searching for RDF-based web information. Our 
preliminary simulation results show that our system 
works effectively. We are currently optimizing the 
performance of our system. In this paper we assume 
the use of Gnutella-like overlay networks to organize 
peers within a cluster; a DHT-based overlay network 
can be used to provide a more efficient routing scheme 
as compared to flooding within a cluster. We are also 
studying how our proposed techniques can be 
effectively applied to other P2P systems such as 
CHORD and CAN. We also plan to build a prototype 
system to deploy our proposed techniques in real life 
applications. 
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