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Abstract

The advancement of wireless networks and mobile computing necessitates more advanced

applications and services to be built with context-awareness enabled and adaptability to their changing

contexts. Today, building context-aware services is a complex task due to the lack of an adequate

infrastructure support in pervasive computing environments. In this article, we propose a Service-

Oriented Context-Aware Middleware (SOCAM) architecture for the building and rapid prototyping of

context-aware services. It provides efficient support for acquiring, discovering, interpreting and

accessing various contexts to build context-aware services. We also propose a formal context model

based on ontology using Web Ontology Language to address issues including semantic representation,

context reasoning, context classification and dependency. We describe our context model and the

middleware architecture, and present a performance study for our prototype in a smart home

environment.
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1. Introduction

Emerging pervasive computing technologies provide ‘anytime, anywhere’ computing by

decoupling users from devices and viewing applications as entities that perform tasks on
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behalf of users (Henricksen et al., 2001). To avoid increasing complexity and allow the users

is to concentrate on his tasks, applications and services must be aware of their contexts and

automatically adapt to their changing contexts-known as context-awareness. By context, we

refer to any information that can be used to characterize the situation of an entity, where an

entity can be a person, place, or physical or computational object (Dey and Abowd, 2000). For

example, contexts may include person (name, role, etc.), location contexts (coordinate,

temperature, etc.), computational entity contexts (device, network, application, etc.) and

activity contexts (scheduled activities, etc.). A context-aware service is a network service

which uses various contexts and adapts itself to the change of environment dynamically and

automatically. For example, a context-aware service for smart mobile phone is able to forward

incoming calls to voice mail when a mobile phone user is currently sleeping in the bedroom.

Context-aware computing has been drawing much attention from researchers since it

was proposed about a decade ago. However, context-aware services have never been widely

available to everyday users. Recent research results show that building context-aware

systems is still a complex and time-consuming task due to the lack of an adequate

infrastructure support (Chen and Kotz, 2000). We believe such infrastructure requires

the following supports:

(i) A common context model that can be shared by all devices and services. Context

sharing is important as other entities can ‘understand’ contexts in a same smart space domain

or across different domains. In previous systems, context information represented as string or

modeled as Java programming objects are unlikely to be shared efficiently. Ontology has been

widely used in many areas such as Artificial Intelligence and the Semantic Web (Berners-Lee

et al., 2001). An ontology provides a vocabulary for representing knowledge about a domain

and for describing specific situations in a domain. By applying ontology and the Semantic

Web technology into pervasive computing environments, we propose an ontology-based

context model using OWL (Smith et al., 2003)—an ontology markup language to enable

context sharing by explicitly defining contexts in a semantic way. Most importantly, context

reasoning becomes possible. Through reasoning, many high-level, implicit contexts can be

derived from low-level, explicit contexts. Our model also captures information of context

classification and dependency which is useful in the context reasoning process.

(ii) A set of services that perform context acquisition, context discovery, context

interpretation and context dissemination. A challenge for building such infrastructure lies

with designing a set of services to support various tasks. Some of these services may be highly

application specific. By taking a service-oriented approach, we propose a Service-Oriented

Context-Aware Middleware (SOCAM) which includes a set of independent services. A

service component performs a specific task and interacts with other components to support

context-aware applications. The SOCAM architecture which is built on our context model

supports acquiring various contexts from different context providers, interpreting contexts

through context reasoning, and delivering contexts in both push and pull modes. With these

service components, context-aware services can be easily built by using different services to

access various types of contexts with different levels of complexity.

The rest of this article is organized as follows. Section 2 discusses related work.

In Section 3 we describe our modeling concepts, followed by the SOCAM architecture in

Section 4. Section 5 presents our performance evaluation. Finally, we present our

conclusions in Section 6.
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2. Related work

A number of context-aware systems have been developed to demonstrate the usefulness

of context-aware computing technology. In the earlier stage of the research, many

researchers focused on building application-specific context-aware systems such as the

Active Badge (Want et al., 1992) project which provided the phone redirection service

based on the location of a person in an office; and the Cyberguide (Long et al., 1996)

project which provided a context-aware tour guide to visitors. In MIT’s AIRE1 project, an

intelligent room equipped with computer vision and speech recognition systems was

created to experiment with different forms of natural, multimodal human–computer

interaction. The HP’s Cooltown (Kindberg and Barton, 1999) project is a web-based

system for context-awareness. These systems are typically proprietary and difficult to

obtain and process context information due to the ‘ad-hoc’ approach they deployed. They

may depend on the underlying hardware and operating system.

Some researchers take a toolkit-based approach to provide basic structures and reusable

components for common functionalities to enable easy creation of context-aware

applications. The ParcTab (Shilit, 1995) system was the earliest attempt on general

context-aware framework. By using an object-oriented approach, the ContextToolkit (Dey

et al., 2001) provides a framework and a number of reusable components to support rapid

prototyping of sensor-based context-aware applications. However, these systems do not

provide a common context model to enable context knowledge sharing and context reasoning.

Recent research work has focused on providing infrastructure support for context-

aware systems. The advantage of the infrastructure-based systems has been pointed out

inHong and Landay (2001). In the Context Fabric (Hong and Landay, 2001) infrastructure,

Hong et al. took a database-oriented approach to provide context abstraction by defining a

Context Specification Language; and a set of core services. However, the design of a

proprietary context specification language may lead to the lack of a common model.

Ranganathan and Campbell (2003) developed a middleware for context awareness and

semantic interoperability, in which they represented context ontology written in DAMLC
OIL (Horrocks, 2002). In the CoBrA (Chen and Finin, 2003) project, Chen et al. proposed

an agent-oriented infrastructure for context representation, sharing knowledge and user’s

privacy control. However, both Ranganathan and Campbell (2003) and Chen and Finin

(2003) did not provide a performance evaluation for the feasibility of applying ontology in

pervasive computing environments and their approaches did not address various

characteristics of context information such as classification and dependency.
3. Context modeling and reasoning

In this section, we discuss the use of ontology and OWL; and describe our ontology-

based approach for modeling contexts. The initial concept can be found in Gu et al.

(2004a).
1 http://www.ai.mit.edu/projects/aire/projects.shtml#835.

http://www.comp.nus.edu.sg/~punghk
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3.1. Ontology and OWL

The term ‘Ontology’ has a long history in philosophy, in which it refers to the subject of

existence. In the AI literature, an ontology is a formal explicit description of concepts in a

domain of discourse. It provides a vocabulary for representing knowledge about a domain

and for describing specific situations in a domain.

Modeling context using an ontology-based approach allows us to describe contexts

semantically in a way which is independent of programming language, underlying

operating system or middleware. The main benefit of this model is that it enables formal

analysis of domain knowledge, i.e. context reasoning using first-order logic, temporal

logic, etc.

In our model, contexts are described by ontologies written in OWL. OWL, a key to the

Semantic Web, is web ontology language proposed by W3C’s Web Ontology Working

Group. OWL is much more expressive than other ontology languages such as RDFS (Dan

Brickley, 2003). We chose OWL rather than DAMLCOIL as the latter has been merged

into OWL to become an open W3C standard.
3.2. A formal context model

In our model, contexts are represented as first-order predicate calculus. The basic model

has the form of Predicate(subject, value), in which
–
 subject 2S*: set of subject names, e.g. a person, a location or an object.
–
 Predicate2V*: set of predicate names, e.g. is located in, has status, etc.
–
 value 2O*: set of all values of subjects in S*, e.g. the living room, open, close, empty, etc.

For example, Location(John, bathroom)—John is located in the bathroom, Tempera-

ture(kitchen, 120)—the temperature of the kitchen is 120 8F, Status(door, open)—the

door’s status is open, etc.

The basic context model can be extended to form a complex context or a set of contexts

by combining the predicate and Boolean algebra (union, intersection and complement).

For example, FoodPreference(familyMembers, foodItems)—all family members’ food

preferences are a list of food items, can be represented as FoodPreference(John,

FoodList_1)nFoodPreference(Alice, FoodList_2)n FoodPreference(Tom, FoodList_3).

The structures and properties of context predicates are described in an ontology

which may include descriptions of classes, properties and their instances. The ontology is

written in OWL as a collection of RDF triples, each statement being in the form

(subject, predicate, object), where subject and object are ontology’s objects or individuals,

and predicate is a property relation defined by the ontology. An example is shown in Fig. 1.
3.3. The design of context ontology

Context information has a great variety. Contexts include any information that

describes physical objects, applications and users in any domain such as home domain,

office domain, vehicle domain, etc. As a large proportion of context knowledge is unlikely



Fig. 1. A partial context ontology written in OWL.
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to be processed and maintained efficiently in pervasive computing environments where the

resource limitation of pervasive devices such as CPU speed and memory are often of

concerned, we adopt a two-layer hierarchical approach for designing our context

ontologies. Our context ontologies are divided into the common upper ontology for the

general concepts and the domain-specific ontologies which apply to different sub-

domains. The generalized ontology captures general contexts for all pervasive computing

domains. The generalized ontology is fixed once defined and will be shared among

different domains. The domain-specific ontology is a collection of low-level ontologies

which define the details of general concepts and their properties in each sub-domain such

as a smart home domain or a vehicle domain.

The separation of domains significantly reduces the scale of context knowledge, and

hence releases the burden of context processing for pervasive devices in each domain. The

low-level ontology for each sub-domain may be adaptive and dynamically ‘re-bind’ with

the generalized ontology when the environment is changed. For example, if a user is at

home, the home-domain ontology is bound with the generalized ontology and used to

derive high-level contexts. The user can access the context-aware services in a smart home

scenario which are specified by a set of rules (described in Section 4.2.2). When the user

leaves his home to drive a car, the vehicle-domain ontology will re-bind with the

generalized ontology and a new set of rules for describing context-aware behaviors may

also be loaded. A new set of context-aware services in a vehicle scenario now can be

accessed, for example all incoming calls can be forwarded to the voice mail or to an

in-vehicle hands-free phone when the user is driving. The change of domain is either

initiated by the system automatically (i.e., when the user’s location is detected by the

network) or by the user. We assume no high-level service handover issues need to be

considered as most current context-aware services are domain-dependent.

The generalized ontology defines the basic concepts of person, location, computational

entity and activity and consists of 14 classes and six properties as shown in Fig. 2. The

class ContextEntity provides an entry point of reference for declaring the generalized

ontology. One instance of ContextEntity exists for each distinct user or service. Each



Fig. 2. Class hierarchy of the upper ontology.
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instance of ContextEntity presents a set of descendant classes of Person, Location,

CompEntity and Activity. The details of these basic concepts are defined in the domain-

specific ontologies which may vary from one domain to another.

A domain-specific ontology defines the details of general concepts and their properties,

for example, IndoorSpace in a smart home domain has subclasses such as Entry, Room,

Corridor, etc. We have defined two domain-specified ontologies for smart home

environments (as partially shown in Fig. 3) and vehicle environments.
3.4. Context classification and dependency

We classify contexts into two main categories—Direct Context and Indirect Context

based on the means by which context is obtained.

Direct context is directly acquired or obtained from a context provider which can be an

internal source such as an indoor location provider, or an external source such as a weather

information server. Direct context can be further classified into sensed context and defined

context. Sensed context is acquired from physical sensors such as a door’s status context

sensed by a door position sensor, or from a virtual sensor, e.g. a web service. Defined

context is typically defined by a user such as user’s foodPreference is specified by a

particular person. Indirect context is derived by interpreting direct context through context

reasoning. By using a context reasoner, an indirect context can be inferred from direct

contexts. For example, the current status context of a person (Showering) can be inferred



Fig. 3. A partial definition of a domain-specific ontology for smart home.
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from his location (Bathroom), the status of the water heater (On) and the door’s status

(Closed).

Different types of contexts have different temporal characteristics, for example, sensed

context is dynamic with the persistence of seconds to hours; defined context is most likely

static over its lifetime. Contexts may be inconsistent or conflict with one another such as

sensed contexts, for example, a RFID location sensor may sense a person is not present

whereas a camera senses his/her presence due to imperfect sensing technology or

processing delay.

By classifying various contexts and knowing their characteristics, we can perform

context reasoning over different types of contexts to solve context conflict and maintain

their consistency. For example, in general, defined context is more reliable as compared to

sensed context.

To incorporate context classification information in the SOCAM context ontology

using OWL, we introduce an additional property elements—owl:classifiedAs. This special

element is able to capture the property of context classification associated with datatypes

and objects. In our context ontologies, this additional property will have the value such as

‘Sensed’, ‘Defined’ or ‘Deduced’.

Dependency is an important characteristic of context information. A dependency

captures the existence of a reliance of property associated with one entity on another.

To describe dependency information using OWL, we introduce an additional property



T. Gu et al. / Journal of Network and Computer Applications 28 (2005) 1–188
elements—rdfs:dependsOn. This special element is able to capture the dependency

relationship of properties associated with datatypes and objects. For example, the status of

a person may depend on his location context, his posture context, etc. The importance of

context dependency is that we are able to incorporate probability and Bayesian networks to

reason about uncertain contexts. We have extended the basic context model by attaching a

probability value to each context predicate, i.e. Prob(Predicate(subject, object)). Based on

the element—’rdfs:dependsOn’, we are able to translate a RDF graph to a Directed

Acyclic Graph (DAG) of Bayesian networks, each context predicate (represented as a

RDF triple) is mapped into a node in the BN, and an arc is drawn between two nodes if and

only if there exists a dependency relation between two context predicates. By training a set

of data, we are able to obtain the probabilities of all root nodes and the conditional

probabilities of all non-root modes. Hence, the probability distributions of various context

events can be found. The details of the probability extension of our context model and

reasoning uncertain contexts using Bayesian networks are included in Gu et al. (2004b).
4. The SOCAM architecture

Based on our context model, we design the SOCAM architecture (Fig. 4) which aims to

provide an efficient infrastructure support for building context-aware services in pervasive

computing environments. It is a distributed middleware that transfers converts various

physical spaces from which contexts are acquired into a semantic space where contexts

can be easily shared and accessed by context-aware services. It consists of the following

components which act as independent service components.
†
 Context providers. They abstract useful contexts from heterogeneous sources—

External or Internal; and convert them to OWL representations so that contexts can be

shared and reused by other service components.
†
 Context interpreter. It provides logic reasoning services to process context information.
Fig. 4. Overview of the SOCAM architecture.
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†
 Context database. It stores context ontologies and past contexts for a sub-domain.

There is one logic context database in each domain, i.e. home domain.
†
 Context-aware services. They make use of different level of contexts and adapt the way

they behave according to the current context.
†
 Service locating service. It provides a mechanism where context providers and the

context interpreter can advertise their presence; it also enables users or applications to

locate these services.
4.1. Context providers

Context providers provide context abstraction to separate the low-level context sensing

from the high-level context manipulation. Each context provider needs to be registered

into a service registry by using the Service Locating Service mechanism and can be

discovered by others.

External context providers obtain contexts from external sources, e.g. a weather

information server which is able to provide weather information on a particular place, or a

location server which provides outdoor location information for a person. Internal context

providers acquire contexts directly from ubiquitous sensors located in a sub-domain, i.e. a

smart home environment. For example, an indoor location provider can provide location

information acquired from Radio Frequency Identification (RFID) based location sensors.

The advancement of video analysis technology provides us an opportunity to explore

complex contexts, e.g. human’s behavior. We leverage on our video surveillance system

(Li et al., 2002) to perform object tracking and human behavior analysis, and provide

behavior, posture context of a person. The system is able to collect raw video data and

transform it into high-level descriptions of events. For example:
Event 1: a person lies down on the bed.
Event 2: an intruder detected in a private house.
Event 3: number of persons sitting down around a table in a meeting room.

Different context providers acquire various context data from internal physical sensors

or external virtual sensors and represent them as context events in the form of OWL

descriptions. For example:
!socam:Adult rdf:aboutZ“John”O
!socam:hasPosture rdf:resourceZ“#LIEDOWN”/O
!/socam:AdultO
4.2. Context interpreter

The context interpreter is a component that is responsible for context processing using

logic reasoning. The tasks for context processing may include deriving high-level contexts

from low-level contexts, querying context knowledge, maintaining the consistency of
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context knowledge and resolving context conflicts. It also acts as a context provider as it

can provide deduced contexts.

It consists of a context reasoner and a context Knowledge Base (KB). The context

reasoner has the functionality of providing deduced contexts based on direct contexts,

detecting inconsistency and conflict in the context KB. Multiple logic reasoners can be

incorporated into the context interpreter to support various kinds of reasoning tasks.

Different inference rules can be specified and preloaded into various reasoners. Developers

can easily create their own rules based on predefined format.

The context KB provides a set of API’s for other service components to query, add,

delete or modify context knowledge. The context KB contains: a context ontology in a

sub-domain and their instances. These instances may be specified by users in case of

defined contexts or acquired from various context providers in case of sensed contexts.

The context ontology and their instances of defined contexts are pre-loaded into the

context KB during system initiation; the instances of sensed contexts are loaded during

runtime. To ensure freshness of context information, we deploy an event triggering

mechanism to allow updating of a particular context ontology or instance. Different

information requires different update frequency. For example, defined context instances

may require updating every month or year, whereas sensed context instances may need to

be updated more frequently due to dynamic nature of the sensed data.

We adopt a rule-based approach based on first-order-logic for reasoning about contexts.

In SOCAM, two kinds of reasoning are currently supported: ontology reasoning and user-

defined rule-based reasoning.
4.2.1. Ontology reasoning

The ontology reasoning is responsible for checking class consistency and implied

relationship, asserting inter-ontology relations when integrating or switching domain-

specific ontologies. It is implemented using a rule-based reasoning engine.

The ontology reasoning includes RDFS reasoning and OWL reasoning. The RDFS

reasoning supports all the RDFS entailments described by the RDF Core Working Group.

The OWL reasoning supports OWL/lite (OWL Web Ontology Language Overview)

which includes constructs such as relations between classes (e.g. disjointness), cardinality

(e.g. ‘exactly one’), equality, characteristics of properties (e.g. symmetry), and

enumerated classes. A set of RDFS and OWL rules needs to be pre-specified, for examples
–
 subClassOf: (?A rdfs:subClassOf?A), (?B rdfs:subClassOf ?C)-O(?A rdfs:subClassOf ?C)
–
 TransitiveProperty: (?P rdf:type owl:TransitiveProperty), (?A ?P ?B), (?B ?P ?C)-O
(?A ?P ?C)
–
 Disjointness: (?C owl:disjointWith ?D), (?X rdf:type ?C), (?Y rdf:type ?D)-O (?X

owl:differentFrom ?Y)
–
 InverseOf: (?P owl:inverseOf?Q), (?X ?P ?Y)-O (?Y ?Q ?X)

Ontology reasoning is useful in SOCAM. For example, we can use the Transitive-

Property rule to reason about physical location in a smart home. If an indoor location

provider provides a context that John is currently located in his LivingRoom, the context

interpreter can conclude that John is located in his home since LivingRoom is a part of
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Home and the spatial property locatedIn exists the transitive property as illustrated in the

following OWL descriptions.
!owl:ObjectProperty rdf:IDZ“locatedIn”O
!rdf:typeZ“http://www.w3.org/2002/07/owl#TransitiveProperty”O
!/owl:ObjectPropertyO

!socam:Room rdf:IDZ“LivingRoom”O

!socam:locatedIn rdf:resourceZ“#Home”/O

!/socam:RoomO

4.2.2. User-defined rule-based reasoning

The user-defined rule-based reasoning provides forward chaining, backward chaining

and a hybrid execution model. The forward-chaining rule engine is based on the standard

RETE algorithm (Forgy, 1982). The backward-chaining rule engine uses a logic

programming engine similar to Prolog engines. A hybrid execution mode performs

reasoning by combining both forward-chaining and backward-chaining engines. The

following examples show a partial rule set used in SOCAM based on the forward-chaining

rule engine.
–
 (?user rdf:type socam:Person), (?user, socam:locatedIn, socam:Bedroom), (?user,

socam:hasPosture, ‘LIEDOWN’), (socam:Bedroom, socam:lightLevel, ‘LOW’),

(socam:Bedroom, socam:doorStatus, ‘CLOSED’)-O (?user socam:status

‘SLEEPING’)
–
 (?user rdf:type socam:Person), (?user, socam:locatedIn, socam:BathRoom), socam:-

WaterHeater, socam:status, ‘ON’), (socam:BathRoom, socam:doorStatus, ‘CLO-

CLOSED’)-O (?user socam:status ‘SHOWERING’)]
–
 (?user rdf:type socam:Person), (?user, socam:locatedIn, ?room), (socam:TV, socam:-

locatedIn, ?room), (socam:TV, socam:status ‘ON’)-O (?user socam:status

‘WATCHINGTV’)

4.3. Context-aware services

Context-aware services are agents, applications and services that make use of different

level of contexts and adapt the way they behave according to the current context. By

querying the service registry provided by the service locating service, context-aware

services are able to locate all the context providers which provide a set of interesting

contexts. To obtain contexts, a context-aware service can either query a context provider

or listen for events sent by context providers.

To construct context-aware services, a common way is to specify actions that triggered

by a set of rules whenever the current context changes. In SOCAM, service developers can

easily write pre-defined rules and specify what methods to be invoked when a condition

becomes true. All the rules will be saved in a file and pre-loaded into the context reasoner.

Developers also can make changes on the rule file and load it during runtime. Table 1

shows an example configuration file which defines a set of rules.

http://www.comp.nus.edu.sg/~punghk


Table 1

Rules for describing context-aware behaviors

Smart phone services socam:status(John, SLEEPING)nsocam:locatedIn(John, socam:Bathroom)

DivertCall(VoiceMail); //forward incoming calls to voice mail

socam:locatedIn(John, Room)nsocam:hasNoiselevel(socam:Room, HIGH)

VolumeUp(); //increase volume setting in his cell phone

Energy saving services : socam:locatedIn(John, RoomA)nsocam:hasLightinglevel(RoomA, HIGH)

OffLight(RoomA); //turn off the light

Happy dining services d?person locatedIn(?person, DiningRoom)

PlayMusic(welcome_music); //play welcome music

socam:hasActivity(DiningRoom, Breakfast) n

socam:hasActivity(DiningRoom, Lunch) n socam:hasActivity(DiningRoom,

Dinner)

PlayMusic(random); //play music randomly

AdjustLighting(setting_1); //adjust lighting based on setting_1
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4.4. Service locating service

The service locating service allows user and applications to discover contexts and

locate context providers and context interpreters. We have developed the service locating

service mechanism in Gu et al. (2003). The main features include scalability, dynamism,

and the multiple-matching capability.

It supports wide-area discovery as a context provider, e.g. a weather service provider,

may be physically located in external networks. An internal context provider may change a

context by adding and removing physical sensors or by reconfiguring a set of contexts

which it supports. The service locating service is able to track and adapt to the dynamic

changes of context providers. It also deploys a multiple matching mechanism to allow

context providers to advertise their supporting contexts in different forms, i.e. either using

a service template or using OWL expressions to specify the kinds of contexts they provide.

An application wishes to find out a context such as the location context of John will send

the query ‘(John socam:locatedIn ?x)’ to a Service Locating Service server. The server

then loads the context ontologies stored in the database and context instances advertised by

different context providers or the interpreter, and apply the semantic matching mechanism

to find out which context provider provides this context. If a match is found, the reference

to the context provider or the context interpreter will be returned to the application. For

more details the interested reader is invited to see Gu et al. (2003).
4.5. Communication and interaction between components

For communication between various distributed components in SOCAM, we use Java

RMI. The main advantage of Java RMI is interoperability between heterogeneous

platforms; and it also offers a certain degree of security features. RMI allows distributed

objects to invoke methods on each other even if such underlying platforms as processors,

operating systems, and programming languages are heterogeneous. The requirements for

implementing an RMI client or server are simply having an implementation of JVM; and it

is easily met giving evidence that many pervasive devices with such capability are
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available nowadays. We tailored the J2SE 1.3.1 RMI runtime classes to accompany the

need of resource-constrained pervasive devices.

SOCAM components are designed as independent service components which may be

distributed over heterogeneous networks and can interact with each other. Different context

providers which reside in both an internal network and an external network register and

advertise their services through the service locating service. The context interpreter or

context-aware services are able to locate a context provider and obtain contexts. They can

also register themselves to the service locating service or other service discovery

mechanisms so that they can be discovered and accessed by other context-aware systems.

In our architecture, context dissemination is done in both push and pull modes. We

provide a set of procedures and APIs to support both context query and context event

subscription mechanisms. Users or services can either issue a query for a particular context

or subscribe a context event to a context provider. When the event is triggered, the

particular context in the form of OWL descriptions will be returned to the subscriber.
5. Performance evaluation

We have implemented the SOCAM middleware in Java using J2SE 1.3.1; and

developed a prototype in a smart home environment which consists of an OSGi-compliant

residential gateway (OSGI), network camera, mobile phone, laptop and various sensors,

etc. The gateway was designed based on Intel Celeron 600 M CPU with 256 MB memory.

It runs embedded Linux (kernel 2.4.17) operating system; and supports various wired and

wireless network connections such as ADSL, Ethernet, HomePNA, WirelessLAN,

Bluetooth and IEEE 1394 so that various devices such as PCs, PDAs and network cameras

can be connected to the gateway.

We implemented the context interpreter using Jena2-HP’s Semantic Web Toolkit (Jena

2—A Semantic Web Framework). The domain-specific ontologies in both home and

vehicle have been developed in OWL. The home-domain ontology consists of 89 classes

and 156 properties and the vehicle-domain ontology consists of 32 classes and 57

properties. We implemented a number of context providers such as an indoor location

provider, an environmental context provider (temperature, noise level, light level, etc.), a

weather information provider. Based on the SOCAM middleware, we developed a number

of context-aware services in a smart home environment such as context-aware services for

smart phone, home energy saving services, happy dining room services.

We evaluate our infrastructure in terms of overhead of the two-layer ontology design,

context reasoning, context discovery and the results are shown in the following sections.

5.1. Overhead of the two-layer ontology design

To minimize the overhead imposed by ‘binding’ and ‘re-binding’ between the generalized

ontology and the different domain-specific ontologies, we adopt two-level hierarchy in our

design. In each domain, the context interpreter which ran on the residential gateway loaded

both the upper ontology and a domain-specific ontology and merged them together for

context ontology reasoning. The operations of loading and merging involve checking the



Fig. 5. Overhead of the two-layer ontology design.
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ontologies for inconsistencies. We measured the loading time and the merging time for the

upper ontology and domain-specific ontology in both home and vehicle scenarios. As Fig. 5

shows, the overhead—the time for loading and merging the upper ontology is low and it can

be further reduced when a domain-specific ontology is extended.
5.2. Reasoning performance

In SOCAM, context reasoning is done in the context interpreter which ran on the

gateway with 600 MHz CPU. In our prototype, the context interpreter takes about

521 ms to load 96 context instances from various internal context providers; and takes

about 20 ms to merge these instances with the ontology. The context reasoning

process takes about 1.9 s to derive high-level contexts. The context interpreter was

able to answer queries for derived contexts at the average rate of a few milliseconds

per query. The result shows that the logic reasoning is a computationally intensive

process and it may become the bottleneck when it is applied to pervasive computing

domain. However, it is acceptable for running non-time-critical context-aware

applications as we mentioned in Section 4.3.

To study the reasoning performance over difference scales of context knowledge, we

extended the home-domain ontology. In the experiment, we created five datasets with

different sizes of classes and instances. The context interpreter ran on the gateway

validated and parsed these OWL expressions into RDF triples and performed the reasoning

task. For each dataset, we measured the average runtime as shown in Fig. 6. The result

shows that the runtime is appropriately linear in the scale of context knowledge. Based on

this observation, we are able to split the context reasoning process to improve the overall

performance.



Fig. 6. The reasoning performance.
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5.3. Computation split

As context reasoning is a time-consuming process, many current pervasive devices may

not be able to run the context interpreter. In SOCAM, we decouple the context reasoning

process and the consuming process. Context-aware services executed on a resource-

constrained pervasive device only perform discovering contexts, querying contexts and

subscribing a context event channel; the reasoning tasks are performed by resource-rich

devices such as a residential gateway. Moreover, the separation of domain ontologies

allows us to significantly reduce the context knowledge processed in each context

interpreter, and hence improves the reasoning performance.

To achieve a better reasoning performance, we study the reasoning process by

comparing the two kinds of reasoning which are currently supported in SOCAM-ontology

reasoning and the user-defined rule-based reasoning. We measured the runtime of the two

processes with respect to the different scale of context knowledge as shown in Fig. 7.

The experiment result shows the time for the ontology reasoning is much more than the

time for the user-defined rule-based reasoning. It is probably due to a large set of rules used

in the ontology reasoning whereas the user-defined rule-based reasoning uses fewer rules.
Fig. 7. Reasoning comparison.



Fig. 8. Average time for concurrent requests.
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As the rule set for ontology reasoning remains unchanged once defined, we are able to

perform the ontology reasoning in advance of a context query.
5.4. Context discovery performance

We measured the performance for context discovery through the service locating

service. We created and registered a number (100) of context providers and the

interpreter in a service locating service server. Multiple mobile clients emulated using

Pentium laptop with wireless LAN connectivity on separate machines made concurrent

requests to a server. We measured the average time taken by our SLS system for

different number of concurrent requests as shown in Fig. 8. We found that the average

elapse time for each context discovery request is about 210 ms and is nearly

proportional to number of concurrent requests. The context discovery mechanism

performs well as number of requests increases. More performance results of the service

locating service mechanism can be found in Gu et al. (2003).
6. Conclusion

In this article, we have presented a formal context model based on OWL to

represent, manipulate and access context information. Based on our context model, the

SOCAM middleware has been designed to support the building of context-aware

services. The prototype system and evaluation results demonstrate a reasonable

performance and the SOCAM middleware is able to meet the requirements of context-

aware systems concerning limited memory and CPU resources in pervasive computing

environments.
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