
Semantic Space: A Semantic Web-Based Infrastructure for
Smart Spaces

Draft for IEEE Pervasive Computing

Xiaohang Wang, Daqing Zhang, Jin Song Dong, Chunyau Chin

xwang@i2r.a-star.edu.sg ...

Abstract. Semantic Space is a pervasive computing infrastructure that exploits the use of Seman-
tic Web technologies to support explicit representation, expressive querying and flexible reason-
ing of contexts in smart spaces.

1 Introduction

Recent activity in pervasive computing research is attempting to merge the physical and digital worlds
by incorporating physical and computing entities into smart spaces. Smart spaces consist of physical
spaces (home, workplace, classroom, vehicle, etc.), extensively equipped with embedded sensors ,
augmented appliances, stationary computers, and mobile handheld devices. Applications in such
environments need to be context -aware so that they can adapt themselves to rapidly changing situa-
tion[1, 2]. The dynamic nature of smart spaces creates great challenges for developing context -aware
applications. To make these challenges concrete, we give a motivating scenario and highlight the
research issues that are raised.

Rachael wishes to contact her friend Joey, so she instructs her mobile phone to arrange a
call. Upon requested, Joey’s mobile phone checks the calendar and realizes that he is cur-
rently attending a seminar. The phone determines on his behalf that he should not be inter-
rupted and schedules a call back to the time the seminar ends.

Soon after the seminar, Joey is asked by Professor Geller to have a discussion in his of-
fice. Before the phone reminds Joey of the missed call as scheduled earlier, it wants to know
whether his current situation is suitable for making the call. Based on various context s (e.g.,
Where are you? Who are you with? What is the noise level? Is the door open or closed?)
gathered by the smart space, the phone infers that Joey is in a conversation with his super-
visor and then decides to re-arrange the call until he is available. A few minutes later when
the conversation ends and Joey leaves the office, the phone finally reminds him of the
missed call.

The realization of smart spaces relies on many different technologies. We chose to narrow our fo-

cus on following issues.

• Explicit Representation: Raw context data, obtained from a wide variety of sources, are likely to be

available in heterogonous formats. Consequently, applications without prior knowledge of the rep-
resentation of contexts are not able to make use of them. Therefore an interoperable smart space re-
quires the meanings (or semantics) of contexts to be explicitly represented in the way independ-
ently-developed applications can easily understand.

• Context Querying: A smart space maintains a large amount of context s and applications may need
to selectively access a subset of them. Hence the smart space should be able to answer expressive
queries about contexts (e.g., Who is in the same room together with Joey? When will the ongoing
seminar where the user is either as an attendee or a speaker end?”)

• Context Reasoning: Higher-level contexts (e.g., What is the user doing? What is the activity in the
room?) are useful to context -aware applications as they provide summary descriptions about the
state of users and surroundings. While sensors are not able to recognize such contexts, they need
to be inferred from basic sensed contexts.

To address the foregoing issues, we developed a context infrastructure called Semantic Space that

supports explicit representation, expressive querying and flexible reasoning of context s in smart
spaces. Our approach is inspired by the Semantic Web, the next generation of World Wide Web on
which content is given well-defined meaning, better enabling computers and people to work in coop-
eration[3]. Based on a set of standards (e.g., RDF[4], OWL[5]) for representing machine-interpretable
information, Semantic Web introduces a federated approach to knowledge management and informa-
tion processing. In this paper, we will describe our approach to explore the use of these technologies
in building a pervasive computing infrastructure that presents the following features:

• An ontology-based context model that provides the basis for explicit context representation and

context interpretation in pervasive computing environments.
• A context infrastructure that allows contexts to be explicitly represented as semantic markups for

easy interpretation by applications, enables applications to retrieve contexts using declarative que-
ries, and supports the inference of higher-level contexts from basic sensed contexts

2 The Context Model

The presentation of context s is an important part of pervasive computing environments. Context -
aware applications adapt to changing situation on behalves of users , thus they need a detailed model
about relevant aspects of users and surroundings, allowing them to share users’ perceptions of the
real world[6].

2.1 An Ontology Approach to Context Modeling

Within the domain of knowledge representation(KR), the term ontology is referred to as the formal
explicit description of concepts , which are often conceived as a set of entities, relations, instances,
functions and axioms[7]. Among Semantic Web standards, the Web Ontology Language is proposed
to define and instantiate ontologies for Web information, thus enabling Web agents to exchange and
interpret information based on a common vocabulary. The use of ontology to model context s in per-
vasive computing environments introduces many advantages:

• OWL ontologies that represent contexts allow pervasive computing entities to share common un-

derstanding of the structure of context s, thus enable applications to interpret contexts based on
their semantics.

• The hierarchical structure of ontology helps developers reuse domain ontologies (e.g., ontologies
of people, device and activity) in describing context s, facilitating the building a practical context
model without starting from scratch.

• Since context s described in ontologies have explicit representations of semantics, context interpre-
tation can be well supported by Semantic Web tools (i.e., federated query, reasoning and knowl-
edge base). We can incorporate these tools into smart spaces to facilitate the management and in-
terpretation of contexts.

2.2 Design the Context Model

Smart spaces cover a range of environment types such as homes, offices, workplaces, classroom, and
vehicles. We do not aim to completely model all contexts in different types of smart spaces. Instead,
we define an Upper-Level Context Ontology (ULCO) to provide a set of basic concepts that are com-
mon across different environments[8]. Among various contexts, we identify 3 classes of real-world
objects (i.e., user, location, computing entity) and anther class of conceptual objects (i.e., activity) that

are most important to characterize smart spaces . These objects , linked with each other, form the skele-
ton of a contextual environment. They also can be used as primary indices into other associated con-
texts. For example, given a location, we can acquire related contexts such as noise, weather, the num-
ber of people inside, etc. Therefore, we choose to model these objects as top-level classes in ULCO.

One of the advantages of ontology is knowledge reuse[9]. We integrate a number of consensus
domain ontologies, i.e., Friend-Of-A-Friend (FOAF1), RCAL Calendar2 and FIPA Device Ontology3,
into ULCO to model contexts about users, activities and devices respectively. These well-defined
ontologies provide a generic set of vocabularies that well suit the requirements of context ontolo-
gies.We only need to add additional properties that are useful to smart spaces. For example, FOAF
only defines simple relationship between people (i.e., friendOf), but we extend it to support richer proper-
ties such as supervisorOf, studentOf, colleagueOf etc.

To keep the context model customizable to a particular smart space, it is intended to complement
the classes defined in ULCO. In case that a new application needs additional classes that further spec-
ify the existing ones, they can be inherited from the classes of ULCO, forming a so-called Extended
Context Ontology (ECO) (see Figure 1). In this way, developers can easily build detailed context mo d-
els for newly-setup smart spaces. Moreover, the use of UCLO can support better interoperability be-
tween ECOs. Different ECOs will be able to interoperate by virtue of shared terms and definitions.

Fig. 1. Upper-Level Context Ontology and Extended Context Ontologies

2.3 Mark up Real-World Contexts

With our context model, contexts are represented as ontology instances and associated properties
(so-called context markups) that can be easily interpreted by applications. Real-world contexts often
originate from diverse sources, leading to dissimilar approaches to generating context markups. Let us
take examples of the contexts involved in the smart phone scenario. Some of the contexts (e.g., name
of a person, relationship between two persons, and scheduled time of a seminar) have relatively slow

1 FOAF: http://xmlns.com/foaf/0.1
2 RCAL: http://www.daml.ri.cmu.edu/Cal
3 FIPA Device Ontology: http://www.fipa.org/specs/fipa00091/XC00091D.html

rates of change; they are often supplied by users . Markups of these contexts are usually generated by
users . For example, we have a JavaScript application that allows users to online create profiles based
on the ontology class User. Following example shows the context markup that describes RossGeller4.

<User rdf:about="RossGeller">

<name>Ross Geller</name>
<mbox>ross@i2r.a-star.edu.sg</mbox>
<homepage rdf:resource="www.i2r.a-star.edu.sg/~ross"/>
<office rdf:resource="#Room209"/>
<officePhone>1234</officePhone>
<mobilePhone>6789</mobilePhone>
<supervisorOf rdf:resource="#JoeyTribbiani"/>
<! --More properties is not shown in this example-->

</User>

On the other hand, some other contexts (e.g., location, current time, noise level, door status) are

usually provided by hardware or software sources. The marking up of these contexts needs to be
performed by automated programs due to the high rates of change. Let consider the RFID indoor
location system that tracks users’ location by detecting the presence of body-worn tags. When Ross-
Geller enters OfficeRoom209, the RFID sensor detects his presence and composes the context markup as
described bellow.

<User rdf:about="#RossGeller"> <locatedIn rdf:about="#Room209"/> </User>

Since each OWL instance has a unique URI, context markups can link to external definitions
through these URIs. For example, the URI http://www.i2r.a-star.edu.sg/SemanticSpace#RossGeller refers to the
user defined earlier, and the URI http://www. i2r.a-star.edu.sg/SemanticSpace# Room209 refers to a room that is
also defined els ewhere.

3 The Semantic Space Infrastructure

Semantic Space has a context infrastructure that allows contexts to be represented as semantic mark-
ups that applications can easily interpret. It enables applications to retrieve contexts using declarative
queries, and support the inference of higher-level contexts from basic contexts. One such infrastruc-
ture is maintained in each smart space, which is often bound by the physical space in a non-restricted
way. For exa mple, two or more rooms may be joined to form a smart space, or a single room may be
split into multiple smart spaces .

The context infrastructure consists of collaborating components (Figure 2). Context Wrappers ob-
tain context s from sources and dynamically generate context marks. Context Aggregator gathers con-
text markups from Context Wrappers and asserts contexts into Context Knowledge Base (CKB). CKB
links context markups into a single coherent model, and provides an interface for Context Query En-
gine to handle expressive queries from applications. Context Reasoner infers higher-level contexts
from basic contexts in CKB based on application-specific rules.

3.1 Context Wrappers

Context Wrappers obtain raw contexts from sources and transform them to context markups. Contexts
often originate from a wide variety of sources that could be either hardware sensors or software pro-
grams . We have a number of Context Wrappers that work with hardware sensors deployed in our
prototypical smart space, including the Location Context Wrapper that has been described in Section
2.3, the Environment Context Wrapper that gathers environmental information (i.e., temperature, noise,
light) from embedded sensors, and the Door Status Context Wrapper that reports the “open/close”
status of the doors in each room. In addition, we also have several software-based Context Wrappers,
including the Activity Context Wrapper that extracts schedule from Outlook Web Access, the Device

4 “http://www.i2r.a-star.edu.sg/SemanticSpace#” is used as the default base namespace throughout this paper.

Context Wrapper that monitors the status of different networked devices (e.g., VoIP phone and mobile
phone), the Application Context Wrapper that monitors the status(e.g., “idle”, “busy”, “closed”) of
different applications(e.g., JBuilder, Microsoft Word and RealPlayer) from their CPU usages, and the
Weather Context Wrapper that acquires outdoor weather by periodically querying a Weather Web
Service5.

Fig. 2..Semantic Space Context Infrastructure

All Context Wrappers are self-configuring components that support a unified interface for getting
contexts from sensors and providing context markups to consumers (i.e., applications and the Context
Aggregator). Context Wrappers are implemented as UPnP6 services that can dynamically join a smart
space, obtain an IP address, and multicast its presence for others to discover. Context Wrappers uses
UPnP General Event Notification Architecture (GENA) to publish the change of contexts as events
that can be subscribed by consumers.

3.2 Context Aggregator

Context Aggregator discovers Context Wrappers and gathers context markups from them. Context
Aggregator is implemented as an UPnP Control Point, inheriting the capability to discover Context
Wrappers and subscribe to context events. Once a new Context Wrapper is attached to the smart
space, Context Aggregator will discover it , register it in the service directory, and then obtains context
markups from it. It asserts gathered context markups into CKB and also keeps updating it whenever a
context event occurs.

3.3 Context Knowledge Base

Residing in each smart space, CKB provides a persistent storage for context knowledge. It stores the
ECO for that particular space and the context markups that are either given by users or gathered from
Context Wrappers. CKB links the context ontology and context markups into a single semantic model,
and provides interfaces for Context Query Engine and Context Reasoner to manipulate correlated
contexts.

5 Weather Web Service: http://www.xmethods.com
6 UPnP: http://www.upnp.org/

Contexts in smart spaces display very high change rates. CKB therefore always needs to be kept
updated by Context Aggregator with fresh contexts. The scope of contexts managed by CKB also
changes dependent on the availability of Context Wrappers. Developers may add a new Context
Wrapper to expand the scope of contexts in a smart space; they also may remove an existing Context
Wrapper when the contexts it provides are no longer needed. Context Aggregator is responsible for
monitoring the availability of Context Wrappers and managing the scope of contexts in CKB. When a
Context Wrapper joins the smart space, the provided contexts will be added to CKB. On the other
hand, when a Context Wrapper leaves, the contexts it supplies will be deleted from CKB to avoid stale
information.

3.4 Context Query Engine

Context Query Engine provides an abstract interface for applications to extract desired contexts from
CKB. In order to support expressive queries, we adopt RDF Data Query Language (RDQL[10]) as the
context query language. RDQL supports query over semantic models based on triple (i.e. <subject, predi-
cate, object>) patterns. The use of query allows applications to selectively access contexts using declara-
tive statements. Following shows a self-explanatory query statement for “when will the ongoing semi-
nar where RossGeller is either as an attendee or a speaker be over?”.

SELECT ?event, ?t2
WHERE (?event, <rdf:type>, <Seminar>),

(?event, ?relation, <RossGeller>),
(?event, <startDateTime>, ?t1),
(?event, <endDateTime>, ?t2)

AND (t1 < currentDateTime() && t2 > currentDaytime()) &&
(?relation <eq> <attendee> || ?relation <eq> <speaker>)

3.5 Context Reasoners

Context Reasoner is the component that infers abstract, higher-level contexts from basic, sensed con-
texts. In Semantic Space, all contexts are explicitly represented in the way general-purpose reasoning
engines can directly process, making it easy for developers to realize application-specific inferences
simply by defining heuristic rules.

Applications may use application-specific rules that generate conflict results. Context Reasoner
does not assert inferred contexts into CKB so that confliction in a single model can be avoided.
Whenever the application needs certain higher-level context s, it submits a set of rules to Context Rea-
soner. Context Reasoner, on the other hand, applies these rules to infer higher-level context s on behalf
of the application, and then returns newly inferred contexts without storing them in CKB.

Our current system uses Jena2 generic rule engine[11] to perform forward-chaining reasoning over
CKB. Developers can write rules for a particular application based on its needs. The rules described
bellow, related to the motivating scenario, illustrate how to infer the likely situation of users based on
a variety of contexts about user(e.g., user’s identity and his relationships with others), activity(e.g.,
activity’s type and time interval), location(e.g., user’s location, user’s office location, others at the
same location), and computing entity(e.g., status and ownerships). For example, the first rule examines
whether a given person is currently engaged in a meeting, on the basis of location and schedule, i.e., if
he is in the meeting location and current time (returned by currentDateTime()) is within the scheduled in-
terval of the meeting, then he is likely to be at meeting.

type(?user, User), type(?event, Meeting), location(?event, ?room), locatedIn(?user, ?room), startDateTime(?event, ?t1),
endDateTime(?event, ?t2), lessThan(?t1, currentDateTime()),
greaterThan(?t2, currentDateTime())
=>situation(?user, AtMeeting)

type(?user, User), type(?phone, Phone), owner(?phone, ?user), status(?phone, ?busy)
=>situation(?user, TakingPhoneCall)

type(?user, User), type(?app, MicrosoftWord), registeredUser(?app, ?user), status(?app, ?busy)
=>situation(?user, AtWriting)

type(?user, User), type(?app, JBuilder), registeredUser(?app, ?user), status(?app, ?busy)
=>situation(?user, AtProgramming)

type(?user, User), locatedIn(?user, I2RCanteen), greaterThan(currentTime(), 12:00:00), lessThan(currentTime(), 13:30:00)
=>situation(?user, AtLunch)

type(?user, User), type(?room, Washroom), locatedIn(?user, Washroom)
=>situation(?user, UsingWashroom)

type(?user, User), studentOf(?user, ?user2), office(?user2, ?room), locatedIn(?user, ?room), locatedIn(?user2, ?room),
doorStatus(?room, closed), noiseLevel(?room, ?x), greaterThan(?x, 60)
=>situation(?user, MeetingSupervisor)

4 Implementation and Evaluation

4.1 Prototype Implementation

We have implemented our context infrastructure and set up our workplace in I2R building as a testbed.
We have defined the Upper-Level Context Ontology using OWL, based on which we built an Ex-
tended Context Ontology for our workplace. We implemented CKB, Context Reasoner and Context
Query Engine using Jena2 Semantic Web Toolkit, and realized discovery and event notification
mechanism using Siemens UPnP SDK v1.01. In addition to the general infrastructure, we also provide
a number of concrete Context Wrappers (described earlier in Section 3.1.) that facilitate the sensing
and markup of various contexts (i.e., location, schedule, temperature, noise, light, door status, device
status, and application status). Figure 3a shows networked sensors and devices that we have inte-
grated to provide contexts. Figure 3b shows the indoor location system that we developed using Ti-
RFID Serial 2000.

Fig. 3. (a) Networked sensors and devices; (b) RFID indoor location system; (c) Snapshot of SituAwarePhone:
GUI for configuring the response mode in each situation.

4.2 Evaluation

Pervasive computing systems are difficult to evaluate because they often stress new functionality and
usability over pure performance. Arguably, we believe the most important aspect of our infrastructure
is what it enables; its features allows context s to be represented as semantic markups that applications
can easily interpret, enables applications to retrieve contexts using declarative queries, and support
the inference of higher-level contexts from basic sensed contexts. Encapsulation of these features into

API helps developers to build applications that would otherwise be difficult to build. The evaluation
consists of two parts; we first evaluate the infrastructure by building a real-world application using it,
and then measure the system performance.

4.2.1 Application Development
The wide-spread use of mobile phone has raised many social problems, e.g., phones ring in meetings
or important conversations. Users often have to change the settings of their phones according to the
circumstances in order to avoid inappropriate usage,. However, frequent interactions with mobile
phones impose signification user distractions. To solve this problem, we developed a context -aware
application called SituAwarePhone that can adapt the mobile phone to the changing situation while
minimizing user distractions.

One of the application scenarios has been described earlier in Section 1. When SituAwarePhone
receives an incoming call, it will first infers user’s situation using a set of rules (described in Section
3.5), and then adapts its response mode (e.g., adjust volume, set vibration, schedule a call back, send
message, forward to voice mailbox) automatically. SituAwarePhone also queries the smart space for
various contexts that help in adaptation, e.g., it asks for “the end time of the seminar the owner is
engaged in”(described in Section 3.4) in order to schedule a call back, or takes account of “the identity
of the caller” and “the identities of other people in conversation” to decide whether to let the call
interrupt the conversation.

In a smart space, the context infrastructure supports the entire process of gathering contexts from
sources, managing contexts using knowledge base, handling queries from applications and reasoning
about contexts based on rules. The infrastructure provides a simple client-side API for applications to
access its functionalities, hiding the complexity of underlying context processing. Following lists the
API methods that applications can use to deal with contexts.

SmanticSpace(String ServerURL) throws InstantiationException;
//Instantiate a client object of the context infrastructure

RDFModel SemanticSpace.ContextQueryEngine(String Query) throws QueryException;
//Query contexts from the context infrastructure using the statement defined in Query

RDFModel SemantiSpace.ContextReasoner(String RuleSet) throws ReasoningException
//Request Context Reasoner to perform inference using the rules defined in RuleSet .

With the help of client-side API, we built SituAwarePhone on top of SonyEricsson P900 mobile
phone (Figure 3c). The implementation amounts to approximately 800 lines of Java code, the majority
of which deals with MIDlet GUI and different response modes. Only about 20 lines of code (including
the code to import library, issue query, perform reasoning, parse returned model, and handle excep-
tions) on application side deal with contexts. From this example, we show how the context infrastruc-
ture can greatly ease the development of context -aware applications.

4.2.2 Performance
We evaluated the performance of the system by measuring the response time of context querying and
reasoning. The experiment was conducted on a workstation with 2.4 GHz Pentium-4 CPU and 1.0 GB
RAM running Redhat 9.0. We used five context datasets to test the scalability of our system. Among
these datasets, the one with approximate 3000 triples (or 600 OWL classes and instances) is the real
dataset used in our prototypical smart space, while the other four are synthetic datasets with unique
classes and instances.

We used the complex query statement described in Section 3.4 to measure the performance. We
varied the number of matched results from 1 to 10. The results are shown in Figure 4a. We expected
the response time to be loosely proportional to the size of context dataset and the number of matched
results, which the experiment corroborated.

We created four sets of rules to test the performance of context reasoning. We used the rule set
with 10 rules used by SituAwarePhone (refer to Section 3.5), and created the others with increasing
numbers of rules based on this one. From the result (Figure 4b) we can see that rule-based reasoning

is computationally intensive, and the response time largely depends on the size of dataset and the rule
set applied.

Fig. 4.(a) Query performance; (b) Reasoning performance

As the scale of the smart space increases, the response time of reasoning will be human perceivable.

However, the performance evaluation suggests that ruled-based context reasoning work in practice for
a useful set of applications in pervasive computing environments. Let us take the use of SituAware-
Phone for example. Before the mobile phone responses to an incoming call, it needs to reason about
the callee’s situation. Context reasoning will cause a perceivable delay (about one second’s time),
which sometimes matters to users. For example, the callee may wish to answer the call from his super-
visor as soon as possible, and the caller always expects a quick response. The feedback from our
invited evaluators, both as callers and callees, has showed that the response time of SituAwarePhone
is acceptable to most of them. Similarly, we believe the context infrastructure can well support a large
number of potential applications (e.g., home control applications, meeting assistant, and city guide) in
pervasive computing environments as long as their real-time requirements are not stringent.

5 Related Work

A lot of projects have been done in the area of context -aware computing in the past decade. Many
have studied context -aware systems in feature-oriented approaches. AT&T Laboratories at Cambridge
built a dense network of location sensors to maintain a location model shared between users and com-
puting entities[12]. Microsoft’s Easyliving focuses on a smart space that is aware of users’ presence
and adjusts environment settings to suit their needs[13]. HP’s CoolTown provides physical entities
(i.e., people, places and things) with ‘Web presence’, enabling users to navigate from the physical
world to WWW by picking up links to Web resources using a variety of sensing technolo-
gies[14].There are other relevant projects in the area of smart spaces: Stanford’s iRoom[15], MIT’s
Oxygen[16], CMU’s Aura[17] to name a few. These projects have greatly contributed to the research
of smart spaces by exploiting different features of pervasive computing.

A few projects specifically address the scalability and flexibility of context -aware applications by
providing generic architectural supports. The seminal work of Context Toolkit[2] has provided an
object-oriented architecture for the rapid prototyping of context -aware applications. Context Toolkit
provides developers with a set of programming abstractions that help to separate context acquisition
from actual context usage and to reuse sensing and processing functionality. Jason Hong et al. [18]
have proposed an open infrastructure approach where underlying technologies are encapsulated into
well-established services that can be used as a foundation for building applications. The European
Smart-Its project have proposed a generic layered architecture for sensor-based computation of con-
texts, providing a programming abstraction that separate layers for raw sensor data, for features ex-

tracted from sensors (“cues”), and for abstract context s derived from cues[19, 20]. Our work is similar
to them in providing reusable architecture to ease application development. However, previous work
does not provide adequate help on organizing contexts in a formal structured format. It is difficult for
an independently-developed application to interpret contexts since the structure of contexts is not
explicitly represented. Moreover, previous work can not provide a generic mechanism for the querying
and reasoning of context s. Simple matching mechanisms are employed to support the selective access
of contexts. Developers often have to perform low-level programming to develop components that
derive higher-level contexts.

Our work is different from, and perhaps outperforms previous work in many aspects . We use Se-
mantic Web standards (i.e., RDF and OWL) to define context ontologies, providing the basis for build-
ing interoperable smart spaces where computing entities can easily exchange and interpret contexts
based on explicit context representations. Enabled by Semantic Web technologies (i.e., knowledge
base, query and inference), we have developed the context infrastructure with a generic mechanism for
querying contexts using a declarative language and inferring higher-level contexts based on rules.
Developers’ work is greatly eased as they can realize expressive context querying and flexible context
reasoning without programming.

6 Future Work

Semantic Space is our early efforts to incorporate Semantic Web technologies into pervasive comput-
ing environments. The use of Semantic Web technologies has helped developers to build smart
spaces by providing support for explicit context representation, expressive context querying and flexi-
ble context reasoning. We envision several enhancements to our infrastructure. Currently the smart
space uses local area network discovery protocol (i.e., UPnP) to dynamically locate and access Con-
text Wrappers. In practical deployment, multiple smart spaces that belong to different users or parties
with private contexts may share the same local network. Therefore there are many opportunities for
the misuse of contexts, both from fraudulent context sources and misbehaving applications. To ad-
dress privacy concerns, we will incorporate endpoint authentication into the context dis covery proc-
ess[21]. Each component in the infrastructure is associated with a URI and public-key certificate,
which can be used to prove the component’s identify to all other components. Smart spaces can spec-
ify both the Context Wrappers they trust and the Context Wrappers they have access to, thus the
access of private contexts can be restricted to appropriate components .

Another enhancement is the support for uncertain contexts. Contexts provided by sources are not
always precise, so we expect smart spaces to be capable to handle uncertainty. Based on the probabil-
istic extension to OWL ontology[22], we are working on extending context ontologies with the capa-
bility to capture uncertainty. Enhanced context ontologies will be able to support the probabilistic
query with respect to quality of context , and the reasoning of uncertain contexts using various mecha-
nisms(e.g., probabilistic logic, Bayesian networks, and fuzzy logic).

Reference

1. Schilit WN, “A Context -Aware Systems Architecture for Mobile Distributed Computing,” PhD thesis, Co-
lumbia University, 1995.

2. A. K. Dey, “Providing Architectural Support for Building Context -Aware Applications,” PhD thesis, Georgia
Institute of Technology, 2000.

3. Tim Berners-Lee, et al., “The Semantic Web,” Scientific American, May 2001.
4. Graham Klyne and Jeremy J. Carroll, editors, “Resource Description Framework (RDF): Concepts and Ab-

stract Syntax,” W3C Recommendation, 2004.
5. Deborah L. McGuinness and Frank van Harmelen, “OWL Web Ontology Language Overview,” W3C Recom-

mendation, 2004.

6. Karen Henricksen, et al., “Modeling Context Information in Pervasive Computing Systems,” Pervasive Com-
puting and Communication (PerCom), 2002.

7. T. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge Acquisition, 5(2): 199-
220, 1993.

8. X. Wang, et al., “Ontology -Based Context Modeling and Reasoning using OWL,” Context Modeling and Rea-
soning Workshop at PerCom 2004.

9. Y. Ding and D. Fensel, “Ontology Library Systems: The key for successful Ontology Reuse.,” International
Semantic Web Working Symposium (SWWS), 2001.

10.Libby Miller, et al., “Three Implementations of SquishQL, a Simple RDF Query Language,” International
Semantic Web Conference (ISWC) 2002.

11.Jeremy J. Carroll, et al., “Jena: Implementing the Semantic Web Recommendations,” Technical Report, HPL-
2003-146, HP Laboratories Bristol.

12.A. Harter et al., “The Anatomy of a Context -Aware Application,” MobiCom 1999, Seattle, WA.
13.B. Brumitt et al., “EasyLiving: Technologies for intelligent environments,” HUK 2000, Bristol, UK.
14.T. Kindberg et al., “People, Places, Things: Web Presence for the Real World,” WMCSA 2000.
15.Johanson, B., A. Fox, and T. Winograd, “The Interactive Workspaces Project: Experience with Ubiquitous

Computing Rooms,” IEEE Pervasive Computing 2002. 1(2): p. 67-74.
16.Dertouzos, M., “The Future of Computing,” Scientific American, August 1999.
17.Garlan, D., et al., “Project Aura: Towards Distraction-Free Pervasive Computing,” IEEE Pervasive Comput-

ing, April-June 2002.
18.Jason I. Hong and James A. Landay, “An Infrastructure Approach to Context -Aware Computing,” Human-

Computer Interaction, 2001, Vol. 16.
19.H. Gellersen, et al., “Multi-Sensor Context -Awareness in Mobile Devices and Smart Artifacts,” Mobile Net-

works and Applications (MONET), Oct 2002.
20.H. Gellersen, et al., “Physical Prototyping with Smart-Its,” IEEE Pervasive Computing. Oct.-Dec. 2003.
21.Steven E. Czerwinski, et al., “An Architecture for a Secure Service Discovery Service,” International Confer-

ence on Mobile Computing and Networks (MobiCom), 1999.
22.Z. Ding and Y. Peng, “A Probabilistic Extension to Ontology Language OWL,” 37th Hawaii International

Conference on System Sciences, Hawaii, January 2004.

