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Abstract. Context information has emerged as an important resource to enable 
autonomy and flexibility of ubiquitous applications. The widespread use of 
context information necessitates an efficient lookup service in a wide-area 
network over multiple smart spaces. In this paper, we propose a context lookup 
framework based on a semantic peer-to-peer network to support the building of 
context-aware applications in multiple smart spaces. Collaborative context-
aware applications that utilize different context information in multiple smart 
spaces can be easily built by invoking a pull or push service provided by our 
framework. We describe the design of our system, demonstrate the 
development process of context-aware applications, and report the 
measurements obtained from our prototype. 
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1   Introduction 

The recent convergence of ubiquitous computing and context-aware computing has 
seen a considerable rise in interest in various context-aware applications. These 
applications exploit various aspects of the contextual environment to offer services, 
present information, tailor application behavior and trigger adaptation, based to the 
changing context.  

Context information gathered from various sensor systems is the basis for 
enmeshing ubiquitous computing into our daily lives and exhibiting the autonomy of 
applications. Storing and acquiring such information in a single smart space can be 
easily handled by a centralized database server. The server can provide fast response 
to a lookup query. However, handling large-scale context information over multiple 
smart spaces requires an appropriate context lookup architecture. Distributing 
database servers to multiple smart spaces in a wide-area network does provide a 
scalable and reliable solution. However, this approach requires a significant 
investment on servers, the bandwidth costs of storing and updating context 
information, and administration restrictions.    

Emerging Peer-to-Peer (P2P) approaches have been proposed to overcome some of 
these obstacles, and providing potential solutions for a large-scale distributed lookup 



system. This paper proposes a semantic P2P framework to support storing and 
acquiring context information in multiple smart spaces. In this framework, context 
data is stored in a context producer where it was generated. Each context producer is 
only responsible for managing its local context data that may be acquired from the 
sensors attached. For an efficient context lookup, we design and implement a 
semantic P2P overlay network in which context data is organized and retrieved 
according to their semantics. In this network, context producers are arranged in such a 
way that those with semantically similar data are grouped together so that a context 
query can be routed efficiently. Many existing or potential collaborative context-
aware applications can use our framework, especially those collaborative context-
aware applications over multiple smart spaces. For examples, Family Intercom [5] – 
an advanced communication application between multiple smart homes, is able to 
identify the caller and the recipient and mediate the initiation of the audio 
conversation. In health care applications, a tele-monitoring application tracks a patient 
wherever he/she goes or a tele-medical record application can provide anywhere 
availability of personal medical history.  

The rest of the paper is organized as follows. We describe the system architecture 
and its details in Section 2. We then present collaborative context-aware applications 
in Section 3, and report the results obtained from our prototype in Section 4. We 
discuss related work in Section 5. Finally, we conclude the work in Section 6. 

2   System Architecture 

2.1   Overview  

Fig. 1. The architecture of ContextPeers 

Our framework consists of many individual nodes called ContextPeers, which act as 
context producers. Users and context-aware applications act as context consumers to 
obtain context data by submitting their queries to ContextPeers and receive the 
results. ContextPeers are self-organized into a semantic P2P network [6] for 
supporting P2P search. ContextPeers exploits semantic P2P overlay as the underlying 
network layer and extends it with RDF-based context storage, context queries and 
context subscription. 



As shown in Fig. 1, each ContextPeer consists of five components: the semantic 
P2P network layer, the sensor wrappers, the local context storage, the RDQL [10] 
based query engine and the context subscription. The sensor wrappers capture various 
sensor data from physical or virtual sensors, and convert raw (i.e., direct sensor 
output) format into an RDF-based data model (i.e., in the form of RDF triples) and 
store the triples into the local context storage. The RDQL-based query engine parses 
and resolves context queries from users or applications. The context subscription 
registers subscription requests and notifies context consumers when context changes 
occur. The semantic network layer is responsible for network construction and 
maintenance, and query routing. Application developers utilize a set of APIs provided 
by our framework to access the functionalities of ContextPeers and build context-
aware applications. The class diagram containing the major classes in a ContextPeer 
is shown in Fig. 2.  

 
Fig. 2. Class diagram of a ContextPeer 

2.2   Data Model 

In our system, we use an RDF-based context model to represent context data. RDF 
provides a universal platform for representing resources and asserting relations 
between resources in a machine-readable and machine-understandable way. Each 
RDF statement is represented as a triple of the form <subject, predicate, object>. We 
adopt a hierarchical context ontology model defined in [6] which consists of a shared 
upper ontology and a set of domain-specific ontologies. The upper ontology defines 
common concepts, and it is shared among all ContextPeers. Each ContextPeer can 



define its own concepts in its low-layer ontologies which extend the leaf concepts in 
the upper ontology. Different ContextPeers may store different sets of low-layer 
ontologies based on their applications' needs. This design approach offers application 
developers the flexibility to define domain knowledge which is specific to their 
applications. 

2.3   Sensor Wrapper 

A ContextPeer acquires context information from the various sensors attached to. We 
create an appropriate wrapper for each type of sensors. This approach can avoid 
explicit binding of the application to a particular underlying context sources 
technology. Wrappers capture sensor data, and convert them into RDF-based context 
data. A ContextPeer selects a set of wrappers based on its contextual interests, 
subscribes to the wrappers and gets updated.  

We use the SensorWrapper class to construct a wrapper. A SensorWrapper 
object instance is associated with a set of ContextTriple objects specifying the 
provided context and an UpdateHandler object implementing actions for context 
update. For example, an RFID-based location sensor wrapper is able to convert sensor 
data <RoomID RFID-John>, where RoomID represents the ID of a bedroom and 
RFID-John represents the RFID sensor attached to a person – John, to the RDF 
statement <John locatedIn Bedroom>, representing that John is currently 
located in the bedroom. 

2.4   Local Context Storage 

Each ContextPeer maintains a local repository for storing context data. The repository 
stores context data ontologies, static context data and sensed context data. Static 
context data refers to context data that does not change frequently, such as the spatial 
information of buildings (e.g., John's bedroom is located in John's house). Sensed 
context data refers to data obtained from sensors (e.g., John is located in his 
bedroom). Such data is typically dynamic and changes frequently. 

The ContextManager class built on Jena’s Models [8] is responsible for managing 
the repository. It provides methods to add or remove context data and answer context 
query, and also provides a set of operations to combine ontologies or context data. 
Since sensed context data changes frequently, the ContextManager class attaches a 
ModelChangedListener to the sensed context data Model to monitor these changes. 
This is especially important for responding to incoming subscribed queries. 

2.5   Data Mapping  

Upon creation, a ContextPeer needs to decide which cluster to join in the semantic 
P2P overlay network. This is done by using an ontology-based semantic mapping 
technique to map a ContextPeer’s local data to semantic cluster(s) as defined in the 
context ontology, and count the number of triples corresponding to each semantic 



cluster. This technique traces the hierarchy of OWL [7] classes and maps their 
predicates to the associated classes. We create two structures – ClusterHierarchy and 
ClusterMap. We first map each triple to an OWL class using ClusterMap, and then 
map the triple to an appropriate semantic cluster using ClusterHierarchy. Let SCnsub , 
SCnpred , SCnobj where n = 1, 2, . . . denote the semantic clusters extracted from the 
subject, predicate and object of a triple respectively (Note: unknown subjects/objects 
or variables are mapped to all). If the predicate of a triple is of type ObjectProperty, 
we obtain the semantic clusters using (SC1predU  SC2pred U  ... SCnpred ) I  (SC1objU  
SC2obj U  ... SCnobj). If the predicate of a triple is of type DatatypeProperty, we obtain 
the semantic clusters using (SC1subU  SC2sub U  ... SCnsub ) I  (SC1predU  SC2pred U  ... 
SCnpred). The semantic cluster with the highest triple counts (called the major 
semantic cluster) is selected for the ContextPeer to join. To achieve this, each 
ContextPeer creates and maintains a HashMap and iterates through all the triples in its 
model. Upon successful execution, the method returns a vector containing all the 
semantic cluster IDs corresponding to all its local context data. The first element in 
this vector indicates the ID of the major semantic cluster.  

2.6   Query Routing 

We follow the principle of a small world network model [9] and extend it with 
clustering operations to build the semantic network. After obtaining the semantics of 
its local data, nodes are organized in such a way that those have semantically similar 
data are grouped together in a semantic cluster. As a node’s data may correspond to 
multiple semantic clusters, a node joins its major semantic cluster and publishes the 
indices of its data (i.e., reference pointer) to its minor semantic clusters. 

Routing Table Construction: Each node builds its routing table by creating a set of 
local contacts in its own cluster, a short-range contact in each of its neighboring 
clusters, and a small number of randomly chosen long-range contacts. Each newly 
joining node builds its routing table in the same way resulting in all the clusters being 
linked linearly in a ring fashion. As illustrated in Fig. 3, Node 1 builds two local 
contacts (Node 2 and 3) in SC1, two short-range contacts (Node 4 and 5) in SC0 and 
SC2 respectively, a long-range contacts (Node 6) in SC5, and publishes its indices to a 
random node (Node 7) in SC3.   

 

Fig. 3. Constrcution of the Semantic Network  



Grouping context providers with similar data according to their major semantic 
clusters has the effect of minimizing the cost of node joining, leaving, and data 
changes. A node will stay in its major semantic cluster as long as the majority of data 
does not change. However, a large number of nodes in a semantic cluster may result 
in a scalability issue. We design the follow clustering operations to enable the 
network to scale to a large number of nodes.  

Clustering Operations: When the number of nodes in a semantic cluster exceeds a 
certain size, cluster splitting occurs. Let M represent the maximum cluster size. If the 
size of a cluster exceeds M, the cluster is split into two. Each node maintains a 
CurrentLoad which measures its current load in terms of the number of triples and 
data indices it stores. When node x joins the network, it sends a join request message 
to an existing node, say y. If y falls into the same semantic cluster that x wishes to 
join, x joins the cluster by connecting to y if its cluster size is below M; otherwise y 
will direct the request to a node, say z, in the semantic cluster that x wishes to join, 
and x will connect to z if its cluster size does not exceed M. If the cluster size exceeds 
M, node y or z (called an initial node) will initiate the splitting process. The initial 
node first obtains a list of all the nodes in this cluster which is sorted according to 
their CurrentLoads. Then it assigns these nodes in the list to the two sub-clusters 
alternatively. After splitting, we obtain two clusters with relatively equal load. The 
initial node is also responsible for generating a new cluster ID for each of the two 
sub-clusters. To obtain a new cluster ID, each node maintains a bit split pointer which 
indicates the next bit to be split in the n-bit binary string. Initially, the bit split pointer 
points to the most significant bit of the n-bit string. When cluster splitting occurs, the 
bit pointed by the bit split pointer is split into 0 and 1 and move the pointer forwards 
to the next bit in the n-bit string. The same mechanism follows for the insertion of a 
new semantic cluster. A semantic cluster can be split into a maximum number of 2n 
clusters. After splitting, a node updates its cluster ID, the bit split pointer as well as its 
local contacts and short-range contacts. 

When the number of nodes in a cluster falls below a threshold, cluster merging 
occurs. When node x leaves the network, it first checks whether its cluster size has 
fallen below a threshold Mmin. If the current size is above Mmin, x simply leaves the 
network by transferring its indices to a randomly selected node in its cluster. 
Otherwise, this cluster needs to be merged into one of its neighboring clusters within 
the same semantic cluster. The leaving node triggers cluster merging which is an 
inversed process of cluster splitting.  

Query Routing: The query routing process involves two steps: inter-cluster routing 
and intra-cluster routing. Upon receiving a query, node x first obtains the destination 
Semantic Cluster ID (denoted as D). This is done following the same mapping 
process as described in Section 2.5. Then node x will check whether D falls into its 
own semantic cluster by comparing D against the most significant m-bits of its 
ClusterID. If that is the case, x will flood the query to all the local contacts and also 
forward the query to its short-range contacts in its adjacent clusters corresponding to 
D. The forwarding processes are recursively carried out until all the clusters 
corresponding to D have been covered and all nodes in each of the clusters are 
reached.  

If D falls into neither node x's own cluster nor its adjacent semantic cluster, x will 
rely on its long-range contacts to route the query across clusters. To initiate a search, x 



obtains D based on a query and checks which cluster range (partitioned by x's long-
range contacts) D falls into. Then node x forwards the query to the closer semantic 
cluster through its long-range contact. If D is closer to SCx, node x will forward the 
query across its adjacent cluster towards D. 

2.7   Subscription 

Other than a context query which pulls context data from the network, context 
consumers can issue a subscribed query to subscribe context data and be notified 
when data changes occur. 

Upon receiving a subscription request, a ContextPeer attempts to match it against 
the context data in its base model. If the request's predicate is of type 
DatatypeProperty, the ContextPeer determines if its base model contains statements 
with the same subject-predicate pair as the request. Similarly, if the predicate is an 
ObjectProperty, the ContextPeer determines if its base model contains statements 
with the same predicate-object pair as the request. 

Whenever a change occurs with respect to the subscription request, the 
ModelChangedListener informs the ContextManager of the RDF statement that has 
been added or removed. Subsequently, the ContextManager scans through all 
IncomingSubscriptions and identifies those that are affected by the change. This is 
done in the following manner: Let the added or removed RDF statement be 
<subjectc, predicatec, objectc>. Let the RDF triple pattern of a 
particular IncomingSubscription's criteria be <subjectsr, predicatesr, 
objectsr>. Define the Boolean variable isAffectedc as: 
isAffectedc = (subjectc == subjectsr) ^ (predicatec == 

predicatesr) ^ (objectc == objectsr) 
where ^ denotes the logical AND operation. A variable can take the value of any 

arbitrary constant and is thus equal to any constant value. An IncomingSubscription is 
affected by a change c if isAffectedc is true. For each affected 
IncomingSubscription, the ContextManager sends QueryHit messages to all its 
subscribers to supply them with the updated context data. 

3   Application Development 

We have fully implemented our framework in Java SDK 1.4.1, and also developed 
two context-aware applications: Tele-monitoring alert and Tele-medical record. 

The Tele-monitoring alert application monitors a patient’s health parameters and 
informs the relevant parties when abnormal signs are observed. The application 
scenario is illustrated in Fig. 4. Alan just had his heart bypass operation and is now 
discharged from his hospital and recuperating at home. The doctor gives him a 
wearable health monitoring device to track his pulse rate, temperature or the blood 
pressure of the wearer. The Health Monitor runs on ContextPeer with the connections 
to physical sensors. The HealthCare Assistant application runs in Alan’s portable 



device (i.e., PDA). It tracks the health status of Alan by subscribing to the sensor 
information provided by Health Monitor. When abnormal situation occurs, for 
example, HealthCare Assistant detects a drop in blood pressure and a decrease in 
pulse rate which it deduces could be a case of imminent heart failure, it immediately 
alert the Hospital Services Assistant in Alan’s private hospital or a nearby emergency 
center. A health status report can also be transferred to the Hospital Services Assistant 
for the doctor to have more information to diagnose Alan’s condition. The HealthCare 
Assistant will send a SMS to alert a caretaker of the situation. 

 
Fig. 4. Scenario illustration of the Tele-monitoring alert application 

The Tele-medical record application allows for easy transfer of medical records 
from one hospital to another hospital facilitating the doctor’s treatment of a patient. In 
the above scenario, upon reaching a nearby hospital or an emergency center, Alan’s 
HealthCare Assistant automatically sends his personal information (i.e., name, age, 
gender, medicine allergies, etc) to a local Hospital Services Assistant. The Hospital 
Services Assistant checks and realizes Alan is in his first time visiting and hence the 
hospital does not have Alan’s medical record. Thus the Hospital Services Assistant 
sends a request to Alan’s HealthCare Assistant to request for his medical record. The 
HealthCare Assistant next sends a query to Alan’s private hospital’s Hospital Services 
Assistant to retrieve his latest medical record. After receiving the record, the 
HealthCare Assistant filter out any privacy information, e.g., his drug addiction ten 
years back, and forward the medical record to the local hospital’s Hospital Services 
Assistant. 

4   Prototype Measurements  

We have deployed a prototype system to demonstrate the working principle of 
ContextPeers and assess practical issues. In this section, we report the measurement 
results obtained from our prototype testbed. 

We set up the prototype testbed in a wide-area network. Most of the ContextPeers 
run on Pentium 800MHz desktop PCs with 256MB memory. We create a set of 
context ontologies and context data for each ContextPeer. Each ContextPeer stores 



the upper context ontology and one or more domain-specific context ontologies. 
Before the evaluation starts, we need to place context ontologies and context data at 
each ContextPeer. The evaluation starts by connecting each ContextPeer to the 
network. The network is constructed when ContextPeers randomly join the network. 
A ContextPeer obtains the IP of an existing ContextPeer from the bootstrap server. 
We test the bootstrap process by connecting all the ContextPeers to the network in 
different joining sequences; hence, the structure of the network obtained may differ 
from one to another.  

4.1   Bootstrapping  

When a ContextPeer starts, it first goes through the semantic clustering mapping 
process to identify which semantic cluster to join. The mapping process is done by 
iterating each of the RDF data triples and identifying its corresponding semantic 
cluster. Then the ContextPeer chooses the major semantic cluster to join. On average, 
the program initialization process takes about 4.26 seconds, and the mapping process 
for each RDF data triple takes about 0.251 ms. The initialization process involves 
reading and merging the ontology files stored locally and generating internal data 
structures for mapping. It is done only once when a ContextPeer starts and is only 
repeated if there is a change in these ontologies. Upon joining the network, each node 
creates and maintains a set of peers in its routing table. The joining process involves 
initiating the Join message, connecting to those nodes in the JoinReply message 
received and registering its reference if needed. The results for different steps in the 
bootstrap process are summarized in Table 1. 

Table 1: The results for the bootstrapping process 

Processes Average Time Taken 

Program Initialization 4.26 s 

Semantic Clustering Mapping 0.251 ms/RDF triple 

Joining Process  2.56 s 

4.2   Dynamic characteristic 

We evaluate the dynamic characteristic of the network in our prototype by forcing 
ContextPeers to join and leave different semantic clusters randomly. Cluster 
splitting/merging may occur when the cluster size is greater/lower than the default 
size. For testing the dynamic characteristic of the network, we introduce a parameter: 
Time-to-Stability (TS). We define the steady state of ContextPeer as the state in which 
a ContextPeer maintains live connections to the peers in its routing table. The steady 
state of a ContextPeer may collapse if one of the following events occurs:  
 Its short-range contacts or long-range contacts leave the network or some of 

these peers change their major semantic clusters (due to their local data change). 
 Its reference peer(s) leave the network or their major semantic clusters change. 



Queries routing may be affected when ContextPeers are not in the steady state. The 
TS parameter is measured from the time when the steady state of a ContextPeer 
collapses until it reaches the steady state again. We measure the TS of the affected 
ContextPeers for different test cases and the results are summarized in Table 2 (note 
that no backup links are used in these cases).  

Table 2: Results on TS 

Test Cases (without backup links) Average TS 

Case 1: The short range contacts or 
long range contacts leaves the network 
or changes its major cluster or cluster 
splitting/merging occurs 

271 ms per connection 

Case 2: Reference hosting nodes 
leave/change 87 ms per reference  

In a highly dynamic network, peers leave and join frequently; this may result in 
relapse rate very high. A high relapse rate may affect query routing in the network. To 
prevent this, we use a backup link for each type of connections. Once the steady state 
collapses, a ContextPeer can switch to the backup link immediately for the affected 
connection. With this backup scheme, we can minimize the disruption to query 
routing in the highly dynamic network where peers frequently leave and join. 

4.3   Response time analysis 
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Fig. 5. Response time for context queries 

In this experiment, we analyze the important factors that affect the query response. 
We randomly select context queries, and measure the average response time. The 
query response time can be broken down into three portions: query mapping, query 
processing and communication. Query mapping is the time taken by a ContextPeer to 
map a query to the appropriate semantic cluster(s). Query processing is the time taken 
by a ContextPeer to process a query. Query processing involves performing a local 
lookup against the base model. Communication represents the time taken for queries 
and their responses to travel over the network. It is the sum of the time taken to send a 



query from a consumer to a ContextPeer and the time taken to send the query's 
response from the ContextPeer back to the consumer. The results are shown in Fig. 5. 
As we can see from the above results, the processing time for query mapping can be 
ignored; the costs of query processing and communication are the major factors.  

4.4   Query processing capability 

 This experiment evaluates the capability of a ContextPeer to process simultaneous 
queries. In the experiment, a context consumer continuously sends a varying number 
of queries to the network by randomly picking them from a large query pool. Fig. 6 
plots average query processing time against number of simultaneous queries. The 
graph displays a linear relationship; and shows that the capabilities of a ContextPeer 
scale well to number of context queries. 
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Fig. 6. Query processing capability 

5   Related Work 

The Context Toolkit [1] provides a software framework and a number of reusable 
components to support rapid prototyping of sensor-based context-aware applications. 
However, its context delivery assumes the priori knowledge about the presence of a 
widget or a context broker. Chen, et al. [2] proposed a platform, named Solar, to 
support data fusion services and context dissemination to context-aware applications. 
Solar provides a policy driven data dissemination service based on a multicast tree. 
However, building a multicast tree for context dissemination may incur large 
overhead in the presence of node changes. Hong, et al. [3] proposed the Confab 
infrastructure, which includes a flexible and distributed data store to make it easy to 
model, store and disseminate context data; and a context specification language for 
declaratively stating and processing context needs. While our context lookup 
framework shares the similar idea of distributed context storage of Confab in which 
the context data is kept close to where it was generated and where it is likely to be 
used, our emphasis is on how to provide a scalable semantic lookup service using an 



overlay network in multiple smart spaces. Gaia [11] is an infrastructure supporting the 
construction of applications for smart spaces. It consists of a set of core services and a 
framework for building distributed context-aware applications. Different from the 
context service in Gaia, we focus on providing a semantic lookup service which 
context information can be shared in a semantic manner. Knoll, et al. [12] proposed a 
P2P architecture for context-based system based on Pastry [4]. They modified the 
Pastry algorithm to optimize the data distribution towards geographic locality. In our 
framework, data distribution is based on where the context data was generated, and 
nodes are self-organized into the network according to their semantics.  

6   Conclusion 

This paper presents the design of a semantic P2P framework for context lookup in 
multiple smart spaces. The framework offers a de-centralized way for acquiring 
context data from sensors, storing data and resolving context queries. 
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