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Abstract

Switching Markov Models, also called Jump Markov Systems (JMS), are widely

used in many fields such as target tracking, seismic signal processing and finance,

since they can approach non-Gaussian non-linear systems. A considerable amount

of related work studies linear JMS in which data restoration is achieved by Markov

Chain Monte-Carlo (MCMC) methods. In this dissertation, we try to find alter-

native restoration solution for JMS to MCMC methods. The main contribution of

our work includes two parts. Firstly, an algorithm of unsupervised restoration for

a recent linear JMS known as Conditionally Gaussian Pairwise Markov Switching

Model (CGPMSM) is proposed. This algorithm combines a parameter estima-

tion method named Double EM, which is based on the Expectation-Maximization

(EM) principle applied twice sequentially, and an efficient approach for smoothing

with estimated parameters. Secondly, we extend a specific sub-model of CGPMSM

known as Conditionally Gaussian Observed Markov Switching Model (CGOMSM)

to a more general one, named Generalized Conditionally Observed Markov Switch-

ing Model (GCOMSM) by introducing Copulas. Comparing to CGOMSM, the pro-

posed GCOMSM adopts inherently more flexible distributions and non-linear struc-

tures, while optimal restoration is feasible. In addition, an identification method

called GICE-LS based on the Generalized Iterative Conditional Estimation (GICE)

and the Least-Square (LS) principles is proposed for GCOMSM to approximate any

non-Gaussian non-linear systems from their sample data set. All proposed methods

are tested by simulation. Moreover, the performance of GCOMSM is discussed by

application on other generable non-Gaussian non-linear Markov models, for exam-

ple, on stochastic volatility models which are of great importance in finance.

Keywords: Switching Markov models, non-Gaussian non-linear Markov sys-

tem, triplet Markov chain, model identification, optimal time series data restora-

tion, Expectation-Maximization.





Résumé

Les modèles de Markov à sauts (appelés JMS pour Jump Markov System) sont util-

isés dans de nombreux domaines tels que la poursuite de cibles, le traitement des

signaux sismiques et la finance, étant donné leur bonne capacité à modéliser des sys-

tèmes non-linéaires et non-gaussiens. De nombreux travaux ont étudié les modèles

de Markov linéaires pour lesquels bien souvent la restauration de données est réalisée

grâce à des méthodes d’échantillonnage statistique de type Markov Chain Monte-

Carlo (MCMC). Dans cette thèse, nous avons cherché des solutions alternatives aux

méthodes MCMC et proposons deux originalités principales. La première a con-

sisté à proposer un algorithme de restauration non supervisée d’un JMS particulier

appelé « modèle de Markov couple à sauts conditionnellement gaussiens » (noté

CGPMSM). Cet algorithme combine une méthode d’estimation des paramètres

basée sur le principe Espérance-Maximisation (EM) et une méthode efficace pour

lisser les données à partir des paramètres estimés. La deuxième originalité a con-

sisté à étendre un CGPMSM spécifique appelé CGOMSM par l’introduction des

copules. Ce modèle, appelé GCOMSM, permet de considérer des distributions

plus générales que les distributions gaussiennes tout en conservant des méthodes

de restauration optimales et rapides. Nous avons équipé ce modèle d’une méthode

d’estimation des paramètres appelée GICE-LS, combinant le principe de la méthode

d’estimation conditionnelle itérative généralisée et le principe des moindre-carrés

linéaires. Toutes les méthodes sont évaluées sur des données simulées. En partic-

ulier, les performances de GCOMSM sont discutées au regard de modèles de Markov

non-linéaires et non-gaussiens tels que la volatilité stochastique, très utilisée dans

le domaine de la finance.

Mots-clés: Modèles de Markov à sauts, systèmes non-linéaires et non-gaussiens,



Résumé

chaîne de Markov triplet, identification de modèles, restauration optimale de séries

temporelles de données, algorithme Espérance-Maximisation.
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Introduction

Time series data restoration is a common problem that we are facing in many fields.

In this general problem, we are supposed to estimate the hidden sequence from an

observed one, given or supposed there are some links between them. For example, in

speech recognition, one wants to find out the uttered word from the given acoustic

signal [55], [67], [120]; in motion detection, we are interested in discovering the real-

time human activity from video or time sequential images [47], [104]. The Hidden

Markov Model (HMM), since introduced in the late 1960s [46], [119], has become

a popular statistical tool for modeling these “generative” sequences which can be

characterized by an underlying process generating an observable sequence. HMM is

such a class of models, assuming that the hidden states form a Markovian process,

and the observations are “emitted” from the hidden states by some probability

distribution. When dealing with discrete time processes, HMM are usually called

Hidden Markov Chain (HMC) as the discrete time index makes the processes like

chains. Thus, concerning the applications mentioned above, two related must-be-

solved problems in HMC are:

1. Restoration problem: given the observation series {y1,y2, · · · ,yN}, what the

most likely hidden states {x1,x2, · · · ,xN} are.

2. Parameter estimation problem: under the case that the model parameters Θ

are unknown, how we figure out the suitable Θ of the applied HMC.

For restoration problem, the most popular two methods are the forward-

backward algorithm [120] and the Viterbi one [134], [122]. The forward-backward

algorithm refers to p (xn |yn
1 ) and p

(
xn

∣∣yN
1

)
, which are the posterior marginals

of all hidden state variables given the observations, while the Viterbi algo-

rithm aims to find the most likely sequence based on the maximization of
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p (x1, . . . ,xN ,y1, . . . ,yN ). Two conditions can be met when dealing with the pa-

rameter estimation problem. One is to estimate the parameters from observations

only, for instance, maximizing p (y1,y2, · · · ,yN |Θ). Most of the time we use the

Baum–Welch algorithm and applies the Expectation-Maximization (EM) princi-

ple to solve this parameter estimation problem with latent variables [12]. We may

meet another parameter estimation occasion less tough in contrast, in which we have

milder condition that sample data set which includes both hidden state samples and

observation samples are given. In this case, we can simply maximize the complete

data likelihood p (x1, . . . ,xN ,y1, . . . ,yN |Θ) to figure out the suitable parameters.

With the progress of the methods for HMC, new models which generalize the

classic HMC are also developed. One extension is introducing the “switch” (also

called “jump”) into the HMC to characterize the time series behaviors in differ-

ent regimes and permitting the change between model structures, leading to the

so-called “switching Markov model” [3], [28]. The efficiency of the flexibility which

benefits from this extension has been proved in targets tracking [11], [96], manufac-

turing control [17] and finance [41], [92]. The toughness under the switching Markov

models is that most of the time, the Bayesian optimal restoration is no more feasible

with unknown switches, so they are often approached by Markov Chain Monte-Carlo

(MCMC) methods. This optimal restoration infeasibility also results in the hard-

ness of parameter estimation for switching Markov models [8], [42], [90]. The other

extension path of HMC enriches the dependences between the hidden states and

observations. It means that the observations are no more simply “emitted” from

the hidden states but have also some interactive effects on the hidden process. This

extension results in the “Pairwise Markov Chain” (PMC) [114], and it shows in fol-

lowing works on image segmentations that the consideration of interpreting these

complex dependences makes sense [109], [136]. Moreover, we are pleased to apply

this more general model since either restoration or parameter estimation methods

of HMC can be applied with small adjustment to the PMC structure.

Recently, a fusion of these two extensions has been proposed and gave birth to a

linear model known as “Conditionally Gaussian Pairwise Markov Switching Model”

(CGPMSM) [1], which thus owns both the abilities to model the switching regimes

xiv
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and consider more complete variable dependences. Moreover, it has a prominent

merit over the other switching Markov models that the optimal restorations can

be derived with specific model setting. The CGPMSM with this special setting is

taken as its sub-model named “Conditionally Gaussian Observed Markov Switching

Model” (CGOMSM) [1], and has been studied in [62], [61] for approximating any

stationary Markov systems. Since the supervised restoration method and solution

of parameter estimation with given samples are already considered in these previous

works, in this dissertation, we are interested in developing the unsupervised restora-

tion methods for CGPMSM. It means to find solutions for learning its parameters

from only observations and conducting restorations with the learned parameters.

This is one main part of our work. Also, we notice that the feasibility of optimal

restoration is no need to be constrained under the Gaussian linear model structure.

In fact, we can form the conditional joint distributions in switching Markov mod-

els with the introduction of Copulas, which has been widely applied in the field

of finance and insurance [18], [132], [49]. The Copula can be considered as a “tie”

between margins, with which a joint distribution becomes easily be written in terms

of univariate marginal distribution functions. It has been successfully introduced

into Markov models such as the HMC and PMC [24], [37], [38], but from our best

knowledge, so far, there is no work that considers the incorporation of Copulas in

a switching Markov model. Inspired by this, the second main part of our work

focuses on extending the CGOMSM into a more general switching Markov model

by making use of Copulas. Thus, the new model can incorporate varied conditional

distribution, while still allowing optimal restorations. We also consider an iterative

method to solve the parameter estimation problem for the new model using sample

data set, so that the model can be applicable on approaching any Markov stationary

systems and perform their time series data restorations.

Outline of the thesis

This dissertation is divided into four Chapters, organized as follows:

Chapter 1 describes the PMC model, which is the basic structure of the switching

xv
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Markov models that we are going to study. Discrete and continuous state-space

PMC are introduced separately with their matched methods of restoration and

parameter estimation.

Chapter 2 focuses on the restoration methods of Gaussian linear Markov models

(the CGPMSM family). Optimal restoration is derived for the special sub-model

of CGPMSM known as CGOMSM. Then, for the unsupervised restoration of the

CGPMSM, an EM principle based parameter estimation method from only obser-

vations is proposed and described with details. Meanwhile, two restoration ap-

proaches are presented for restoration under the general CGPMSM. The fusion of

the proposed parameter estimation method and the restoration approaches leads

to an unsupervised strategy whose efficiency is proved by simulations. Finally,

several series of experiments are conducted to analyze the performance of the pro-

posed unsupervised restoration method with comparison to supervised optimal and

sub-optimal methods considering different impacting factors.

Chapter 3 contributes to build the general non-Gaussian model which allows

optimal restorations inspired by the CGOMSM model. Firstly, we give the defi-

nition of the proposed model (briefly denoted by GCOMSM), and the way for its

simulation. Then the optimal restorations (filtering and smoothing) are derived,

with two simulation examples to verify their efficiency and show the generality of

the proposed model. Moreover, an identification method based on “Generalized

Iterative Conditional Estimation” (GICE) and Least-Square (LS) called GICE-LS

is proposed for estimating the distributions and parameters of the proposed model.

The efficiency of GICE-LS on identification of GCOMSM is proved by simulation.

Finally, we apply the restoration for GCOMSM with GICE-LS for identification

to some generable non-Gaussian non-linear systems to objectively show the merits

of our algorithm comparing to the restoration for CGOMSM with its identification

methods and Particle Filter.

In the end, Chapter 4 summarizes the main contributions of this dissertation,

presents some limitations in the proposed methods which can be improved, and

draws an outlook for possible future work.

xvi



Chapter 1

Pairwise Markov chain and

basic methods

Since proposed in [114], Pairwise Markov Chain (PMC) arouses more and more

attention as a generalization of Hidden Markov Chain (HMC). Playing the same

role, replacing the classic HMC, the PMC has been applied to signal and image

processing fields, such as speech recognition [87], image segmentation or classifica-

tion [34], [35], [109], [136]. All these works show that the PMC brings improvements

on result thanks to its consideration of more complex dependence between stochas-

tic variables.

We will introduce and detail the properties of PMC in this Chapter. In section

1.1, we explain its sub-cases of different dependences between variables. Focus

on the restoration of the hidden states in PMC, we consider both discrete finite

space case and continuous case in Section 1.2 and Section 1.3. Supervised and

unsupervised restoration solutions for these PMC models are given. Meanwhile,

the frequently used Gaussian PMCs are discussed, and some results of different

restoration solutions are illustrated for discrete finite space case.

Let us consider two sequences of random variables. RN
1 = (R1,R2, . . . ,RN ),

each Rn takes its value in a set R; and YN
1 = (Y1,Y2, . . . ,YN ), each Yn takes

its value in a set Y . Both the spaces R and Y can be discrete or continuous. We

note further HN
1 = (H1,H2 . . . ,HN ), where Hn = (Rn,Yn), and rN1 , yN

1 , hN
1 for

the realization of RN
1 , YN

1 and HN
1 respectively. Then, the process HN

1 is a PMC

if it holds the Markov property that

p
(
hN
1

)
= p (h1) p (h2 |h1 ) . . . p (hN |hN−1 ) . (1.1)



Chapter 1. Pairwise Markov chain and basic methods

1.1 Different dependences in PMC

There could be varying dependences inside a PMC structure, as we can decompose

the transition probability of PMC into

p (hn+1 |hn ) = p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn,yn ) p

(
yn+1 |rn, rn+1,yn

)
.

(1.2)

Considering the different cases in equation (1.2), we have four sub-models of PMC,

each of them holds their special dependence of noise. The dependence graphs of all

these sub-cases of PMC are displayed in Figure 1.1.

(a) When p (rn+1 |rn,yn ) = p (rn+1 |rn ) and p
(
yn+1 |rn, rn+1,yn

)
=

p
(
yn+1 |rn+1

)
, the process HN

1 is the well recognized HMC. More precisely,

we call it “Hidden Markov Chain with Independent Noise” (HMC-IN). The

transition probability in (1.2) thus becomes

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1 |rn+1

)
. (1.3)

In this classic case, RN
1 is a Markov chain and Y1, · · · ,YN are independent

from each other knowing RN
1 .

(b) When p
(
yn+1 |rn, rn+1,yn

)
= p

(
yn+1 |rn, rn+1

)
, the process HN

1 is called

“Hidden Markov Chain with Independent Noise of order 2” (HMC-IN2) with

transition probability

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1 |rn, rn+1

)
. (1.4)

RN
1 is still a Markov chain, and Y1, · · · ,YN are independent conditionally

on RN
1 , but the dependence on RN

1 is more complicated than in HMC-IN.

HMC-IN can be seen as a particular case of this HMC-IN2.

(c) If only RN
1 is assumed Markovian, the process HN

1 is called “Hidden Markov

Chain with Dependent Noise” (HMC-DN), with the transition probability

2
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writes

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1 |rn, rn+1,yn

)
. (1.5)

Under this case, Y1, · · · ,YN become dependent from each other conditionally

on RN
1 , and obviously, this is a more general case than the last two cases.

Rn Rn+1

Yn Yn+1

(a) HMC-IN.

Rn Rn+1

Yn Yn+1

(b) HMC-IN2.
Rn Rn+1

Yn Yn+1

(c) HMC-DN.

Rn Rn+1

Yn Yn+1

(d) PMC-IN.
Rn Rn+1

Yn Yn+1

(e) PMC.

Figure 1.1: Dependence graphs of particular sub-models of PMC.

(d) Here we consider RN
1 no more Markovian, and Y1, · · · ,YN independent con-

ditionally on RN
1 , which means that

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn,yn ) p

(
yn+1 |rn, rn+1

)
(1.6)

This special case is called “Pairwise Markov Chain with Independent Noise”

(PMC-IN), and if we call the most general PMC the “Pairwise Markov Chain

with Dependent Noise” (PMC-DN), in which all dependences are conserved,

3
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the PMC-IN is its sub-case. Later if no confusion will be introduced, “PMC”

will refer to the PMC-DN instead.

Let us notice that, there are a lot of works on Markov models among which

some also inspired by the “pairwise” idea. In [50], [51], the PMC is called Bi-

variate Markov Chain; similarly, it is called the Coupled Markov Chain or Mod-

els in [21], [20], [118]; moreover, the Double Chain Markov Model discussed in

[13] and [14] which is actually the HMC-DN but with p
(
yn+1 |rn, rn+1,yn

)
=

p
(
yn+1 |rn+1,yn

)
. The novelty of PMC is the fact that RN

1 is not necessarily

Markovian, and it gives necessary and sufficient conditions for stationary time-

reversible model to exist [84]. Besides, one should pay attention that these works

have different emphasis. Some of them assumes RN
1 are hidden, YN

1 are observed;

while the others consider the total pair HN
1 are hidden states. Also, considering

the state-space, it can be discrete classes or continues real values. One can decide

where to apply the PMC and which state-space to choose according to the practical

issue. In this chapter, we only discuss the case that RN
1 are hidden states and YN

1

are observations.

1.2 PMC with discrete finite state-space

Let us consider the PMC with discrete finite state-space, like in classic HMC, hidden

states RN
1 is a discrete process, each Rn takes its values in discrete finite state-space

Ω = {1, 2, . . . ,K}; and YN
1 = (Y1,Y2, . . . ,YN ) is a continuous observation with

each Yn taking its values in Rq, q represents the dimension of Yn. Benefiting

from the Markovianity of p
(
RN

1

∣∣YN
1

)
, optimal restoration exists in PMC in spite

weather RN
1 being Markovian or not [114], [84], [52].

1.2.1 Optimal restoration

Here we explain how the restorations (both filtering and smoothing) of PMC with

discrete finite state-space run. We define that

ϕn (j) = p
(
rn = j

∣∣yN
1

)
, (1.7)

4
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ψn (j, k) = p
(
rn = j, rn+1 = k

∣∣yN
1

)
, (1.8)

where j, k ∈ Ω. The restoration can be calculated through the forward and back-

ward probabilities by Baum’s algorithm [12], [86], [40] from the structure of PMC.

To iteratively compute (1.7)-(1.8), we adopt the ”normalized” forward and back-

ward probabilities [35]:

αn (j) = p (rn = j |yn
1 ) , (1.9)

βn (j) =
p
(
yN
n+1 |rn = j,yn

)
p
(
yN
n+1 |yn

1

) . (1.10)

These definition avoid the numerical underflow problem comparing to the

original one [12], which computes the forward p
(
yN
1 ,xn = j

)
and backward

p
(
yN
n+1 |yn,xn = j

)
recursively instead.

With the definitions above, we get forwardly the αn through

α1 (j) =
p (r1 = j,y1)∑

l∈Ω
p (r1 = l,y1)

;

αn (j) =

∑
l∈Ω

αn−1 (l) p
(
rn = j,yn

∣∣rn−1 = l,yn−1

)
∑

(l1,l2)∈Ω2

αn−1 (l1) p
(
rn = l2,yn

∣∣rn−1 = l1,yn−1

) ,
(1.11)

which is the probability of filtering. While backwardly, we get the intermediate

elements for smoothing

βN (j) = 1;

βn (j) =

∑
l∈Ω

βn+1 (l) p
(
rn+1 = l,yn+1 |rn = j,yn

)
∑

(l1,l2)∈Ω2

αn (l1) p
(
rn+1 = l2,yn+1 |rn = l1,yn

) , (1.12)

where 1 ≤ n < N . So the smoothing probability, which is noted as ϕn (j) in (1.7)

is given by

ϕn (j) = αn (j)βn (j) , (1.13)

5
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and the joint posteriori probability ψn (j, k) is given by

ψn (j, k)

=
αn (j) p

(
rn+1 = k,yn+1 |rn = j,yn

)
βn+1 (k)∑

(l1,l2)∈Ω2

αn (l1) p
(
rn+1 = l2,yn+1 |rn = l1,yn

)
βn+1 (l2)

. (1.14)

Most of the time, we deal the restoration under simple but practical assumption

that the PMC is Gaussian stationary. It means that the probability of p (hn,hn+1)

does not depend on n, and therefore, the distributions p
(
yn,yn+1 |rn, rn+1

)
, which

can be written as p (y1,y2 |r1, r2 ) are Gaussian given by:

p (h1,h2) = p (r1 = j,y1, r2 = k,y2) = pj,k fj,k (y1,y2) , (1.15)

pj,k is the abbreviation of p (rn = j, rn+1 = k) (we will keep using this abbreviation

though out this dissertation), and

fj,k (y1,y2) = p (y1,y2 |r1 = j, r2 = k )

= N
(

My2
1

j,k,Γ
y2
1

j,k

)
.

(1.16)

My2
1

j,k and Γ
y2
1

j,k denote the mean and variance of the joint Gaussian distribution of

(y1,y2) conditionally on (rn = j, rn+1 = k) respectively.

In practice, sometimes, Gaussian distribution may be not always suitable, and

a flexible shape of fj,k (y1,y2) can be defined by two marginal distributions and a

dependence item known as copula [29], [98], [100], [124]. So the form of fj,k (y1,y2)

writes according to this construction as

fj,k (y1,y2) = f
(l)
j,k (y1) f

(r)
k,j (y2) cj,k

(
F

(l)
j,k (y1) , F

(r)
k,j (y2)

)
, (1.17)

in which f
(l)
j,k (y1) = f (l) (y1|rn = j, rn+1 = k), f (r)k,j (y2) = f (r) (y2|rn+1 = k, rn = j)

are the two marginal densities, with (l), (r) specify the left or right margin respec-

tively. The dependent structure cj,k (·, ·) is the so called “copula”, and F
(l)
j,k (y1)

denotes the associated Cumulative Distribution Function (CDF) of f (l)j,k (y1), and

6
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F
(r)
k,j (y2), the associated CDF of f (r)j,k (y2). More details of the copula in fj,k (y1,y2)

of PMC will be discussed later embedded in the Markov switching model which we

are going to deal with in Chapter 3.

Of course, for any sub-case of PMC that has special dependence structure as

described in previous Section, the restoration of the general PMC are suitable.

1.2.2 Unsupervised restoration

When applying the PMC to a real system, we have no idea what are the parameters

of a suitable PMC. In this case, we often turn to the well known Expectation-

Maximization (EM) principle for solution.

EM is an iterative method for searching maximum likelihood (ML) estimates of

parameters in statistical models, when parts of the variables are missing (latent).

The definition of EM principle was explained in [33], [97], but there are earlier

works on this iterative method for exponential families [129], [128], [127], published

as pointed out in [33]. The convergence of EM in [33] is revised by [135] later.

Back to the PMC that we are dealing with,
(
rN1 ,yN

1

)
is considered as the com-

plete data for likelihood calculation, while rN1 is latent, so the unsupervised Bayesian

restoration based on ML can be handled with EM as already dealt in [82], [121]

extended from the solution of HMC discussed in [123], [25]. It is well to be mention

that, EM algorithm works well when the PMC is stationary. If not, the unsuper-

vised restoration results can be quite poor, due to the bad match between the real

and estimated models.

1.2.2.1 EM for Gaussian stationary case

As proposed in [82], the EM method estimates the parameters of stationary Gaus-

sian PMC by maximizing the likelihood function of incomplete data YN
1 iteratively

according to

Θh(i+1) = arg max
Θh

EΘh(i)

[
ln pΘh

(
HN

1

) ∣∣yN
1

]
, (1.18)

with Θh =
(
pj,k,M

y2
1

j,k,Γ
y2
1

j,k

)
, 1 ≤ j, k ≤ K and the index i denotes the EM iteration.

The EM algorithm constituted by the Expectation (E-step) and Maximization (M-

7
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Step) iteratively run as follows:

1) E-step:

E-step calculates the expectation of the likelihood with current parameters Θh(i)

(estimated from last M-step) which is actually simplified to get the update of

ψn (j, k) in (1.8). The computation is just the same as the optimal smoothing

of this discrete state-space PMC which has been specified from equations (1.7) to

(1.14).

2) M-step:

Then, the M-step searches to maximize (1.18) by taking derivative with respect

to each parameter, which gives the following update equations for all the parameters:

p̂j,k =
1

N − 1

N−1∑
n=1

ψn (j, k) ;

M̂y2
1

j,k =

N−1∑
n=1

ψn (j, k)

 yn

yn+1


N−1∑
n=1

ψn (j, k)

;

Γ̂
y2
1

j,k =

N−1∑
n=1

ψn (j, k)


 yn

yn+1

− M̂y2
1

j,k



 yn

yn+1

− M̂y2
1

j,k


⊺

N−1∑
n=1

ψn (j, k)

.

(1.19)

To initialize the iterations, one simple way is to use K-means clustering method

to find the initial switches RN
1 = rN1 , and calculate the initial values for parameters

8
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Θh(0) by empirical estimations:

p̂j,k =
Card (j, k)

N − 1
;

M̂y2
1

j,k =
1

Card (j, k)

N−1∑
n=1

δn (j, k)


 yn

yn+1


 ;

Γ̂
y2
1

j,k =
1

Card (j, k)

N−1∑
n=1

δn (j, k)


 yn

yn+1

− M̂y2
1

j,k



 yn

yn+1

− M̂y2
1

j,k


⊺

.

(1.20)

in which δn (j, k) denotes the function 1 (rn = j, rn+1 = k), and Card (j, k) =∑N−1
n=1 δn (j, k). There are also some other initialization methods which could be

applied as discussed and compared in [15].

Finally, EM is stopped after the change of the likelihood between two iterations

is considered small enough (one can set a threshold to specify the convergence).

1.2.2.2 ICE for stationary case

When it comes to non-Gaussian case, direct derivative of parameters from the

form of ML may be complex or not possible. As an alternative method, “iterative

conditional estimation” (ICE) was proposed by [113] for solving the fundamental

limitation of EM, since it uses also the complete data HN
1 , but the computation of its

likelihood is not necessary. The efficiency and convergence of ICE have been verified

with application in statistical image segmentation by [83], [111], [19] and [31].

ICE assumes that there exists an estimator for HN
1 noted by Θ̂

h (HN
1

)
=

Θ̂
h (RN

1 ,YN
1

)
with hidden data RN

1 that one wants to recover. The natu-

ral best estimator, which considers the minimum mean square error noted by

EΘh

[
Θ̂

h (HN
1

) ∣∣yN
1

]
is a conditional expectation on Θh, while Θh is unknown.

However, we have iterative method to approach it

Θh(i+1) = EΘh(i)

[
Θ̂

h (HN
1

) ∣∣yN
1

]
. (1.21)

9
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We see that, when Θ̂
h is chosen to be an ML estimator, equation (1.21) becomes

Θh(i+1) = EΘh(i)

[
arg max

Θh
ln pΘh

(
HN

1

) ∣∣yN
1

]
, (1.22)

which is identical to EM if the expectation and the log-likelihood maximization can

be exchanged, and this occurs when the distribution of complete data belongs to an

exponential family. Therefore, EM algorithm can be taken as a particular case of

ICE for this kind of canonical parameterization structures. More discussion about

the equivalence of ICE and EM can be found in [32].

The advantage of ICE is that, if we can compute the conditional distribution of(
RN

1 |yN
1

)
at step i but not the expectation in (1.21) analytically, we can simulate

the realization rN1 of RN
1 according to p

(
RN

1

∣∣yN
1

)
, with the current parameter

Θh(i) (it is called the Random Imputation Principle (RIP) in [27]), and then θi+1

can be approximated empirically, thanks to the law of large numbers as

Θh(i+1) =
1

M

[
Θ̂

h (rN1 )1 + Θ̂
h (rN1 )2 + · · ·+ Θ̂

h (rN1 )M] , (1.23)

where
(
rN1
)
1
, · · · ,

(
rN1
)
M are M realizations of RN

1 .

Let us pay attention that, there is another similar simulation based alternative

method for EM, which is called stochastic EM (SEM) [99], [85], [95], [27]. SEM

takes realization (stochastic) step after E-step only once, and M-step which defining

Θh(i+1) is given by solve the ML function with the realized complete data. We can

see that, SEM is also a special case of ICE when M = 1 and ML is chosen to be

the Θ̂
h.

1.2.2.3 Principles for infering hidden states

There are several criterions to infer the hidden RN
1 from the filtering probabilities

p (rn |yn
1 ) and smoothing ones p

(
rn
∣∣yN

1

)
. The Bayesian MPM (Maximum Posterior

Mode) criterion, which maximizes the posteriors is commonly used according to the

computation of

r̂n = arg max
j

ϕn (j) , (1.24)

10
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with j ∈ Ω for n from {1, · · · , N}. And another Bayesian criterion is the MAP

(Maximum A Posteriori estimation) defined as a regularization of ML estimation

that

r̂N1 = arg max
rn∈Ω

p
(
rN1
∣∣yN

1

)
= arg max

rn∈Ω
p
(
rN1 ,yN

1

)
. (1.25)

In this dissertation, we always use MPM to obtain the restoration of RN
1 due to its

simplicity.

We address here an experiment to show the performance of unsupervised restora-

tion methods on HMC-DN as a groundwork, since it is a partial structure of the

switching Markov models we deal with later.

As defined in HMC-DN, RN
1 is Markov, and we set each Rn adopts simply two

possible values, which means that Ω = {1, 2}. The probabilities of RN
1 , which has

already appeared in (1.15) are defined by p1,2 = p2,1 = 0.05 and p1,1 = p2,2 = 0.45.

The dependence of p
(
yN
1

∣∣rN1 ) is set to be Gaussian with the auto-regressive relation

Yn+1 = Fyy (Rn+1
n

)
Yn +Byy (Rn+1

n

)
Vn+1, (1.26)

in which Vn+1 is a standard normal white noise written as Vn+1 ∼ N (0, 1), and

initially, the Y1 ∼ N (0, 1) also. The parameters Fyy (Rn+1
n

)
and Byy (Rn+1

n

)
are assigned as Fyy (Rn = 0, Rn+1 = 0) = Fyy (Rn = 1, Rn+1 = 0) = 0.4,

Fyy (Rn = 0, Rn+1 = 1) = Fyy (Rn = 1, Rn+1 = 1) = 0.9 and Byy (Rn, Rn+1) =√
1−Fyy (Rn, Rn+1)

2. Under this setting, we have the conditional means of(
yn,yn+1|rn, rn+1

)
all 0, variance all 1, and the covariance cov

(
yn,yn+1|rn, rn+1

)
=

Fyy (rn, rn+1). 2000 samples are simulated according to the model setting, then,

the supervised filtering, smoothing, and unsupervised smoothing through EM and

ICE are applied on the observations for restoration. In particular, the ICE applied

here adopts the classic empirical estimation of the moments as Θ̂h, based on hidden

11
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state realizations rN1 , and M set to one in (1.23), which runs

p̂j,k =
1

N − 1

N−1∑
n=1

ψn (j, k) ;

M̂y2
1

j,k =
1

Card (j, k)

N−1∑
n=1

δn (j, k)


 yn

yn+1


 ;

Γ̂
y2
1

j,k =
1

Card (j, k)

N−1∑
n=1

δn (j, k)


 yn

yn+1

− M̂y2
1

j,k



 yn

yn+1

− M̂y2
1

j,k


⊺

,

(1.27)

where δn (j, k) and Card (j, k) are defined the same as in (1.20).

The average result of 100 Monte-Carlo experiments are reported in Table 1.1

As EM and ICE make use of the entire YN
1 , we only report their smoothing result

in the Table. The error ratio tendencies of EM and ICE of both one instance and

average of 100 independent experiments are displayed in figure 1.2. We find that

with estimator based on realization, ICE is more fluctuating than EM, but the

two algorithms perform nearly the same under the setting of this experiment. The

fluctuation may be smoothen with the increasing value of M which is only set to 1

in this example.

Table 1.1: Restoration error ratio of all methods (average of 100 independent ex-
periments) .

Optimal filtering Optimal smoothing EM ICE
Error Ratio 0.196 0.173 0.189 0.180

1.3 PMC with continuous state-space

The continuous state-space PMC has the hidden state takes its value in a continuous

real space. To distinguish it from the discrete state-space PMC, we take XN
1 =

(X1,X2, · · · ,XN ) instead of RN
1 to denote the continuous value hidden state, where

each Xn takes its value in Rs, and “s” being the dimension of Xn.

A commonly used example is when this continuous state-space PMC meets the
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(a) One instance. (b) Average of 100 experiments.

Figure 1.2: Error ratio tendency with iterations.

particular Gaussian linear case, which is called “Linear Gaussian Pairwise Markov

Model” [116] or “Gaussian Pairwise Markov Model” (GPMM) [1], written as

Xn+1

Yn+1

 =

Fxx
n+1 Fxy

n+1

Fyx
n+1 Fyy

n+1


︸ ︷︷ ︸

Fn+1

Xn

Yn

+

Bxx
n+1 Bxy

n+1

Byx
n+1 Byy

n+1


︸ ︷︷ ︸

Bn+1

Un+1

Vn+1

 , (1.28)

in which Fn+1 and Bn+1 are parameters of the regime. Wn+1 =
[
U⊺

n+1,V
⊺
n+1

]⊺ are

noises which follow independently the standard normal distribution, and are inde-

pendent of X1, Y1. Under Gaussian assumption that X1, Y1 and W1 are all Gaus-

sian, the pair
(
XN

1 ,YN
1

)
is then a Gaussian process. Consequently, p (xn+1 |yn

1 ),

p (xn |yn
1 ), p

(
xn

∣∣yN
1

)
are all Gaussian.

The continuous state-space Gaussian linear HMC known as Hidden Gaussian

Markov Model (HGMM) [4], [9], [77] often written in the form

Xn+1 = An+1Xn + Bn+1Un+1;

Yn+1 = Cn+1Xn+1 + Dn+1Vn+1,
(1.29)

with matrices An+1, Bn+1, Cn+1, Dn+1 defining the linear functions. Un+1, Vn+1

are standard normal white noises which independent from each other and indepen-

dent from X1 and Y1. However, as HMC is a sub-model of PMC, spontaneously,

HGMM is a sub-model of GPMM. Just with some parameters set to be 0, HGMM
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can be rewritten asXn+1

Yn+1

 =

Fxx
n+1 0

Fyx
n+1 0


︸ ︷︷ ︸

Fn+1

Xn

Yn

+

Bxx
n+1 0

Byx
n+1 Byy

n+1


︸ ︷︷ ︸

Bn+1

Un+1

Vn+1

 , (1.30)

where Fxx
n+1 = An+1, Fyx

n+1 = Cn+1An+1, Bxx
n+1 = Bn+1, Byx

n+1 = Cn+1Bn+1, and

Byy
n+1 = Dn+1. As in PMC, the hidden XN

1 in GPMM can be Markov or not [84].

1.3.1 Restoration of continuous state-space PMC

The optimal restoration for the continuous state-space PMC in general way can be

derived by the following steps.

One step ahead prediction:

p (xn+1 |yn
1 ) =

∫
p (xn+1 |xn,yn ) p (xn |yn

1 ) dxn, (1.31)

so the forward filtering is

p
(
xn+1

∣∣yn+1
1

)
=
p
(
xn+1,yn+1 |yn

1

)
p
(
yn+1 |yn

1

)
=

∫
p
(
xn+1,yn+1 |xn,yn

)
p (xn |yn

1 ) dxn∫
p
(
yn+1 |xn,yn

)
p (xn |yn

1 ) dxn

. (1.32)

Benefit from the pairwise structure, we have

p
(
xn

∣∣xn+1,yn+1
1

)
= p

(
xn

∣∣xn+1,yN
1

)
, (1.33)

and the backward smoothing can be reached by

p
(
xn

∣∣yN
1

)
=

∫
p
(
xn,xn+1

∣∣yn+1
1

)
p
(
xn+1

∣∣yn+1
1

) p
(
xn+1

∣∣yN
1

)
dxn+1

=

∫
p (xn |yn

1 ) p
(
xn+1,yn+1 |xn,yn

1

)
p
(
yn+1 |yn

)
p
(
xn+1

∣∣yn+1
1

) p
(
xn+1

∣∣yN
1

)
dxn+1

= p (xn |yn
1 )

∫
p
(
xn+1,yn+1 |xn,yn

1

)
p
(
xn+1

∣∣yN
1

)
p
(
xn+1,yn+1 |yn

1

) dxn+1

, (1.34)

14
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with

p
(
xn+1,yn+1 |yn

1

)
=

∫
p (xn |yn

1 ) p
(
xn+1,yn+1 |xn,yn

)
dxn. (1.35)

Then (1.31)-(1.34) are computable in Gaussian case.

The unsupervised restoration based on EM for GPMM has been developed by [5]

and the robustness strengthened by [101] through QR decompositions. Moreover, a

partial supervised solution is given by [102]. As we will depict the extension model

of GPMM with switches in next chapter, GPMM will become its sub-case with zero

switch. For not duplicating the state of method, the unsupervised restoration of

GPMM can be referred in next Section removing the switch symbols.

1.4 Conclusion

This chapter presents the principle of Pairwise Markov Chains (PMCs) and their

restoration algorithms, whatever supervised or unsupervised based on Expectation-

Maximization (EM) and Iterative Conditional Estimation (ICE) principles for pa-

rameter estimation. The PMC is a generalization of the classic Hidden Markov

Chain (HMC). Definition, property and advantage of PMC are described in de-

tails in the beginning of this chapter. Two cases of hidden states (discrete finite

and continuous) in PMC are specified then, with the derivation of both supervised

and unsupervised restorations. In addition, an example of unsupervised restoration

of the discrete finite state-space PMC is reported to show the performance of all

restoration methods on the commonly used Gaussian case.

PMC is the basic of the switching Markov model we handle in this thesis. Ac-

tually, the special switching Markov model we are going to deal with, is a Triplet

Markov Chain (TMC) [117] developed from the GPMM (Gaussian continuous state-

space PMC) with essential consideration of switching regime. In practice, this

“switching” regime makes the Markov chain owns the ability to describe the dra-

matic change of the auto-regression and better suits for approaching the non-linear

systems. This chapter paves the way for finding the solution of the main subject

15
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which we are facing to and the methods described will be the reference of the new

methods we developed for switching Markov models in following chapters.
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Chapter 2

Optimal and approximated

restorations in Gaussian linear

Markov switching models

As described in previous Chapter, the simplest model for the distribution of

(XN
1 ,YN

1 ) which allows fast Bayesian linear processing, is the classic HGMM de-

fined by Gaussian distribution p (x1) of X1, the Markov transitions p (xn+1 |xn ) and

simple dependence p (yn |xn ). The HGMM has been later extended to GPMM de-

fined by Gaussian distribution p (x1,y1) of (X1,Y1) and the pairwise Markov tran-

sitions p
(
xn+1,yn+1 |xn,yn

)
. Optimal filtering and smoothing remains workable

in GPMM, while comparing to HGMM, it incorporates more complex dependence

between the stochastic variables.

Let us now extend the previous models by introducing a hidden process to

model the “switches” (also called “jump”). We consider XN
1 = {X1,X2, . . . ,XN},

RN
1 = {R1, R2, . . . , RN}, and YN

1 = {Y1,Y2, . . . ,YN}, each Xn, Rn, Yn takes

its value in Rs, Ω = {1, 2, . . . ,K}, and Rq respectively. YN
1 is observed, and the

problem is to estimate the hidden realizations of XN
1 from only YN

1 . Introducing

discrete switches RN
1 in the plain models mentioned before is of interest for at least

two aspects. Firstly, this can model stochastic regime changes. It is to say that

it allows random changes in the parameters which define the plain HGMM and

GPMM. Secondly, when considering a Markov triplet TN
1 = (XN

1 ,RN
1 ,YN

1 ) such

that (XN
1 ,YN

1 ) is a GPMM conditionally on RN
1 , the distribution of (XN

1 ,YN
1 ) be-

comes a Gaussian mixture distribution, which is likely to approximate non-Gaussian

non-linear systems. Such situation has been successfully considered in [62], where
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it shows that any stationary or asymptomatically stationary Markov system can be

approximated by a Gaussian switching system once a method to simulate realiza-

tions of the system is available.

Introducing discrete switches RN
1 in the classic HGMM leads to the following

Conditionally Gaussian Linear State-space Model (CGLSSM) [26]:

RN
1 is Markov,

Xn+1 = An+1(Rn+1)Xn + Bn+1(Rn+1)Un+1,

Yn+1 = Cn+1(Rn+1)Xn+1 + Dn+1(Rn+1)Vn+1.

(2.1)

An+1(Rn+1), Bn+1(Rn+1), Cn+1(Rn+1), Dn+1(Rn+1) are matrices conditionally on

Rn of dimension s× s, s× s, q× s and q× q respectively. Un+1, Vn+1 are random

variables distributed according to standard Normal distribution. The CGLSSM is

also known as “Linear system with jump parameters” [133]; “Switching Linear Dy-

namic Systems” [77], [125]; “Jump Markov Linear Systems” [7]; “Switching Linear

State-space Models” [6]; and “Conditional Linear Gaussian Models” [93] applied in

tracking, speech feature mapping and biomedical engineering, etc.

While RN
1 is hidden, in CGLSSM, computing conditional mean estimates of

hidden states is infeasible as it involves a cost that grows exponentially with the

number of observations [115]. The restoration is often approached by Markov Chain

Monte-Carlo (MCMC) methods [42], [43]. When it comes to the unsupervised case,

recent works on the parameter estimation of CGLSSM or the more general Jump

Markov System (JMS), combine EM with Sequential Monte-Carlo (SMC) methods

to do the parameter estimation [54], [108]. As MCMC methods can approximate

properly the target distribution with large sample numbers, the restoration perfor-

mance can be quite satisfactory. However, the computation consumption of MCMC

based methods increases with sample numbers when high accuracy is required and

can meet degeneracy problems [71], [64].

We consider the recent model extended from CGLSSM, called Conditionally

Gaussian Pairwise Markov Switching Model (CGPMSM) [1], which introduces the

switches RN
1 in GPMM. The aim of this chapter is to propose a parameter esti-
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mation method only from the observed YN
1 for stationary CGPMSM, and perform

unsupervised restoration without making use of the MCMC methods. The remain-

ing of this chapter is organized as follows. In Section 2.1, we recall the definition

of the special JMLS family called CGPMSM which we are interested in. Next,

we derive the optimal filtering and smoothing of the “Conditionally Gaussian Ob-

served Markov Switching Model” (CGOMSM), which is a sub-model of CGPMSM.

Then, for the restoration of general stationary CGPMSM, which will be discussed

in following Sections, we detail its parameterizations. Two experimental series on

simulated data are conducted in this Section to verify the supervised filtering and

smoothing for CGOMSM, and their ability to restore the close CGPMSM as sub-

optimal solution. Section 2.2 extends the EM algorithm for parameter estimation

in GPMM to Switching EM which works on parameter estimation on CGPMSM

with known switches. Then, a parameter estimation method for CGPMSM with

unknown switches called Double EM is proposed, which applies twice the EM prin-

ciple incorporating the Switching EM. Meanwhile, the shortcoming of the proposed

Double EM is also pointed out. Section 2.3 proposes two restoration approaches

in CGPMSM, one is with partial mild modification of parameters and the other is

based on EM principle. Then, several unsupervised strategies are produced by fus-

ing the Double EM parameter estimation and restoration approaches. Two Series

of experiments focus on different observation means and varying noise levels are

conducted to test the proposed Double EM method and study the performance of

all proposed unsupervised restoration methods with comparison to several existing

supervised restoration methods under the influence of these two factors. Finally,

the work of this Chapter is concluded in Section 2.4.
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2.1 Filtering and smoothing

2.1.1 Definition of CGPMSM and CGOMSM

The CGPMSM is a switching Gaussian linear dynamic stochastic system defined

by:

TN
1 = (XN

1 ,RN
1 ,YN

1 ) is Markov with p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ) , (2.2)

Xn+1 − Mx
n+1(Rn+1)

Yn+1 − My
n+1(Rn+1)


︸ ︷︷ ︸

Zn+1

=

Fxx
n+1(Rn+1

n ) Fxy
n+1(Rn+1

n )

Fyx
n+1(Rn+1

n ) Fyy
n+1(Rn+1

n )


︸ ︷︷ ︸

Fn+1(Rn+1
n )

Xn − Mx
n(Rn)

Yn − My
n(Rn)


︸ ︷︷ ︸

Zn−Mz
n

+

Bxx
n+1(Rn+1

n ) Bxy
n+1(Rn+1

n )

Byx
n+1(Rn+1

n ) Byy
n+1(Rn+1

n )


︸ ︷︷ ︸

Bn+1(Rn+1
n )

Un+1

Vn+1


︸ ︷︷ ︸

Wn+1

.

(2.3)

X1, Y1, R1 are given following Gaussian distribution p (x1,y1 |r1 ) and p (r1)

respectively. The hidden switches RN
1 is a Markov chain, which comes from

p (rn+1 |xn, rn,yn ) = p (rn+1 |rn ). UN
1 and VN

1 note the mutually independent

centered Gaussian noise with unit variance-covariance matrix which are also as-

sumed independent from RN
1 . The system parameters Fn+1(rn+1

n ) and Bn+1(rn+1
n )

depend on the switches rn+1
n = (rn, rn+1)

1, so the couple (XN
1 ,YN

1 ) is Markovian

and Gaussian conditionally on RN
1 . Mx

n(rn) and My
n(rn) are the means of Xn

and Yn conditionally on rn, we denote Mz
n(rn) = [Mx

n(rn),My
n(rn)]

⊺. The original

model defined by [1] does not consider Mx
n(rn) and My

n(rn), or we can say they are

set to be both zero. (2.3) can be concisely written as

Zn+1 − Mz
n+1(Rn+1) = Fn+1(Rn+1

n ) (Zn − Mz
n(Rn)) +Bn+1(Rn+1

n )Wn+1. (2.4)

Like HGMM can be taken as a special case under GPMM. Under the general

family of CGPMSM, the classic CGLSSM without the consideration of means can
1this written simplification will be applied to other symbols though whole text
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be represented by setting several zeros and simplifying the correspondence on switch

to the present state of Rn+1 in the (2.3).

Xn+1

Yn+1


︸ ︷︷ ︸

Zn+1

=

Fxx
n+1(Rn+1) 0

Fyx
n+1(Rn+1) 0


︸ ︷︷ ︸

Fn+1(Rn+1)

Xn

Yn


︸ ︷︷ ︸

Zn

+

Bxx
n+1(Rn+1) 0

Byx
n+1(Rn+1) Byy

n+1(Rn+1)


︸ ︷︷ ︸

Bn+1(Rn+1)

Un+1

Vn+1


︸ ︷︷ ︸

Wn+1

.

(2.5)

Compare to the classic CGLSSM (2.1), we have the congruent relationship:

Fxx
n+1(Rn+1) = An+1(Rn+1);

Fyx
n+1(Rn+1) = Cn+1(Rn+1)An+1(Rn+1);

Bxx
n+1(Rn+1) = Bn+1(Rn+1);

Byx
n+1(Rn+1) = Cn+1(Rn+1)Bn+1(Rn+1);

Byy
n+1(Rn+1) = Dn+1(Rn+1).

(2.6)

Conditionally on RN
1 , XN

1 is linear Gaussian and Markovian, and the distribution

of YN
1 conditionally to XN

1 is simple in CGLSSM. Thus given RN
1 = rN1 , the

couple (XN
1 ,YN

1 ) degenerates as a HGMM, in which the classical optimal Kalman

filter and smoother can be applied. But in case that RN
1 is unknown, although

CGLSSM appears as “natural” switching Gaussian system, neither optimal filtering

nor smoothing can be derived.

Of course, the general CGPMSM extended from GPMM also meets this tough

problem. But let us pay attention to the pairwise structure of CGPMSM. Actually,

the observations and hidden states play symmetrical roles, we can take arbitrarily

any of these two as the other’s noisy version. If we inverse the roles of XN
1 and YN

1

in CGLSSM, both p
(
rn
∣∣xN

1

)
and p

(
yn

∣∣rn,xN
1

)
become computable. Based on

this idea, the sub-family of CGPMSM named “Conditionally Gaussian Observed

Markov Switching Model” (CGOMSM) has also been proposed in [1], [2]. The

CGOMSM is with a fixed Fyx
n+1(Rn+1

n ) = 0 in CGPMSM verifying that:
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Xn+1 − Mx
n+1(Rn+1)

Yn+1 − My
n+1(Rn+1)

 =

Fxx
n+1(Rn+1

n ) Fxy
n+1(Rn+1

n )

0 Fyy
n+1(Rn+1

n )


Xn − Mx

n(Rn)

Yn − My
n(Rn)


+

Bxx
n+1(Rn+1

n ) Bxy
n+1(Rn+1

n )

Byx
n+1(Rn+1

n ) Byy
n+1(Rn+1

n )


Un+1

Vn+1

 .
(2.7)

The prominent advantage of this CGOMSM over CGLSSM is that optimal filter-

ing and smoothing are feasible, as the observations and switches processes (RN
1 ,YN

1 )

becomes a pairwise Markov chain, which is of importance in some real-data appli-

cations.

2.1.2 Optimal restoration in CGOMSM

Firstly, let us recall the classic optimal filtering and smoothing equations. Optimal

filtering consists in computing E [Xn |yn
1 ] for each n = 1, . . . , N . In presence of

switches

E [Xn |yn
1 ] =

∑
rn

p (rn |yn
1 )E [Xn |rn,yn

1 ] , (2.8)

and the optimal smoothing of switching Markov models is classically calculated by

E
[
Xn

∣∣yN
1

]
=
∑
rn

p
(
rn
∣∣yN

1

)
E
[
Xn

∣∣rn,yN
1

]
. (2.9)

Profiting from the special structure of CGOMSM, (RN
1 ,YN

1 ) is a Markov chain.

This allows the exact computation of p (rn |yn
1 ) in optimal filtering which is not

possible in classical Markov switching models, which needs to be approximated by

Monte-Carlo methods for example.

To make the derivation more legible, we rewrite the expression of CGPMSM
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(2.3) for better showing the dependences in the switching regimes to the form

Xn+1

Yn+1


︸ ︷︷ ︸

Zn+1

=

Fxx
n+1(Rn+1

n ) Fxy
n+1(Rn+1

n )

Fyx
n+1(Rn+1

n ) Fyy
n+1(Rn+1

n )


︸ ︷︷ ︸

Fn+1(Rn+1
n )

Xn

Yn


︸ ︷︷ ︸

Zn

+

ωx
n+1

ωy
n+1


︸ ︷︷ ︸

ωn+1

+

Nx
n+1(Rn+1

n )

Ny
n+1(Rn+1

n )


︸ ︷︷ ︸

Nz
n+1(Rn+1

n )

,

(2.10)

in which the noises follow the Normal distribution:

ωn+1 ∼ N

0,

Qxx
n+1(rn+1

n ) Qxy
n+1(rn+1

n )

Qyx
n+1(rn+1

n ) Qyy
n+1(rn+1

n )


︸ ︷︷ ︸

Qn+1(rn+1
n )

.

Apparently, the covariance of noises Qn+1(rn+1
n ) = Bn+1(rn+1

n )B⊺
n+1(rn+1

n ).

Nz
n+1(Rn+1

n ) is the item links to the means Mz
n and Mz

n+1:Nx
n+1(Rn+1

n )

Ny
n+1(Rn+1

n )


︸ ︷︷ ︸

Nz(Rn+1
n )

=

Mx
n+1(Rn+1)

My
n+1(Rn+1)


︸ ︷︷ ︸

Mz(Rn+1)

−Fn+1(Rn+1
n )

Mx
n(Rn)

My
n(Rn)


︸ ︷︷ ︸

Mz(Rn)

.

Now we start to compute the filtering and smoothing in order. Under

CGOMSM, we have Fyx
n+1(Rn+1

n ) = 0, and consequently
(
RN

1 ,YN
1

)
is Markov with

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
, (2.11)

and

p
(
yn+1

∣∣rn+1
n ,yn

)
= N

(
Fyy

n+1(Rn+1
n )yn + Ny

n+1(Rn+1
n ),Qyy

n+1(rn+1
n )

)
, (2.12)

so that we get the joint probability

p
(
rn, rn+1

∣∣yn+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn,rn+1

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
, (2.13)
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and thus

p
(
rn
∣∣rn+1,yn+1

1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
. (2.14)

According to (2.10), (Xn+1,Yn+1) is Gaus-

sian conditionally on rn+1
n and (xn,yn) with mean(

Fxx
n+1(rn+1

n )xn +Fxy
n+1(rn+1

n )yn + Nx
n+1, F

yy
n+1(rn+1

n )yn+1 + Ny
n+1

)
and variance-

covariance matrix Qn+1(rn+1
n ). This implies that p

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
is also

Gaussian with mean

Fxx
n+1(rn+1

n )xn +Hn+1

(
rn+1
n ,yn+1

n

)
, (2.15)

where

Hn+1

(
rn+1
n ,yn+1

n

)
= Fxy

n+1(rn+1
n )yn + Nx

n+1(rn+1
n ) +Qxy

n+1(rn+1
n )(

Qyy
n+1(rn+1

n )
)−1 (yn+1 −Fyy

n+1(rn+1
n )yn − Ny

n+1(rn+1
n )

),
(2.16)

and variance-covariance matrix

Π2
n+1

(
rn+1
n

)
= Qxx

n+1(rn+1
n )−Qxy

n+1(rn+1
n )

(
Qyy

n+1(rn+1
n )

)−1Qyx
n+1(rn+1

n ). (2.17)

Besides, as (Rn+1,Yn+1) and Xn are independent conditionally on (Rn,Yn) in

CGOMSM, we have E
[
Xn

∣∣rn+1
n ,yn+1

1

]
= E [Xn |rn,yn

1 ]. So the intermediate item

of filtering is given according to (2.8), by the iterative computation of

E
[
Xn+1

∣∣rn+1,yn+1
1

]
=
∑
rn

(
p
(
rn
∣∣rn+1,yn+1

1

)
[
Fxx

n+1(rn+1
n )E [Xn |rn,yn

1 ] +Hn+1

(
rn+1
n ,yn+1

n

)] ).
(2.18)

The covariance Cov
[
Xn+1X⊺

n+1

∣∣rn+1,yn+1
1

]
can be achieved by computing the
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correlation in a similar way:

E
[
Xn+1X⊺

n+1|rn+1,yn+1
1

]
=
∑
rn

(
p
(
rn
∣∣rn+1,yn+1

1

)
[
Fxx

n+1(rn+1
n )E [XnX⊺

n |rn,yn
1 ]
(
Fxx

n+1(rn+1
n )

)⊺
+

Fxx
n+1(rn+1

n )E [Xn |rn,yn
1 ]H

⊺
n+1

(
rn+1
n ,yn+1

n

)
+

Hn+1

(
rn+1
n ,yn+1

n

)
E [X⊺

n |rn,yn
1 ]
(
Fxx

n+1(rn+1
n )

)⊺
+

Π2
n+1

(
rn+1
n

)
+Hn+1

(
rn+1
n ,yn+1

n

)
H⊺

n+1

(
rn+1
n ,yn+1

n

)])
.

(2.19)

Finally, the filtering is calculated with E
[
Xn+1

∣∣rn+1,yn+1
1

]
and p (rn |yn

1 ). The

calculation of p (rn |yn
1 ) is no more repeated here, since it is the filtering of discrete

state-space PMC which has already been tackled in Chapter 1, Section 1.2.1.

Once we have the filtering, optimal smoothing (2.9) in CGOMSM is simple, as

we have E
[
Xn

∣∣rn,yN
1

]
= E [Xn |rn,yn

1 ] from

p
(
xn

∣∣rn,yN
1

)
=
p (xn |rn,yn

1 ) p
(
yN
n+1 |xn, rn,yn

1

)
p
(
yN
n+1 |rn,yn

1

) , (2.20)

and p
(
yN
n+1 |xn, rn,yn

1

)
= p

(
yN
n+1 |rn,yn

1

)
. Thus, smoothing can be calculated by

(2.9). Meanwhile, the calculation of p
(
rn
∣∣yN

1

)
is the smoothing of discrete state-

space PMC, which has been also derived in Chapter 1, Section 1.2.1.

2.1.3 Parameterization of stationary models

Stationary models are more widely used for unsupervised data restoration than

the time-varying ones. A CGPMSM is stationary if the distributions p
(
tn+1
n

)
=

p
(
xn+1
n , rn+1

n ,yn+1
n

)
of Tn+1

n do not depend on n, and thus are equal to p
(
x2
1, r21,y2

1

)
.

Let us write the latter as

p
(
x2
1, r21,y2

1

)
= p

(
r21
)
p
(
x2
1,y2

1

∣∣r21 ) . (2.21)
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Besides, according to p (r2 |x1, r1,y1 ) = p (r2 |r1 ) in (2.3), we have

p
(
x2,y2

∣∣r21 ) = p (x2,y2 |r2 ) ,

p
(
x1,y1

∣∣r21 ) = p (x1,y1 |r1 ) .
(2.22)

Finally, a stationary CGPMSM distribution is defined by p
(
r21
)

and Gaussian

distributions p
(
x2
1,y2

1

∣∣r21 ) on Rs+q defined by K mean vectors and K2 variance-

covariance matrices. Thus, for 1 ≤ j, k ≤ K, the model parameters are

pj,k = p (r1 = j, r2 = k) ; (2.23)

Mz
j =

E [X1|r1 = j]

E [Y1|r1 = j]

 =

Mx
j

My
j

 ; (2.24)

Γ
z2
1

j,k = E


Z1 − Mz

j

Z2 − Mz
k


Z1 − Mz

j

Z2 − Mz
k


⊺ ∣∣∣∣∣r1 = j, r2 = k


=

 Γz
j Σz

j,k(
Σz

j,k

)⊺
Γz
k

 ,
(2.25)

in which

Γz
j =

 Γxx
j Γxy

j(
Γxy
j

)⊺
Γyy
j

 ; Σz
j,k =

Σxx
j,k Σxy

j,k

Σyx
j,k Σyy

j,k

 . (2.26)

There we have two parameterizations of CGPMSM. We will call first

parametrization the following one:

1. The set Θ1 of K2 probabilities (pj,k)j,k∈Ω given by (2.23);

2. The set Θ2 of K mean vectors (Mz
j )j∈Ω given by (2.24);

3. The set Θ3 of K2 variance–covariance matrices given by (2.25).

Sets Θ2, Θ3 define the Gaussian distributions p (z1, z2 |r1 = j, r2 = k ). We will

denote this first parametrization as Θ1 = {Θ1,Θ2,Θ3}.
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In the second parametrization, we will keep the same Θ1 and Θ2, while Θ4 will

respect the regimes of the CGPMSM (2.10), and replace Θ3. More precisely, in

stationary CGPMSM, transitions of the triplet Markov chain do not depend on n,

so (2.10) can be rewritten as:

Xn+1

Yn+1


︸ ︷︷ ︸

Zn+1

=

Fxx(Rn+1
n ) Fxy(Rn+1

n )

Fyx(Rn+1
n ) Fyy(Rn+1

n )


︸ ︷︷ ︸

F(Rn+1
n )

Xn

Yn


︸ ︷︷ ︸

Zn

+

ωx
n+1

ωy
n+1


︸ ︷︷ ︸

ωn+1

+

Nx(Rn+1
n )

Ny(Rn+1
n )


︸ ︷︷ ︸

Nz(Rn+1
n )

, (2.27)

in which

ωn+1 ∼ N

0,

Qxx(rn+1
n ) Qxy(rn+1

n )

Qyx(rn+1
n ) Qyy(rn+1

n )


︸ ︷︷ ︸

Q(rn+1
n )

.

Q(rn+1
n ) = B(rn+1)B⊺(rn+1) and the item considering the means:

Nx(Rn+1
n )

Ny(Rn+1
n )


︸ ︷︷ ︸

Nz(Rn+1
n )

=

Mx(Rn+1)

My(Rn+1)


︸ ︷︷ ︸

Mz(Rn+1)

−F(Rn+1
n )

Mx(Rn)

My(Rn)


︸ ︷︷ ︸

Mz(Rn)

,

where Mz(Rn = j) = Mz
j in (2.24). Setting F j,k = F(rn = j, rn+1 = k) and

Qj,k = Q(rn = j, rn+1 = k), we can say that the model is also defined by the

parameters Θ1, Θ2 above, and by

4) The set Θ4 of K2 matrices (F j,k)j,k∈Ω and of K2 variance–covariance matrices

of noise (Qj,k)j,k∈Ω given by

F j,k =

Fxx
j,k Fxy

j,k

Fyx
j,k Fyy

j,k

 , Qj,k =

Qxx
j,k Qxy

j,k

Qyx
j,k Qyy

j,k

 . (2.28)

We will call second parametrization, the set Θ2 = {Θ1,Θ2,Θ4}.

Let us specify the links between Θ3 and Θ4. Classically, Θ4 can be obtained
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from Θ3 with

F j,k =
(
Σz

j,k

)⊺ (
Γz
j

)−1
; Qj,k = Γz

k −F j,kΣ
z
j,k. (2.29)

And, conversely, using Lyapunov equation [63], (2.29) implies that

Γz
j = argvec

[
(I −F j,j ⊗F j,j)

−1 vec (Qj,j)
]
;

Σz
j,k =

(
F j,kΓ

z
j

)⊺
,

(2.30)

in which argvec (·) is the inverse function of the operator vector vec (·) that stacks

the columns of a matrix and ⊗ represents the Kronecker product.

We display in Figures 2.1 and 2.2, the variable dependences of the general sta-

tionary CGPMSM and stationary CGLSSM respectively.

x1 x2Σxx
j,k

Γxy
j

y1 y2
Σyy

j,k

Γxy
k

Σ
xy
j,k

Σ yx
j,k

Figure 2.1: Dependence graph of
CGPMSM.

x1 x2Σxx
j,k

Γxy
j

y1 y2
Σyy

j,k

Γxy
k

Σ
xy
j,k

Σ yx
j,k

Figure 2.2: Dependence graph of
CGLSSM.

2.1.3.1 Reversible CGOMSM

If a CGPMSM is concurrently a CGOMSM, then in Θ4, the parameter Fyx
j,k = 0.

From (2.29), we can get the relation of elements in Θ3 of a CGOMSM that

Σxy
j,k = Γxy

j

(
Γyy
j

)−1
Σyy

j,k, (2.31)

see the variable dependence in Figure 2.3a. And if CGOMSM is reversible, then

the optimal restoration can be conducted forwardly and backwardly. Symmetrically,

the stationary reversible CGOMSM (CGOMSM-R) holds an extra condition that

Σyx
j,k = Σyy

j,k

(
Γyy
k

)−1 (
Γxy
k

)⊺
, (2.32)
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see the dependence in Figure 2.3b.

x1 x2Σxx
j,k

Γxy
j

y1 y2
Σyy

j,k

Γxy
k

Σ
xy
j,k

Σ yx
j,k

(a) General CGOMSM.

x1 x2Σxx
j,k

Γxy
j

y1 y2
Σyy

j,k

Γxy
k

Σ
xy
j,k

Σ yx
j,k

(b) Reversible CGOMSM.

Figure 2.3: Dependence graph of CGOMSM.

The interesting point in the reversibility of CGOMSM-R is that exact backward

filtering and smoothing can be calculated, which may be competitive comparing to

the forward one when we apply this model to any data.

2.1.4 Restoration of simulated stationary data

We present two experiments here to verify the property of CGOMSM-R (Series

1) and show the efficiency of both the exact forward and backward restorations

of CGOMSM when approximating the CGPMSM (Series 2). All results presented

here are averages of 100 independent experiments. The abbreviations of methods

used in the following experiments are

1. Opt-F: Optimal forward restoration knowing the true switches.

2. Opt-B: Optimal backward restoration knowing the true switches.

3. CGO-F: Exact forward CGOMSM restoration with unknown switches.

4. CGO-B: Exact backward CGOMSM restoration with unknown switches.

Each method includes filtering and smoothing.

Series 1

This experiment is conducted to test the equality of the forward and backward

exact restorations of CGOMSM-R.

Assume a simple case that Xn, Yn are both scalar, K = 2, probabilities (Θ1)

p1,1 = p2,2 = 0.45, p1,2 = p2,1 = 0.05, and means (Θ2) are all zero. The elements
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Table 2.1: Θ3 of series 1 (CGOMSM-R).

Γ
z2
1

j,k k = 1 k = 2

j = 1


1.00 0.30 0.10 0.12

0.30 1.00 0.12 0.40

0.10 0.12 1.00 0.30

0.12 0.40 0.30 1.00



1.00 0.30 0.50 0.27

0.30 1.00 0.45 0.90

0.50 0.45 1.00 0.50

0.27 0.90 0.50 1.00



j = 2


1.00 0.50 0.10 0.20

0.50 1.00 0.12 0.40

0.10 0.12 1.00 0.30

0.20 0.40 0.30 1.00



1.00 0.50 0.50 0.45

0.50 1.00 0.45 0.90

0.50 0.45 1.00 0.50

0.45 0.90 0.50 1.00


Table 2.2: Θ4 of series 1 (CGOMSM-R).

(j, k) (1, 1) (1, 2) (2, 1) (2, 2)

F j,k

[
0.07 0.10

0.00 0.40

] [
0.40 0.33

0.00 0.90

] [
0.05 0.09

0.00 0.40

] [
0.37 0.27

0.00 0.90

]

F bj,k

[
0.70 0.10

0.00 0.40

] [
0.04 0.19

0.00 0.40

] [
0.49 0.03

0.00 0.90

] [
0.37 0.27

0.00 0.90

]

Table 2.3: Restoration result in Series 1.

Obser-
vation

Filtering/Smoothing Filtering Smoothing
Opt-F/Opt-B CGO-F CGO-B CGO-F/CGO-B

Error Ratio / 0 0.203 0.263 0.155
MSE 1.201 0.829 0.834 0.836 0.833

set in the covariance matrix (Θ3) are: Γxx
j = Γyy

j = 1, Γxy
1 = 0.3, Γxy

2 = 0.5,

Σxx
j,1 = 0.1, Σyy

j,1 = 0.4, Σxx
j,2 = 0.5, Σyy

j,2 = 0.9, ∀j, k ∈ Ω = {1, 2}. Σxy
j,k and Σyx

j,k are

given by (2.31) and (2.32) respectively.

Parameters in Θ3 are reported in Table 2.1. We denote the parameters of

reverse model by adding a subscript b to the notation of parameters of forward

model. For example, the corresponding F j,k in reverse model to the original one is

F bj,k. Parameter F j,k (CGO-F) and F bj,k (CGO-B) in Θ4 in this Series are listed in

Table 2.2. We see no matter forwardly or backwardly, CGOMSM-R are CGOMSM

as both Fyx
j,k and F b

yx
j,k are zero, but the other parameters can be different.

10000 samples are simulated according to the parameter setting of this

CGOMSM-R and then restored according to the four filtering as well as the four
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smoothing algorithms. We evaluate the restoration performance by error ratio of

estimated switches comparing to the true ones and the Mean Square Error (MSE)

of the restored hidden states comparing to true states which computes

MSE =
N∑

n=1

(x̂n − xn)
2 /N. (2.33)

Results of 100 independent experiments are reported in Table 2.3. It verifies that

the smoothing results calculated from forward and backward directions are exactly

equal, as both of them use all the information from observation with p
(
xn

∣∣yN
1

)
.

Filtering results can be different. The forward filtering relies on p (xn |yn
1 ), while

backward filtering relies on p
(
xn

∣∣yN
n

)
. Turn to the optimal restorations knowing

the switches, under the special structure of CGOMSM, Xn and Yn+1 are inde-

pendent conditionally on Yn, which means that p
(
yN
n+1 |xn,yn

1

)
= p

(
yN
n+1 |yn

1

)
,

and it leads to p
(
xn

∣∣yN
1

)
= p (xn |yn

1 ). So the optimal filtering and smoothing

perform equivalently in CGOMSM knowing rN1 . Moreover, the optimal smoothing

of CGOMSM-R calculated forwardly and backwardly are equal, that is why all the

four optimal restorations give the same results. Trajectories of one experiment in

this Series is illustrated in Figure 2.4.

Series 2

This Series focuses on CGOMSM-based approximation for CGPMSM, to study

the performance of CGO-B and decide weather CGO-F or CGO-B is closer to a

given CGPMSM.

In this Series, data is simulated from the general CGPMSM with the same

parameters Θ1 and Θ2 set in Series 1, but with different Θ3 and Θ4. We consider

Fyx
j,k = 0.2 for CGOMSM, then Σxy

j,k is given from the relation of Θ3 and Θ4 (2.30)

by calculating

Σxy
j,k =

(
Fyx

j,kΓ
xx
j Γyy

j −Fyx
j,k

(
Γxy
j

)2
+Σyy

j,kΓ
xy
j

)
/Γyy

j .

This equation is only valid when both Xn and Yn are scalar, and therefore all

31



Chapter 2. Optimal and approximated restorations in Gaussian linear
Markov switching models

Figure 2.4: Trajectory example of Series 1 (50 samples).

parameters in Θ3 and Θ4 are scalars. For vector case, it should be more complex but

still computable. Moreover, we consider in this series, different difficult conditions

for reverse CGOMSM to approximate the CGPMSM by changing F b
yx
j,k from 0.0

to 0.3. The related parameter Σyx
j,k in Θ4 linked to this setting are calculated in a

similar way of the calculation of Σxy
j,k by

Σyx
j,k =

(
F b

yx
j,kΓ

xx
k Γyy

k −F b
yx
j,k

(
Γxy
k

)2
+Σyy

j,kΓ
xy
k

)
/Γyy

k .

.

For all four CGPMSMs with different F b
yx
j,k, and each individual experiment,

10000 samples are simulated to test the exact restoration methods of approximated

models. When using the CGOMSM to approximate the CGPMSM, the parameters

used for CGO-F is modified from the CGPMSM ones. In detail, we replace Σxy
j,k by

Σxy
j,k = Γxy

j

(
Γyy
j

)−1
Σyy

j,k to get Fyx
j,k = 0 according to (2.31) for exact restoration

of the approximated CGOMSM. Similarly, when using the reverse CGOMSM to

approximate the CGPMSM, the original Σyx
j,k is replaced according to (2.32) for the

32



Chapter 2. Optimal and approximated restorations in Gaussian linear
Markov switching models

exact restoration of approximated CGO-B.

The error ratio of estimated switches comparing to the true ones are listed in

Table 2.4. Under this parameter setting, the CGO-F performs better than CGO-B

for filtering, but for smoothing, CGO-B surpasses CGO-F.

Table 2.4: Error ratio of estimated RN
1 in Series 2.

F b
yx
j,k

Filtering Smoothing
CGO-F CGO-B CGO-F CGO-B

0.0 0.205 0.263 0.158 0.155
0.1 0.206 0.264 0.159 0.157
0.2 0.208 0.265 0.161 0.159
0.3 0.209 0.266 0.163 0.161

Table 2.5: MSE of estimated XN
1 in Series 2.

F b
yx
j,k

Filtering Smoothing
Opt-F Opt-B CGO-F CGO-B Opt-F/Opt-B CGO-F CGO-B

0.0 0.829 0.743 0.839 0.762 0.743 0.837 0.758
0.1 0.807 0.742 0.818 0.761 0.726 0.817 0.757
0.2 0.743 0.741 0.765 0.761 0.676 0.765 0.756
0.3 0.633 0.740 0.680 0.761 0.587 0.679 0.756

Table 2.5 shows the MSE of estimated hidden states from all forward and back-

ward methods. For optimal methods, knowing the switches, forward and backward

smoothing are equal. Noticed that in this experiment, Fyx
j,k were set to 0.2, when

F b
yx
j,k is less than 0.2, the CGO-B has large opportunity to be a better approx-

imation to CGPMSM, so that CGO-B gets better restoration than CGO-F. The

performance superiority of CGO-B over CGO-F is more prominent when F b
yx
j,k gets

closer to 0.0, and CGO-B becomes the exact restoration method when F b
yx
j,k = 0.

While Fyx
j,k = F b

yx
j,k = 0.2, the forward and backward performance are difficult to

compare from the complex dependence of the model. Nevertheless, it is reasonable

to have CGO-B better than CGO-F, as referring to the optimal restoration, Opt-B

is better than Opt-R. The smoothing of CGO-B has not too much improvements

from filtering with better estimation of switches since only p
(
rn
∣∣yN

n

)
is updated to

p
(
rn
∣∣yN

1

)
from filtering to smoothing, as in the same case of CGO-F for CGOMSM,

see (2.20).
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We may conclude that, both algorithms CGO-F and CGO-B are competitive

when approximating a given CGPMSM. Normally, if we have all Fyx
j,k > F b

yx
j,k, it

could be better to chose CGO-B to approximate the CGPMSM. But when it comes

to the case (most of the time) that in one covariance set, for several classes of (j, k),

Fyx
j,k > F b

yx
j,k, while the other classes hold the contrary, it is hard to predict which

of the two is the closer CGOMSM for a given CGPMSM. In our work presented by

the following Sections, when mention CGOMSM, we will only consider CGOMSM

forwardly, so as the corresponding CGO-F for restoration.

2.2 EM-based parameter estimation of stationary

CGPMSM

So far, we consider only the restorations of CGPMSM assuming that all the param-

eters are known. From this Section, we are going to cope with the unsupervised

restoration without knowledge of parameters. The primary problem we need to

solve under unsupervised case, is the parameter estimation problem. We are going

to deal the parameter estimation problem by using the classic EM principle, since

under Gaussian linear case, the derivatives are computable in M-Step and EM

shows more stability after converging comparing to ICE, see Figure 1.2a. However,

when applying EM principle, the exact computation of E
[
Xn

∣∣yN
1

]
given by (2.9)

is not possible under the general CGPMSM, which brings the out come that either

EΘ1

[
ZN
1

∣∣yN
1

]
or EΘ2

[
ZN
1

∣∣yN
1

]
(Θ1 and Θ2 are the two equivalent parameter sets

of CGPMSM defined in Section 2.1.3) in the E-step of the EM iterations can not

be computed in a reasonable time.

The main contribution of this Section is to propose a general estimation method.

Based on applying EM principle twice, this method allows one to estimate all model

parameters2 from all observation YN
1 = yN

1 only, with a certain number of possible

switches K. The estimated parameters could be used for smoothing which results

in unsupervised restoration.

Firstly, we notice that if RN
1 can be estimated, CGPMSM will degenerated

2Mx
j is always assumed to be known since it can not be recovered.
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A. EM for PMC

B. Switching EM

r̂N1

x̂N
1

yN
1 Start

C

Figure 2.5: DEM-CGPMSM scheme.

to a GPMM with switching parameters, which allows EM to work. Secondly, for

making the estimation of RN
1 possible, we approximate (RN

1 ,YN
1 ) to be a PMC. As

consequence, the conditional probability p
(
rn
∣∣yN

1

)
becomes computable through

EM principle, and we can obtain the estimation of RN
1 with suitable criterion.

The algorithm we propose for parameter estimation of CGPMSM is constructed

according to three successive steps as depicted in Fig. 2.5:

A. Assuming that
(
RN

1 ,YN
1

)
is a stationary PMC in CGPMSM, apply EM to

estimate the parameters of p (y1,y2 |r1 = j, r2 = k ) and θ̂1 ∈ Θ1 from obser-

vation yN
1 . Estimate RN

1 = r̂N1 with Bayesian MPM method based on the

estimated distribution p
(
rN1
∣∣yN

1

)
and get M̂y

j ∈ Θ2 with classical empirical

estimations (see (2.34)).

B. Apply EM the second time3 to estimate θ̂4 ∈ Θ4 or equivalently θ̂3 ∈ Θ3

from r̂N1 and θ̂2 ∈ Θ2 obtained in step A above.

C. Go back to step A, and use the estimated distribution of

p (y1,y2 |r1 = j, r2 = k ) given by θ̂2 and θ̂3 to initialize the EM in

step A.

The repeat of these three steps can be stopped with respect to some criterion. Let

us remark that the first two steps above are sufficient to estimate all the parameters,

however, the repeating of them by using result of step B as a new initialization of

the EM in step A may improve the final result.
3This second EM algorithm is called Switching EM with details in following Section.
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Let us detail the three steps which constitute the entire Double EM algorithm

we propose.

Step A is for estimating Θ1, Θ2 and getting a realization r̂N1 of RN
1 for con-

ducting the second EM later. By assuming (RN
1 ,YN

1 ) is a PMC, the EM algorithm

for estimating all parameters between RN
1 and YN

1 and getting the realize rN1 has

actually already depicted in Section 1.2.2.1 of previous Chapter. Tracing back to

1.2.2.1, we get θ̂1 from the last M-step (1.19), and realization of r̂N1 by applying

MPM criterion on ϕn (j) where j ∈ Ω from the last E-step. My
j in Θ2 is then

estimated from the observations classified by r̂N1 with

M̂y
j =

∑N
n=1 Yn (r̂n = j)

Card (j)
, (2.34)

in which Card (j) =
∑N

n=1 1 (r̂n = j). We should notice that the parameters of

p
(
yn,yn+1 |rn, rn+1

)
estimated from EM principle in Step A are not going to be

considered for the estimation of Θ3 and Θ4, although they show parts of the co-

variance in Θ3.

Step B is for estimating the remaining parameters Θ3 and Θ4 by applying EM

principle the second time, with hypothesis that θ̂2 and r̂N1 are the true ones. We

detail the second EM algorithm in next Section.

2.2.1 EM estimation for CGPMSM with known switches

Knowing Θ2 (the means) and the switches, a CGPMSM is actually a GPMM with

switching parameters. In this Section, we extend the constant parameter GPMM-

based EM algorithm [5] to the switching parameter case that we are dealing with

here. We call this extension “Switching EM”.

Under the assumption that rN1 is known. For the convenience of likelihood ex-

pression, let Θz be the parameter set of the likelihood, which is actually constituted

by the parameter sets defined in Section 2.1.3. The function to update Θz is

Θz(l+1) = arg max
Θz

L(Θz(l),Θz). (2.35)
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Index l here denotes the Switching EM iteration, and

L(Θz(l),Θz) = EΘz(l)
[
ln pΘz

(
zN1
) ∣∣rN1 ,yN

1

]
, (2.36)

is the complete data likelihood. The joint distribution pΘz
(
zN1
)

can be factorized

as

pΘz
(
zN1
)
= pMz

r1
,Γz

r1
(z1)

N−1∏
n=1

pΘ4 (zn+1|zn) , (2.37)

with
pMz

r1
,Γz

r1
(z1) = N

(
Mz

r1 ,Γ
z
r1

)
;

pΘ4 (zn+1|zn) = N
(
F(rn+1

n ) + Nz(rn+1
n ),Q(rn+1

n )
)
.

(2.38)

Mz
r1 ∈ Θ2 is given, while Γz

r1 ∈ Θ3, is linked to Θ4 with equation (2.29) and (2.30).

To avoid complex derivation when doing maximization, we remove pMz
r1

,Γz
r1
(z1)

from the complete data likelihood, since only one point of data makes nearly no

influence on the update of Θ4. So, in M-step we calculate

Θ
(l+1)
4 = arg max

Θ4

L(Θ
(l)
4 ,Θ4), (2.39)

which maximizes the simplified likelihood:

L(Θ
(l)
4 ,Θ4) = E

Θ
(l)
4

[
ln

N−1∏
n=1

pΘ4 (zn+1|zn)
∣∣rN1 ,yN

1

]
,

= E
Θ

(l)
4

[
N−1∑
n=1

ln pΘ4 (zn+1|zn)
∣∣rN1 ,yN

1

]
.

(2.40)

E-step:

With assumption that RN
1 = r̂N1 , Θ2 = θ̂2, and Θ4 = Θ

(l)
4 , the E-step calculates

p
(
xn

∣∣rN1 ,yN
1

)
of the switching GPMM model. p (xn |rn1 ,yn

1 ) is needed during its

calculation.

As no confusion will be introduced, let us remove the dependence notation re-

lated to r for simplification in the calculation of this E-step. Then the computation

is just similar to the computation of filtering and smoothing for a stationary GPMM

37



Chapter 2. Optimal and approximated restorations in Gaussian linear
Markov switching models

discussed in Section 1.3. So we can just follow the equations from (1.31) to (1.34)

to get in order p (xn |yn
1 ), and then the target of E-step p

(
xn

∣∣yN
1

)
.

The computation of initial p (x1 |y1 ) is trivial. p (xn |yn
1 ), ∀n ∈ 1, . . . , N are cal-

culated in a forward direction from p (xn |yn
1 ) = N

(
x̂n|n,Pn|n

)
to p

(
xn+1

∣∣yn+1
1

)
=

N
(
x̂n+1|n+1,Pn+1|n+1

)
through several intermediate variables:

x̂n|n+1 = x̂n|n +Kn|n+1ỹn+1|n;

Pn|n+1 = Pn|n −Kn|n+1Sn|n+1

(
Kn|n+1

)⊺
,

(2.41)

with

Sn|n+1 = Qyy +FyxPn|n (Fyx)⊺ ;

Kn|n+1 = Pn|n (Fyx)⊺
(
Sn|n+1

)−1
;

ŷn+1|n = Fyxx̂n|n +Fyyyn + Ny;

ỹn+1|n = yn+1 − ŷn+1|n.

(2.42)

Thus, we get

x̂n+1|n+1 = Anx̂n|n+1 + Cn;

Pn+1|n+1 = Q2 +AnPn|n+1 (An)
⊺ ,

(2.43)

where

An = Fxx −Qxy (Qyy)−1Fyx;

Cn = Qxy (Qyy)−1 yn+1 −Qxy (Qyy)−1 Ny

+
(
Fxy −Qxy (Qyy)−1Fyy

)
yn + Nx;

Q2 = Qxx −Qxy (Qyy)−1Qyx.

(2.44)

p
(
xn

∣∣yN
1

)
, ∀n ∈ 1, . . . , N is calculated in a backward direction from

p
(
xn+1

∣∣yN
1

)
= N

(
x̂n+1|N ,Pn+1|N

)
to p

(
xn

∣∣yN
1

)
= N

(
x̂n|N ,Pn|N

)
according to

x̂n|N = x̂n|n+1 +Kn|N (x̂n+1|N − x̂n+1|n+1);

Pn|N = Pn|n+1 +Kn|N (Pn+1|N − Pn+1|n+1)
(
Kn|N

)⊺
,

(2.45)
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in which Kn|N = Pn|n+1 (An)
⊺ (Pn+1|n+1

)−1. For later use, we compute also the

covariance between xn+1 and xn knowing yN
1 :

Cn+1,n|N = Pn+1|N
(
Kn|N

)⊺
. (2.46)

We should notice that this computation is of difference from the one in [5] and

[101], because there is a “shift” of the pair from (Xn,Yn−1) in the model handled

in these two articles to (Xn,Yn) in our model (2.27), and our model considers an

extra mean item Ny
n.

M-step:

For the calculation in M-step, we need to take back the notation of r, but the

explicit dependence on the current iteration l in (2.40) can be dropped, also, the

dependence on yN
1 in the notation is removed for brevity. Then, the log-likelihood

we need to maximize writes

L(Θ4) =

N−1∑
n=1

Ln

(
Θ4(rn+1

n )
)
, (2.47)

with

Ln

(
Θ4(rn+1

n )
)
= E [lnp (zn+1 |zn )] = E

[
lnp
(
z′n+1

∣∣z′n )] , (2.48)

in which

p
(
z′n+1

∣∣z′n ) = N
(
F(rn+1

n )z′n,Q(rn+1
n )

)
(2.49)

and 
z′n+1 = zn+1 − Mz(rn+1),

z′n = zn − Mz(rn).
(2.50)

We define covariances by

Cz′
n,z′

n = E
[
z′nz′tn|yN

1

]
=

x̂n|N − Mx(rn)

yn − My(rn)


x̂n|N − Mx(rn)

yn − My(rn)


t

+

Pn|N 0

0 0

 , (2.51)
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Cz′
n+1,z′

n = E
[
z′n+1z′tn|yN

1

]
=

x̂n+1|N − Mx(rn+1)

yn+1 − My(rn+1)


x̂n|N − Mx(rn)

yn − My(rn)


t

+

Cn+1,n|N 0

0 0

 .
(2.52)

Then, taking the derivative of the likelihood (2.47) with respect to each F j,k, with

∀j, k ∈ Ω. We have

∂L(Θ4)

∂F j,k
=
∂
∑N−1

n=1 Ln

(
Θ4(rn+1

n )
)

∂F j,k

=
∂
∑N−1

n=1 δn (j, k)Ln (Θ4(rn = j, rn+1 = k))

∂F j,k
,

(2.53)

where δn (j, k) denotes the function 1 (rn = j, rn+1 = k). Similarly, we take the

derivative of the likelihood with respect to each Qj,k

∂L(Θ4)

∂F j,k
=
∂
∑N−1

n=1 Ln

(
Θ4(rn+1

n )
)

∂Qj,k

=
∂
∑N−1

n=1 δn (j, k)Ln (Θ4(rn = j, rn+1 = k))

∂Qj,k
,

(2.54)

Making both (2.53) and (2.54) equals to zero, we can get the update expression of

F j,k. Qj,k in Θ4 given by

F̂ j,k = C̃
z′
n+1,z′

n

j,k

(
C̃

z′
n,z′

n
j,k

)−1
;

Q̂j,k =
1

Card (j, k)

(
C̃

z′
n+1,z′

n+1

j,k − F̂ j,k

(
C̃

z′
n+1,z′

n

j,k

)⊺)
,

(2.55)
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where Card (j, k) =
∑N−1

n=1 δn (j, k) and

C̃
z′
n,z′

n
j,k =

N−1∑
n=1

δn (j, k)C
z′
n,z′

n ;

C̃
z′
n+1,z′

n

j,k =

N−1∑
n=1

δn (j, k)C
z′
n+1,z′

n ;

C̃
z′
n+1,z′

n+1

j,k =

N−1∑
n=1

δn (j, k)C
z′
n+1,z′

n+1 .

(2.56)

The details of all derivatives in M-step is available in Appendix A.

The log-likelihood L
(
Θz;yN

1

)
is given by

E
[
lnp
(
yN
1 |Θz )] =− 1

2

N−1∑
n=1

{
qln(2π) + ln|Sn|n+1|+(

ỹn+1|n

)⊺ (
Sn|n+1

)−1
(

ỹn+1|n

)}
,

(2.57)

with q denoting the dimension of Yn.

We provide here an experiment on simulated data to test the robustness of the

proposed Switching EM under the assumption that true rN1 is known, as Switching

EM is an indispensable part of the entire Double EM algorithm for estimating the

parameters Θ4 and Θ3 parallelly.

Consider a simple case of stationary CGPMSM, where s = q = 1, Ω = {1, 2},

and the variance–covariance matrices is of the form:

Γ
z2
1

j,k =



1 bj aj,k dj,k

bj 1 ej,k cj,k

aj,k ej,k 1 bk

dj,k cj,k bk 1


. (2.58)

with ∀j, k ∈ Ω. All variance are ones. The joint probabilities Θ1 is set by p1,1 =

p2,2 = 0.45, p1,2 = p2,1 = 0.05; all means in Θ2 set to be zero and assumed known;

In Θ3: b1 = 0.3, b2 = 0.5, aj,1 = 0.1, aj,2 = 0.5, cj,1 = 0.4, cj,2 = 0.9, ej,1 = 0.75,

ej,2 = 0.33, while dj,1 and dj,2 varies to make Fyx
j,k in Θ4 which is the unique value
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defined later using the relationship between Θ3 and Θ4 in (2.29) varies between

0.05 and 0.40 (see Figure 2.6b)

N = 10000 samples of TN
1 =

(
XN

1 ,RN
1 ,YN

1

)
are simulated with a ranging

value of all Fyx
j,k = Fyx from 0.05 to 0.40 to show the behavior of the Switching

EM on CGPMSM with respect to the optimal smoothing for comparison. Larger

Fyx means that the CGPMSM specified here is less similar to a CGOMSM, which

implies that the pair (RN
1 ,YN

1 ) is less like a PMC. This remark will be of interest

in unsupervised smoothing.

The initialization of Θ4
4 are always set to be the same through all experiments

as

F (0)
j,1 =

−0.5 1.0

0.2 0.5

 ; F (0)
j,2 =

0.5 0.1

0.2 0.5

 ;

Q(0)
j,k =

0.5 0.0

0.0 0.5

 .
L = 500 iterations are set for Switching EM to converge, and all results are averages

of 100 independent experiments. Figure 2.6a draws the likelihoods (first 100 EM

iterations) of five different Fyx values from Switching EM calculated by (2.57), they

are all monotone increasing and convergent. Specifically in the case Fyx = 0.05,

the likelihood converged fastest as indicated in Fig. 2.6a, but the MSE hasn’t been

stable even at the last iteration in fact. This behavior shows that when Fyx becomes

smaller (which means that the model gets closer to the CGOMSM) it is easier to

get likelihood converged but get worse parameter estimation. The extreme case is

obtained when Fyx = 0, the likelihood can be maximized (converged) within one

step, and only parameters Fyy
j,k and Qyy

j,k can be estimated from the maximization.

This point will be discussed later in Section 2.2.3.

The restoration result is illustrated in Figure 2.6b. Over all, it shows a good

performance of Switching EM based restoration compared to the optimal result

4Initializations are set not too far from the true parameters, to make the local maximum ap-
proached from EM more possibly to be the global one.
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(a) Likelihood evolution w.r.t. EM iterations (first 100 iterations).

(b) MSE of restoration.

Figure 2.6: Experiment of Switching EM (8 different values of Fyx).
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knowing all the parameters. The restoration performs better and steadier with

an increasing value of Fyx as indicated by the blue shadow which shows the 95%

confidence interval of the result of Switching EM.

The true and estimated parameters under Fyx = 0.40 in this series are displayed

as an example in Table 2.6 and Table 2.7

Table 2.6: True and estimated Θ4 in experiment of Switching EM (Fyx = 0.40).

R2
1 (1, 1) (1, 2) (2, 1) (2, 2)

F true

[
−0.137 0.791

0.400 0.280

] [
0.440 0.202

0.400 0.780

] [
−0.367 0.933

0.400 0.200

] [
0.444 0.111

0.400 0.700

]

F (500)
SwitchingEM

[
−0.220 0.956

0.289 0.358

] [
0.357 0.072

0.288 0.857

] [
−0.382 1.059

0.271 0.313

] [
0.321 0.011

0.263 0.816

]

QTrue

[
0.420 0.050

0.050 0.694

] [
0.713 0.040

0.040 0.044

] [
0.337 0.110

0.110 0.720

] [
0.741 0.067

0.067 0.070

]

Q(500)
SwitchingEM

[
0.586 −0.132

−0.132 0.716

] [
0.611 0.069

0.069 0.064

] [
0.481 −0.145

−0.145 0.782

] [
0.720 0.157

0.157 0.140

]

Table 2.7: True and estimated Θ3 in experiment of Switching EM (Fyx = 0.40).

Γz
j Γz

1 Γz
2

True

[
1.000 0.300

0.300 1.000

] [
1.000 0.500

0.500 1.000

]

Switching EM (500)

[
1.518 0.142

0.142 1.003

] [
0.810 0.319

0.319 0.995

]

Switching EM (0)

[
1.411 0.251

0.251 0.809

] [
0.696 0.146

0.146 0.743

]

Σz
j,k Σz

1,1 Σz
1,2 Σz

2,1 Σz
2,2

True

[
0.100 0.484

0.750 0.400

] [
0.500 0.634

0.333 0.900

] [
0.100 0.500

0.750 0.400

] [
0.500 0.750

0.333 0.900

]

Switching EM (500)

[
−0.199 0.491

0.927 0.401

] [
0.553 0.560

0.123 0.900

] [
0.027 0.320

0.932 0.398

] [
0.264 0.474

0.114 0.896

]

Switching EM (0)

[
−0.455 0.408

0.683 0.455

] [
0.730 0.408

0.206 0.455

] [
−0.202 0.212

0.670 0.401

] [
0.363 0.212

0.147 0.401

]

True parameters Θ4 are reported in Table 2.6 in row “F true ”, “Qtrue” and

the equivalent Θ3 are in Table 2.7 of row “True”, while rows “F (500)
SwitchingEM”,

“Q(500)
SwitchingEM” in Table 2.6, and “SwitchingEM (500)” in Table 2.7 record the es-

timated Θ4 and Θ3 through Switching EM with 500 iterations. “SwitchingEM (0)”
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shows the initial parameters at the beginning of the Switching EM. Comparing to

the initialization, the parameters estimated through Switching EM are closer to the

true ones (more prominent in Θ4).

2.2.2 Overall double-EM algorithm

So far, we have explained the Step A and Step B, and actually these two steps

are already enough to estimate all the parameters. However, if we consider an

improvement of initialization in Step A, the entire Double EM is then constructed

by applying Step A, Step B sequentially and a feedback Step C, which can update

the initialization of the parameters for Step A, so that we can iterate these three

steps several loops to get better estimation.

In detail, what the feedback Step C does, is to return θ̂1, θ̂2 given by Step A,

and the variance–covariance of p (y1,y2 |r1 = j, r2 = k ) extracted from θ̂3 given by

Step B, to be the initialization of the EM for discrete state-space PMC in next

loop’s Step A to replace the K-means initialization, which may cause failure.

The entire Double EM parameter estimation algorithm is summarized in Algo-

rithm 1.

2.2.3 Discussion about special failure case of double-EM algorithm

The Double EM assumes that (RN
1 ,YN

1 ) is Markovian to approach rN1 . When

the model comes to be CGOMSM with Yn+1 = Fyy(Rn+1
n )Yn (see (2.10)) and

(RN
1 ,YN

1 ) truly Markovian, it seems it naturally possesses the assumption that

we made for estimating the switches, but one should look out that, Switching EM

becomes invalid when dealing with the parameter estimation of CGOMSM. Let us

explain this point with details.

The general EM tries to find the maximum likelihood, where the model depends

on unobserved latent variables, by alternating E-step and M-step through iterations.

But under the case that Fyx
j,k = 0, EM becomes invalid, since parameters defining

p
(
xN
1

∣∣yN
1

)
have no influence on p

(
yN
1

)
. Here we give a simple proof on constant

parameter GPMM that F(Rn+1
n ) is simplified to F , thus, Fyx

j,k is simplified to Fyx
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Algorithm 1 Double EM
Inputs:

yN
1 , K.

Initialize:
θ̂h =

{
p̂j,k, M̂

y2
1

j,k, Γ̂
y2
1

j,k

}
, θ̂4 =

{
F̂ j,k, Q̂j,k

}
.

Compute:
for fb = 0 to FB do

for i = 0 to I do
1) EM for discrete state-space PMC.
E-step: calculate ϕn (j), ψn (j, k) in (1.7), (1.8) by (1.11)-(1.14).
M-step: update θ̂1 = p̂j,k, M̂y2

1
j,k and Γ̂

y2
1

j,k by (1.19).
Estimate M̂y

j of θ̂2 from (2.34), and r̂n|N from ϕn (j) with MPM criterion.
for l = 0 to L do

2) Switching EM.
E-step: calculate x̂n|N , Pn|N , Cn+1,n|N with (2.41)-(2.46).
M-step: get update of θ̂4 with (2.55).

Calculate θ̂3 =
{
Γ

z2
1

j,k

}
through (2.30) from estimated θ̂4,

and extract Γ
y2
1

j,k as feedback to EM for discrete state-space PMC.
Outputs:

θ̂1, θ̂2, θ̂3, θ̂4
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and so as the other parameters as it is the same case in CGPMSM. The likelihood

of observed data is:

p
(
yN
1 |Θz ) = ∫

xN
1

p
(
xN
1 ,yN

1 |Θz ) dxN
1 , (2.59)

as we consider the general case of GPMM, Θz = {Θ0,Θ4}. Θ0 represents the

parameter of p (x1,y1), and Θ4 = {F ,Q}. While specially with Fyx = 0, we have

p
(
yn+1 |yn

)
= N (Fyyyn,Qyy). The likelihood can be extended and simplified as:

∫
xN
1

{
p (x1,y1 |Θ0 )

N∏
n=1

p
(
xn+1,yn+1 |xn,yn,Θ4

)}
dxN

1

=

∫
xN
1

{
p (x1 |y1,Θ0 ) p (y1 |Θ0 )

N∏
n=1

[
p (xn+1 |xn,yn,Θ4 ) p

(
yn+1 |yn,Fyy,Qyy )]} dxN

1

=p (y1 |Θ0 )

N∏
n=1

p
(
yn+1 |yn,Fyy,Qyy )

∫
xN
1

{
p (x1 |y1,Θ0 )

N∏
n=1

p (xn+1 |xn,yn,Θ4 )

}
dxN

1︸ ︷︷ ︸
=1

.

(2.60)

It means that when Fyx = 0, we meet a special case where the parameters

other than Fyy, Qyy in F , Q are not identifiable through maximum likelihood.

But this extreme case can be rare since usually YN
1 is a noised process of XN

1 .

2.3 Unsupervised restoration in CGPMSM

This section aims to find a proper restoration approach for CGPMSM, so that we

can get an unsupervised restoration method for the general CGPMSM by fusing

the proposed Double EM algorithm for parameter estimation, and the restoration

approach.
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2.3.1 Two restoration approaches in CGPMSM

Once having the parameters of the switching model, one wants to restore the hid-

den states. As described before, optimal restoration is not feasible in CGPMSM,

and a common way is to use MCMC methods to get its approximation. We de-

rive the widely used particle filter for CGPMSM in Appendix B. To reduce the

calculation burden of sampling method, here, we avoid the MCMC methods, and

discuss two approaches based on the assumption that (RN
1 ,YN

1 ) is Markovian.

First switching model of this kind called “Conditionally Markov Switching Hid-

den Linear Models”(CMSHLMs) proposed in [115]. Subsequently, it has been

shown that CGOMSMs which are not only particular CGPMSMs but also par-

ticular CMSHLMs, can be quite close to CGLSSMs [36], [112].

Tracing back to the E-step of Switching EM, we now reconsider the rN1 in all

conditional hidden state probabilities, as rN1 is no more assumed to be known.

Let TN
1 =

(
XN

1 ,RN
1 ,YN

1

)
be a CGPMSM, (2.2) implies:

p
(
xn

∣∣yn
1 , rn+1

1

)
=
p (xn |yn

1 , rn1 ) p (rn+1 |xn,yn
1 , rn1 )

p (rn+1 |yn
1 , rn1 )

= p (xn |yn
1 , rn1 ) .

(2.61)

Then, one step forward calculation conditionally on (rn+1
n ) is possible. As from

p (xn |yn
1 , rn1 ) = p

(
xn

∣∣yn
1 , rn+1

1

)
= N

(
x̂n|n(rn1 ),Pn|n(rn1 )

)
, (2.62)

we can calculate forwardly

p
(
xn+1

∣∣yn+1
1 , rn+1

1

)
= N

(
x̂n+1|n+1(rn+1

1 ),Pn+1|n+1(rn+1
1 )

)
= N

(
Frn+1

n

{
x̂n|n(rn1 ),Pn|n(rn1 )

})
.

(2.63)

Frn+1
n

{·} notes the current forward transform function for the mean and variance

from (2.62) to (2.63), which is the same as from (2.41) to (2.43).

Also, as p
(
xn

∣∣yN
1 , rn1

)
= p

(
xn

∣∣yN
1 , rn+1

1

)
, we have one step backward calcula-
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tion similarly from

p
(
xn+1

∣∣yN
1 , rn+1

1

)
= N

(
x̂n+1|N (rn+1

1 ),Pn+1|N (rn+1
1 )

)
, (2.64)

we get

p
(
xn

∣∣yN
1 , rn1

)
= N

(
x̂n|N (rn1 ),Pn|N (rn1 )

)
= N

(
Brn+1

n

{
x̂n+1|N (rn+1

1 ),Pn+1|N (rn+1
1 )

})
.

(2.65)

with Brn+1
n

{·} denotes the current backward transformation function for the mean

and variance from (2.64) to (2.65), which is the same as the calculation (2.45),

paying attention that (x̂n|n(rn1 ),Pn|n(rn1 )) are considered as known constants in

Brn+1
n

{·}.

For filtering, notice that conditionally on Rn+1
n = rn+1

n , Xn+1 depend on

(Xn,Yn+1
n ) linearly Gaussian, the linear forward transformation for mean and

variance from p
(
xn

∣∣yn+1
1 , rn+1

n

)
to p

(
xn+1

∣∣yn+1
1 , rn+1

n

)
is the same as from

p
(
xn

∣∣yn+1
1 , rn+1

1

)
to p

(
xn+1

∣∣yn+1
1 , rn+1

1

)
.

In CGOMSM, (RN
1 ,YN

1 ) is Markov, then we have:

p
(
xn

∣∣yn+1
1 , rn+1

n

)
= p (xn |yn

1 , rn ) ,

p
(
xn

∣∣yn+1
1 , rn+1

1

)
= p (xn |yn

1 , rn1 ) .
(2.66)

This is the way of CGOMSM approximation, but if we need to use the original

parameters of the model which is not with Fyx = 0, then (2.66) may be too arbi-

trary. Here we adopt the transformation of mean and variance from p (xn |yn
1 , rn )

to p
(
xn

∣∣yn+1
1 , rn+1

n

)
the same as p (xn |yn

1 , rn1 ) to p
(
xn

∣∣yn+1
1 , rn+1

1

)
, which means

that we adopt

{
x̂n+1|n+1(rn+1

n ),Pn+1|n+1(rn+1
n )

}
= Frn+1

n

{
x̂n|n(rn),Pn|n(rn)

}
. (2.67)

The mean and variance approach forwardly of p
(
xn+1

∣∣yn+1
1 , rn+1

)
calculated from
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p (xn |yn
1 , rn ) is that

{
x̂n+1|n+1(rn+1),Pn+1|n+1(rn+1)

}
=
∑
rn

p
(
rn
∣∣rn+1,yn+1

1

)
Frn+1

n

{
x̂n|n(rn),Pn|n(rn)

}
.

(2.68)

Although p (xn |yn
1 , rn ) is actually non-Gaussian. So finally, the filtering is approx-

imated by

x̂n+1|n+1 =
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
x̂n+1|n+1(rn+1). (2.69)

For smoothing, if Fyx = 0, we easily have p
(
xn

∣∣yN
1 , rn

)
= p (xn |yn

1 , rn ).

But as Fyx is none zero, we need to approximate p
(
xn

∣∣yN
1 , rn

)
. Similarly

to (2.67), we approximate the backward transformation for mean and variance

from p
(
xn+1

∣∣yN
1 , rn+1

)
to p

(
xn

∣∣yN
1 , rn+1

n

)
by the same transformation as from

p
(
xn+1

∣∣yN
1 , rn+1

1

)
to p

(
xn

∣∣yN
1 , rn+1

1

)
, thus

{
x̂n|N (rn+1

n ),Pn|N (rn+1
n )

}
= Brn+1

n

{
x̂n+1|N (rn+1),Pn+1|N (rn+1)

}
, (2.70)

but with constants x̂n|n(rn),Pn|n(rn) calculated in filtering process in place of

x̂n|n(rn1 ),Pn|n(rn1 ) in Brn+1
n

{·}. then we have the mean and variance approach

of p
(
xn

∣∣yN
1 , rn

)
calculated from p (xn |yn

1 , rn ) and p
(
xn+1

∣∣yN
1 , rn+1

)
that

{
x̂n|N (rn),Pn|N (rn)

}
=
∑
rn+1

p (rn+1 |rn )Brn+1
n

{
x̂n+1|N (rn+1),Pn+1|N (rn+1)

}
.

(2.71)

Finally, the smoothing is approached by

x̂n|N =
∑
rn

p
(
rn
∣∣yN

1

)
x̂n|N (rn). (2.72)

The approximation proposed above is milder than assuming the model to be

CGOMSM (it considers the information of yN
n+1 in p

(
xn

∣∣rn,yN
1

)
while CGOMSM

holds that p
(
xn

∣∣rn,yN
1

)
= p (xn |rn,yn

1 ).) and is equal to optimal one when the

model is actually a CGOMSM. To conclude, we need to approximate three items

still: p
(
rn+1

∣∣yn+1
1

)
, p
(
rn
∣∣rn+1,yn+1

1

)
, p
(
rn
∣∣yN

1

)
. Here, we consider two ways
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to carry out the approximation. One way is based on parameter modification to

CGOMSM with known transition probabilities. The other way is based on EM with

unknown transition probabilities.

2.3.1.1 Approximation based on parameter modification

We modify the parameters of the original CGPMSM to be CGOMSM, according

to Σxy
j,k

′
= Γxy

j

(
Γyy
j

)−1
Σyy

j,k, then, (RN
1 ,YN

1 ) is Markov chain and

p
(
yn+1

∣∣rn+1
n ,yn

)
= N (Fyx′(rn+1

n ),Qyy′(rn+1
n )), (2.73)

where Fyx′(rn+1
n ) and Qyy′(rn+1

n ) are calculated from the modified variance-

covariance matrix with Σxy
j,k replaced by Σxy

j,k
′. The three key probabilities of

p
(
rN1
∣∣yN

1

)
can be computed iteratively like under model discrete state-space PMC.

As p (rn+1 |rn,yn ) = p (rn+1 |rn ), we have

p
(
rn+1,yn+1 |rn,yn

)
= p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
. (2.74)

Besides, since (RN
1 ,YN

1 ) is Markov, we have

p
(
rn, rn+1

∣∣yn+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn,rn+1

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
, (2.75)

and thus,

p
(
rn+1

∣∣yn+1
1

)
=
∑
rn

p
(
rn, rn+1

∣∣yn+1
1

)
; (2.76)

p
(
rn
∣∣rn+1,yn+1

1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn
p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )
. (2.77)

To iteratively calculate p
(
rn
∣∣yN

1

)
, β(rn) =

p(yN
n+1|rn,yn )

p(yN
n+1|yn

1 )
is introduced with β(rN ) =

1. Then

β(rn) =

∑
rn+1

β(rn+1)p
(
rn+1,yn+1 |rn,yn

)∑
rn,rn+1

p (rn |yn
1 ) p

(
rn+1,yn+1 |rn,yn

) , (2.78)

and

p
(
rn
∣∣yN

1

)
= p (rn |yn

1 )β(rn). (2.79)
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2.3.1.2 Approximation based on EM

With EM, we can also estimated the three items under the same assumption that(
RN

1 ,YN
1

)
is a PMC. Since the knowledge of transition probabilities of RN

1 as well as

the parameters of p
(
yn,yn+1 |rn, rn+1

)
is not required by EM, this approximation

is more suitable for unsupervised case. It can be applied for smoothing after we get

the parameters from Double EM, since modification of the estimated parameters

to be CGOMSM can meet non-positive definite matrix problem (while a covariance

matrix should be always positive semi-definite).

Still, we take (RN
1 ,YN

1 ) as a Markov chain. Different from the previ-

ous approximation proposed, we calculate p
(
rn+1,yn+1 |rn,yn

)
no more from

p
(
yn+1

∣∣rn+1
n ,yn

)
which follows the modified parameters as (2.73), but with equa-

tion

p
(
rn+1,yn+1 |rn,yn

)
=
p
(
yn,yn+1 |rn, rn+1

)
p (rn, rn+1)∑

rn+1
p (yn |rn, rn+1 ) p (rn, rn+1)

(2.80)

in which, p
(
yn,yn+1 |rn = j, rn+1 = k

)
= N

{
M̂j,k, Γ̂j,k

}
, j, k ∈ Ω is estimated

from the last M-step (1.19) of the EM algorithm.

This EM approach might be considered as a modification of Γyy
j and Σyy

j,k in

the variance-covariance matrix, but the modified value is learned by EM. Just for a

mention, as alternative methods of EM, SEM or ICE works also for approximation.

Here we discuss the performance of these two restoration approaches through

an experiment considering supervised case. The model and parameters set in this

experiment is the same as the former experiment we made in Section 2.2.1 for

Switching EM.

All Fyx
j,k with ∀j, k ∈ Ω are set to be equal represented by Fyx, and Fyx

is varied from 0.00 to 0.40 to adjust the similarity of CGPMSM to CGOMSM.

100 iteration is set for EM to converge when doing the EM approach, and 200

particles is set for particle filter. For comparing the filtering performance of all

methods, we simulate 200 samples from the model, while for smoothing we take

10000 samples, as the EM based approach requires enough amount of samples to find

suitable p
(
yn,yn+1 |rn, rn+1

)
of the assumed pairwise (RN

1 ,YN
1 ). The performance
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of EM approach only applied on smoothing. Besides, the particle smoother is not

considered here5.

Shortly, we call the two approximation methods proposed above:

1) CGO-Appro: Restoration approach with partial approximation based on pa-

rameter modified to CGOMSM, using all parameters (as described in Section

2.3.1.1);

2) EM-Appro: Restoration approach with partial approximation based on EM

without making use of the transition probability of switches (as described in

Section 2.3.1.2).

To better understand the performance of these two approximations, we also do

another approach:

3) Rough-Appro: Restoration approach with partial approximation like CGO-

Appro, but with Fyx′(rn+1
n ) and Qyy′(rn+1

n ) in (2.73) roughly replaced by

the original Fyx(rn+1
n ) and Qyy(rn+1

n ).

These three approaches are compared to several existing restoration methods

listed bellow, which may appear also in the other experiments in later Sections.

• OF: Optimal filtering knowing true switches and true parameters;

• PF: Particle filter for CGPMSM;

• OFA: Optimal filtering approximation with unknown switches and true pa-

rameters modified to become a CGOMSM using equation (2.31) proposed

in [1]6.

Correspondingly, the abbreviations of smoothing methods are represented by

changing the “F” to “S”, e.g. “OS” represents Optimal smoothing; “OSA” repre-

sents optimal smoothing extended from “OFA”.
5we have not yet found a proper way to sample p

(
rN
1

∣∣yN
1

)
for smoothing, direct extension of

the distribution p
(
rN
1

∣∣yN
1

)
estimated from particle filter suffers the sample depletion and gets very

bad result.
6which actually has been used once under the name of CGO-F in Section 2.1.4.
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(a) Error ratio of estimated switches.

(b) MSE of estimated hidden state.

Figure 2.7: Experiment of CGPMSM filtering approaches (9 different values of
Fyx).
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Figure 2.7 shows the result of the methods listed above. The MSE of observation

of the series is around 1.2.

See the error ratio of estimated rN1 in Fig. 2.7a, OFA and CGO-Appro perform

exactly the same, as their approximation process on p
(
rn
∣∣yN

1

)
are the same. They

get competitive error ratio as PF, and when Fyx is smaller (model is more like

CGOMSM), CGO-Appro and OFA can perform better than PF as when Fyx = 0

they are equal and both are optimal restoration. When data is far from model

CGOMSM, PF works better as it has no approximation related to CGOMSM.

Rough-Appro is affected a lot by the value of Fyx, when the model is going far

from CGOMSM, it can not recover RN
1 appropriately.

The MSE of filtering result is displayed in Fig. 2.7b, the methods proposed with

partial approximation and OFA perform nearly the same. Still, Rough-Appro gets

worse result when Fyx becomes larger. PF can be considered as optimal filter when

rN1 is unknown once there are enough particles (under this experimental setting, we

found empirically PF behaves asymptotically for 200 particles). Thus the proposed

CGO-Appro is quite efficient as it performs quite close to PF but much less time

consuming. Implemented with Python 3.6 on a 3.7GHz CPU, the CGO-Appro takes

around 0.36 seconds while PF takes 36.20 seconds.

Turning to the smoothing result, the performance of different methods becomes

more prominent. Figure 2.8a shows that with unknown transition matrix, EM-

Appro performs little worse than OSA and CGO-Appro, and also the iteration of

EM requires sufficient sample numbers. See the MSE of smoothing result in Fig.

2.8b, the approach methods proposed who still use the original parameters can

maintain the same tendency as the OS, while OSA can not keep this tendency.

The main reason is that, the assumption Fyx = 0 through out the restoration

process of OSA means that p
(
xn

∣∣rn,yN
1

)
is equal to p (xn |rn,yn

1 ), thus, yN
n+1

only brings new information in p
(
rn
∣∣yN

1

)
for smoothing comparing to filtering.

This point has been explained in Section 2.1.4. The two approximation methods

proposed here, although still partially based on the assumption that
(
RN

1 ,YN
1

)
is

Markovian, adopt milder approximation for p
(
xn

∣∣rn,yN
1

)
, in which the information

given by yN
n+1 is considered. CGO-Appro gets exactly the same result as OSA
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(a) Error ratio of estimated switches.

(b) MSE of estimated hidden state.

Figure 2.8: Experiment of CGPMSM smoothing approaches (9 different values of
Fyx).
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when Fyx = 0, and then performs better when the model becomes less likely

to a CGOMSM. Rough-Appro behaves the same, but not so well as CGO-Appro

when Fyx increases. Meanwhile, without relying on modification of the variance-

covariance matrix by fixed value, EM-Appro has almost the same tendency as CGO-

Appro when Fyx increases, and in fact, no artificial modification of the elements

in variance-covariance matrix can avoid the non-positive definite problem, which

makes sense when doing smoothing. Regarding the time consumption of the two

proposed method in this experiment, CGO-Appro takes around 26 seconds, while

EM-Appro takes around 3 minutes because of the EM learning process. However,

EM-Appro is still much less time-consuming comparing to particle methods.

We can conclude from this series of experiment that, normally, CGO-Appro

works better than OSA, which shows that the partial approach we made in proposed

method can be a milder one comparing to CGOMSM approach (when Fyx = 0 they

are equal to each other). When it comes to smoothing case, with enough samples,

EM-Appro can get also appropriate performance, especially when the model is far

from CGOMSM.

2.3.2 Double EM based unsupervised restorations

Having both the strategies for parameter estimation and methods for approaching

restoration, we can now study the way to accomplish the unsupervised restoration

of the general CGPMSM. This Section of experiment aims to verify the perfor-

mance of the unsupervised methods, which combines the Double EM with different

restoration approaches, and also analyzes some impacts that can influent their per-

formance.

The parameter estimation and unsupervised restoration methods, which will

appear in the following experiments are listed bellow with their abbreviations. To

avoid duplication, we omit the definitions of the methods which has been appeared

in previous experiments, so as their abbreviations.

Two Double EM methods with different feedback times:

1. DEM (FB = 0): Double EM without feedback for parameter estimation;

57



Chapter 2. Optimal and approximated restorations in Gaussian linear
Markov switching models

2. DEM (FB = 1): Double EM with one feedback for parameter estimation.

One extra supervised restoration based on parameter modification:

• CGLSSM: Classical restoration with true RN
1 = rN1 and true parameters based

CGLSSM obtained from CGPMSM7.

Five unsupervised restoration methods based on Double EM and combined with

different restoration approaches:

1. DEM-EM-Appro: DEM8 combined with EM-Appro as entire unsupervised

restoration.

2. DEM-CGO-Appro: DEM combined with CGO-Appro as entire unsupervised

restoration.

3. DEM-R-MPM: Parameters estimated from DEM. The smoothing adopts the

realization of r̂N1 using MPM criterion, and E
[
Xn

∣∣yN
1

]
= E

[
Xn

∣∣rn,yN
1

]
,

assuming that r̂N1 is a proper estimation.

4. DEM-CGOMSM: Parameters estimated from DEM then modified into

CGOMSM for smoothing.

5. DEM-CGLSSM: Parameters estimated from DEM then modified into

CGLSSM, and take the realization r̂N1 from DEM for restoration.

As Double EM is based on all observation yN
1 , the restoration methods we talk

about here are all smoothing.

We present too series of experiments to better understand all these methods.

The experiments are based on N = 10000 data simulated from specific model set-

tings and for each setting, 100 independent experiments are conducted to provide

average results. Iterations for the Double EM are set the same through the ex-

periments as I = 100 for EM in Step A and L = 500 for Switching EM in Step

B.
7Practically in this experiment, parameters obtained by modifying dj,k, ej,k, cj,k and setting

them to aj,kbk, aj,kbj , aj,kbjbk respectively.
8While applying Double EM algorithm, no FB specified implies that one feedback is applied.
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2.3.2.1 Experiment on varying switching observation means

This series of experiments is designed for analyzing the performance of the Double

EM based unsupervised restoration approach methods compared to several other

supervised restoration approaches.

We change the focus of Fyx in the former experiments to the means of obser-

vation in Θ2 (see the parameterization in Section 2.1.3), to adjust the difficulty of

the circumstance for finding Θ1 and estimating the switches. Data is generated

with |My| ranging from 0.0 to 2.5, where |My| represents the absolute value of the

mean of Yn, defined by the two possible values of Rn. As an example, |My| = 2.5

indicates that My
1 = 2.5 and My

2 = −2.5. Other parameter settings are the same as

experiments of Swithing EM in Section 2.2.1, and initialization of the parameters

for Double EM are also the same as (2.59).

In this experiment, we chose only DEM-EM-Appro and DEM-R-MPM for un-

supervised smoothing, to avoid the modification of estimated Θ3 in CGOMSM or

CGLSSM, which can meet non-positive definite matrix and any adjustment for

turning it into positive definite one introduces more error.

Table 2.8: Estimated Θ1 and Θ2 in Series 2 (Fyx = 0.40).

|My| 0.0 0.5 1.0 1.5 2.0 2.5

θ̂1

p1,1 0.369 0.406 0.447 0.450 0.450 0.450
p1,2 = p2,1 0.063 0.058 0.051 0.050 0.050 0.050

p2,2 0.506 0.479 0.451 0.449 0.450 0.450

θ̂2
My

1 −0.007 0.540 1.007 1.503 2.000 2.499
My

2 −0.001 −0.456 −1.023 −1.502 −1.996 −2.496

The restoration results under Fyx = 0.20 and Fyx = 0.40 are illustrated in

Fig. 2.9 and Fig. 2.10 respectively. From these two figures, we observe that the

performance of EM is very similar to OSA regarding the estimation of RN
1 , even

though OSA knows the transition probabilities of the switches. When |My| reaches

2.5 we get RN
1 exactly estimated (0 error ratio).

Both of Figure 2.9a and Figure 2.10a verify that the feedback from the Step B

to the initialization of Step A in Double EM can bring improvement of the error

ratio when |My| is small, which means a difficult situation for K-means to initialize
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(a) Error ratio of estimated switches.

(b) MSE of estimated hidden state.

Figure 2.9: Result of restoration methods with varying |My| (Fyx = 0.20).
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(a) Error ratio of estimated switches.

(b) MSE of estimated hidden state.

Figure 2.10: Result of restoration methods with varying |My| (Fyx = 0.40).
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the switches. And usually, one feedback is enough to find the proper initialization

perceived from the experiments.

During the calculation of OSA, the intermediate probability p
(
rn
∣∣yN

1

)
is com-

puted. So, applying MPM, we get RN
1 estimated as its error ratio is drawn in the

two Figures also. We can see that, r̂N1 given by Double EM get a reasonable worse

error ratio than OSA, as OSA assumes that Θ1 is known. Also, when Fyx = 0.20,

we get a better estimation of RN
1 compared to Fyx = 0.40. Noticed that the smaller

Fyx means the model is closer to CGOMSM, and consequently, the pair
(
RN

1 ,YN
1

)
generated from the CGPMSM is more similar to a PMC which contributes to this

result. The estimated parameters Θ1 and Θ2 under Fyx = 0.40 are listed in Table

2.8. We do not list the estimated Θ4 any more to save place, since the parameter

estimation of Switching EM has been evaluated in Section 2.2.1.

Figure 2.9b and Figure 2.10b show the performance of all methods on the

restoration of hidden states. With the increasing of |My|, RN
1 is better estimated,

the observation data classified by the value of r̂N1 for the following Switching EM

to estimate Θ4 becomes more accurate, so the parameter estimation of Double EM

becomes also more accurate. It is obvious that DEM-EM-Appro reaches better

restoration than DEM-R-MPM, even though parameters are estimated from obser-

vation classified by r̂N1 realized with MPM (the light shadow of DEM-EM-Appro

and DEM-R-MPM shows their 95% confidence interval). Only when p
(
rN1
∣∣yN

1

)
refers to the MPM realization of r̂N1 by probabilities 1 or 0, DEM-EM-Appro and

DEM-R-MPM are equal (case |My| = 2.5). In this series of experiment, all meth-

ods show much more efficient than CGLSSM. The performance of these two Double

EM based methods is competitive to supervised OSA, and even has great chance

to surpass it, which implies the advantage of keeping the parameters as CGPMSM

when doing restoration for a general CGPMSM over the parameter modification

approaches.

It is needed to be mentioned here that, the tendency of the restoration MSE

through the two Double EM based methods displayed in both Figure 2.9b and

Figure 2.10b are not monotonous decreasing, although with decreasing error ratio

of estimated RN
1 . This is caused by the error introduced when removing the mean
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of each individual wrong classification of yN
1 . For example, if yn is classified in

a wrong class of rn, when |My| is larger, removing the mean cause larger error

introduced when recovering xn. This tendency can be observed also in the result

of any other method applied in the condition that RN
1 is unknown, the OSA in the

figures for instance.

2.3.2.2 Experiment on varying noise levels

To better describe the interest of the new methods we proposed in unsupervised

smoothing, we continue comparing the efficiency of different methods increasing

the “level of noise”, which means decreasing the degree of stochastic dependence

between the observed process YN
1 and the hidden ones (RN

1 ,XN
1 ).

Here, we take the same parameter for Θ1 as the previous experimental series, set

means in Θ2 all zero. Then the noise level will be evolved through the parameters of

the distribution p
(
xN
1 ,yN

1

∣∣rN1 ) defined by p
(
x2
1,y2

1

∣∣r21 ). Indeed, the noise level is

linked with covariances bj , dj,k, ej,k (see (2.58) and Fig. 2.1): the lower they are, the

higher the noise level is. Thus, the MSE of smoothing based on true parameters

will increase when the covariances bj , dj,k, ej,k decrease, and the interest in this

series is to study whether unsupervised smoothing results are not too far from the

real parameters based one. Of course, when these covariances are very small, the

link between the observed signal and the hidden one is very tiny, thus the proposed

parameter estimation method can not provide good results like any other methods.

Let us mention that the covariances aj,k, cj,k also play a role in the noise level.

However, it is much more difficult to evaluate them theoretically.

We fix the value of aj,k and cj,k as: aj,1 = 0.1, aj,2 = 0.5, cj,1 = 0.5, cj,2 = 0.9

with ∀j ∈ {1, 2}. Consider two cases with Fyx = 0.1 and Fyx = 0.3, and five

sub-cases with decreasing noise, which means that bj , ej,k, dj,k increase, whose

parameters are given in Table 2.9. The initialization of Θ4 is chosen also to be the

same, except that the initial Fxx
j,1 is changed to 0.1 for suiting this series.

As it has been proved in previous Series that DEM-EM-Appro performs better

than DEM-R-MPM, in this series, instead of DEM-R-MPM, we consider the other

three unsupervised restoration approaches with parameters estimated from Double
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EM: DEM-CGO-Appro, DEM-CGOMSM and DEM-CGLSSM. When modification

of parameters into CGOMSM and CGLSSM meets non-positive definite covariance

matrix, we replace their negative eigenvalues with a small positive value. This

adjustment assures the process but possibly drive parameters inappropriate. The

mean MSE of observation is set as a threshold for the selection of proper instances

in 100 experiments to show the average result.

Table 2.9: Parameters of 5 different noise cases.

Sub-case b1 b2 ej,1 ej,2
Fyx = 0.1 Fyx = 0.3

d1,1 d1,2 d2,1 d2,2 d1,1 d1,2 d2,1 d2,2
1 0.00 0.20 0.40 0.10 0.10 0.10 0.20 0.18 0.30 0.30 0.39 0.47
2 0.10 0.30 0.50 0.20 0.15 0.19 0.24 0.36 0.35 0.39 0.42 0.54
3 0.20 0.40 0.60 0.30 0.20 0.28 0.28 0.44 0.39 0.47 0.45 0.61
4 0.30 0.50 0.70 0.40 0.24 0.36 0.33 0.53 0.42 0.54 0.48 0.68
5 0.40 0.60 0.80 0.50 0.28 0.44 0.36 0.60 0.45 0.61 0.49 0.73

Results of this series is given in Figure 2.11 (shows the error ratio of restored

switches) and Figure 2.12 (shows the restoration MSE of all methods considered).

Under supervised case, the approximated models CGOMSM of Case Fyx = 0.1

is the same as of Case Fyx = 0.4 so as the approximated model CGLSSM. The

reason is that they both modify Fyx to zero.

Let us see the estimation result of RN
1 . Both of the Figures 2.11a and 2.11b

present the improvement of the error ratio after one feedback in Double EM. Also,

small increasing error ratio which can be observed with the increasing number of

sub-cases in these two Figures indicates that, the more Yn links to Xn−1, Xn,

Xn+1 (by increasing bj,k, ej,k, dj,k, ∀j, k ∈ Ω) the less (RN
1 ,YN

1 ) can be considered

as PMC. In fact, although not being proved in this Series, cj,k has also significant

influence on the error ratio of estimated switches, as it defines the noise level between

Yn and Yn+1.

Comparing Figures 2.11a and 2.11b, for each sub-case, case Fyx = 0.3 always

gets more error in the restored switches than Fyx = 0.1, since (RN
1 ,YN

1 ) is less

PMC like with larger Fyx value, so that the EM in Step A of Double EM is less

efficient.

Combining the restoration MSE of the methods considered illustrated in Figure
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(a) case: Fyx = 0.1.

(b) case: Fyx = 0.3.

Figure 2.11: Error ratio of estimated switches in five different noise levels.
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(a) case: Fyx = 0.1.

(b) case: Fyx = 0.3.

Figure 2.12: Restoration MSE of hidden states in five different noise levels.
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2.12a and Figure 2.12b, some points can be concluded that:

1) Considering the three supervised cases, OS reaches the optimal restoration.

And regarding the two parameter modification based methods, OSA ranks

the second (smaller Fyx makes it perform closer to OS), and CGLSSM ranks

the last.

2) For unsupervised cases, whose parameters estimated through Double EM,

DEM-EM-Appro and DEM-CGO-Appro get similar efficiency when approach-

ing the restoration, but we prefer DEM-EM-Appro, since the EM-Appro

makes no further modification on the estimated parameters which sometimes

causes problems and introduces more error. DEM-CGOMSM and DEM-

CGLSSM are inferior methods comparing to DEM-EM-Appro and DEM-

CGO-Appro, because of the modification on estimated parameters in their en-

tire approximation process. Only when the model comes nearer to CGOMSM,

DEM-CGOMSM gets closer to DEM-CGO-Appro (let us recall that under su-

pervised cases, OSA is equal to CGO-Appro when Fyx = 0).

3) All methods in either Figure 2.12a or Figure 2.12b show the same tendency

that the lower noise level is, the better restoration result they get, although

with a little worse estimated r̂N1 through unsupervised methods.

4) Relatively, when dj,k increases (equals to increasing Fyx in these two series),

the noise level is diminished, that is why integrally, OS under the series of case

Fyx = 0.3 has better restoration result than the series under case Fyx = 0.1.

5) The affection of Fyx on DEM-CGPMSM is kind of subtle, smaller Fyx is

required by EM in Step A with assumption of
(
RN

1 ,YN
1

)
, while larger Fyx

is preferred by Switching EM in Step B. Decreasing Fyx of the model make

Double EM better estimate the switches, but harder for Switching EM to get

proper parameters (as proved in Section 2.2.3, when encounter Fyx = 0, the

parameters can not be recovered).

Two trajectories of (xN
1 ,yN

1 , rN1 ), restored with OS and DEM-EM-Appro, be-

longs to “sub-case 1” of case Fyx = 0.1 (the most noisy one) and “Case 5” of case
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(a) Case: Fyx = 0.1, sub-case: 1.

(b) Case: Fyx = 0.3, sub-case: 5.

Figure 2.13: Examples of a trajectory of (xN
1 ,yN

1 , rN1 ) (30 sample points) and
restoration with OS and DEM-EM-Appro.
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Fyx = 0.3 (the least noisy one) are given respectively as an example in Figure 2.13.

It is obvious that, under less noisy case, the observation is closer to hidden state, so

as the restorations. Meanwhile, both Figure 2.13a and 2.13b show a closer restora-

tion of DEM-EM-Appro to OS than the observations even with misclassification of

switches.

2.4 Conclusion

Among all Markov switching models, this Chapter focuses on the recent CGPMSM

family extended from GPMM. The CGPMSM considers more complete variable

dependence comparing to the widely used CGLSSM, just similar to the advantage

brings by GPMM from the classic HGMM. Moreover, benefit from the pairwise

structure, under CGPMSM family, there is a special sub-model CGOMSM which

allows optimal restoration. The existing supervised restoration approach which

does not use MCMC methods in CGPMSM is based on parameter modification to

CGOMSM, while according to author’s knowledge, no previous work considers the

unsupervised restoration of CGPMSM.

This Chapter contributes to enriching both supervised and unsupervised restora-

tion methods in CGPMSM. Firstly, we broaden the scope of filtering in CGOMSM.

The reversible CGOMSM is considered, which provides a backward way to ap-

proximate the CGPMSM by CGOMSM and experiment shows that, the backward

approximation is competitive to the forward one. But leave us the problem to find

out a suitable criterion to decide which one is better for a specific case. Secondly, we

deal with parameter estimation problem in CGPMSM. The EM method for param-

eter estimation of GPMM is extended to a switching one with known switches, call

Switching EM. Further, with the essential assumption that the processes
(
RN

1 ,YN
1

)
is a PMC, an EM principle based parameter estimation method for CGPMSM is

proposed, called Double EM, incorporating the Switching EM. Thirdly, for su-

pervised restoration in CGPMSM, two restoration approaches, “CGO-Appro” and

“DEM-Appro” are proposed based on parameter modification to CGOMSM and EM

principle respectively. These two approaches are milder comparing to the original
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parameter modification approach in [1], since they take assumption in their par-

tial process. Experiments conducted proof the efficiency of these two approaches

against the other restoration methods including Particle Filter, and that they are

much less time consuming comparing to Particle filer. Finally, combining th e Dou-

ble EM for parameter estimation and the proposed restoration approaches, we get

unsupervised restoration solutions for CGPMSM. Simulations show the competi-

tive performances of DEM-EM-Appro among all considered unsupervised strategies,

which can even surpass the supervised restoration approaches, such as CGOMSM

based one and CGLSSM based one.
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Chapter 3

Non-Gaussian Markov

switching model with copulas

The switching models we discussed in previous Chapter are all conditionally Gaus-

sian linear. In this Chapter, we will deal with the non-Gaussian switching models

while still considering the feasibility for optimal restorations.

The aim of this Chapter is to propose a new non-Gaussian non-linear switching

model, in which optimal restoration is workable. To further explain, we extend the

CGOMSM, which allows exact filtering and smoothing, to a more general switching

model, in which p
(
yn+1
n

∣∣rn+1
n

)
are no longer limited to be Gaussian or Gaussian

mixture, and the auto-regressive functions from
(
xn,yn,yn+1

)
to xn+1 condition-

ally on rn+1
n are no longer limited to be linear. The new model, called “Generalized

Conditionally Observed Markov Switching Model” (GCOMSM), is based on copu-

las, which enriches the distributions of p
(
yn+1
n

∣∣rn+1
n

)
of CGOMSM.

Developed by Sklar [124], copula has become one of the most popular meth-

ods to analyze multiple variables in many fields especially financial markets [89],

[56], [53], [110], as it can model flexible multivariate joint distributions in a simple

way. All joint distributions with continues margins can be decomposed by uni-

variate marginal distributions and their joining copula, which means that defining

the univariate marginal CDF by F1, F2, · · · , Fd and the corresponding univariate

densities f1, f2, · · · , fd, the density f of the d-dimensional joint distribution can be

represented by

f (y1, y2, · · · , yd) = c (F1 (y1) , F2 (y2) , · · · , Fd (yd))
d∏

i=1

fi (yi) , (3.1)



Chapter 3. Non-Gaussian Markov switching model with copulas

where c (·) : [0, 1]d ⇒ R is the density of the d-dimensional Copula.

Copulas were firstly introduced into HMC with dependent noise by [24] and

the importance of their role in segmentation efficiency is proved in [37]. However,

to our best knowledge, no work consider them in switching state-space models.

In the GCOMSM which we propose, the couple
(
RN

1 ,YN
1

)
becomes a HMC-DN

with copulas, and the regime G
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
is linear on xn but can be of

any form on yn and yn+1 (see (3.4)). Optimal restorations are workable for this

general model. Moreover, the model identification of time independent GCOMSM

is also possible, since in time independent GCOMSM, the stationary distribution

p
(
yn+1
n

∣∣rn+1
n

)
with copulas is with possibilities of automatic search of forms of

both copulas and margins, and automatic estimation of the parameters associated

to the chosen forms from only observations, as recently proposed in [38]. Combining

this automatic identification method for finding the distribution p
(
yn+1
n

∣∣rn+1
n

)
, and

regime estimation method for finding G
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
, such as Least-square

(LS) principle, can fuse to an integral identification method to learn the form and

all necessary parameters for the restoration under GCOMSM.

This chapter is organized as follows. In Section 3.1, we define the general model

GCOMSM, give its simulation method, explain its properties and advantages over

the classic CGOMSM. The optimal filtering and smoothing of this newly proposed

model are derived in Section 3.2 with experiments to show the efficiency of these

GCOMSM matched optimal restorations. In Section 3.3, we propose the “GICE-LS”

strategy, which combines the Generalized Iterative Conditional Estimation (GICE

[38]) and Least-square (LS) parameter estimation for identifying GCOMSM. In

Section 3.4, experiments are conducted on simulated data which follows the general

GCOMSM to show the appropriate performance of GICE-LS. Then GCOMSM is

applied on data of some generable non-linear non-Gaussian models (Kitagawa and

Stochastic volatility) with GICE-LS for parameter estimation to get the restoration

of their hidden state with comparison to some existing supervised and unsupervised

methods. Finally, Section 3.5 concludes the contributions of this Chapter.
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3.1 Generalization of conditionally observed Markov

switching model

Inspired by CGOMSM, which specially has the advantage over the other switching

Markov models that optimal filtering and smoothing are possible, we propose this

new general model called “ Generalized Conditionally Observed Markov Switch-

ing Model” (GCOMSM) as an extension of CGOMSM, which incorporates richer

distributions and non-linear auto-regressive functions.

3.1.1 Definition of GCOMSM

Like the common used Markov switching models, GCOMSM considers three

random process XN
1 = (X1,X2, · · · ,XN ), RN

1 = (R1, R2, · · · , RN ), YN
1 =

(Y1,Y2, · · · ,YN ). Each Xn, Rn, Yn takes their values in Rs, Ω = {1, 2, . . . ,K},

and Rq respectively. As usual, the triplet
(
XN

1 ,RN
1 ,YN

1

)
is assumed to be a Markov

chain. The distribution of
(
XN

1 ,RN
1 ,YN

1

)
is defined by the initial distribution

p (x1, r1,y1) and the transitions p (rn+1 |rn ) p
(
xn+1,yn+1

∣∣rn+1
n ,xn,yn

)
, which im-

plies the Markovianity of RN
1 . Importantly, we assume that

p
(
xn+1,yn+1

∣∣rn+1
n ,xn,yn

)
= p

(
yn+1

∣∣rn+1
n ,yn

)
p
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
, (3.2)

which is also the essential property of CGOMSM. The distribution

p
(
yn+1

∣∣rn+1
n ,yn

)
in equation (3.2) is limited to be Gaussian in CGOMSM

as described by equation (2.12), while in GCOMSM, it is enriched by Copula and

extended to:

p
(
yn+1

∣∣rn+1
n ,yn

)
=fn+1

(
yn+1|rnn+1

)
cn+1

(
Fn+1

(
yn|rn+1

n

)
, Fn+1

(
yn+1|rnn+1

)
|rn+1

n

)
,

(3.3)

where we use fn+1

(
yn|rn+1

n

)
and fn+1

(
yn+1|rnn+1

)
to denote the Proba-

bility Density Function (PDF) of the left and right margins respectively1.
1(3.3) has been presented in a joint form in equation (1.17) in Section 1.2 when introducing

the continuous state-space PMC. To simplify the notation, the left and right margins which are
denoted by (l) and (r) in (1.17) will be replaced by the special combination forms of rn+1

n and rn
n+1
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Similarly, Fn+1

(
yn|rn+1

n

)
, Fn+1

(
yn+1|rnn+1

)
are their associated CDF, while

cn+1

(
Fn+1

(
yn|rn+1

n

)
, Fn+1

(
yn+1|rnn+1

)
|rn+1

n

)
represents the density of this two-

dimensional Copula. The copula then completes the two margins to form a joint

distribution p
(
yn+1
n

∣∣rn+1
n

)
, which makes the model can embrace theoretically, any

distribution of p
(
yn+1
n

∣∣rn+1
n

)
. As a consequence, the conditional distributions of

hidden states are enriched.

Moreover, the simple regime form from xn, yn, yn+1 to xn+1 knowing rn+1
n

referred by equation (2.15) in CGOMSM is extended to:

xn+1 = An+1

(
rn+1
n ,yn+1

n

)
xn + Bn+1

(
rn+1
n ,yn+1

1

)
+ νn+1, (3.4)

in which, An+1 (·) and Bn+1 (·) can be any function forms of rn, rn+1, yn, yn+1.

νn+1 ∼ N
(
0,Vn+1

(
rn+1
n

))
. We see this regime is only linear on xn, but can be

non-linear on yn and yn+1.

The higher generality of this GCOMSM compared to CGOMSM is then based

on these two extensions. In a word, in CGOMSM, p
(
xn+1,yn+1

∣∣xn,yn, rn+1
n

)
is Gaussian, and thus p

(
yn+1

∣∣yn, rn+1
n

)
and p

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
are both

Gaussian. However, in GCOMSM, p
(
yn+1

∣∣yn, rn+1
n

)
can be of any form, and

p
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
no more needs to be Gaussian. Thus, the CGOMSM can

be taken as a special Gaussian linear case of the general GCOMSM2.

3.1.2 Model simulation

As defined in the previous Section, GCOMSM is a switching model in which

p
(
xn+1, rn+1,yn+1 |xn, rn,yn

)
=p (rn+1 |rn ) p

(
yn+1

∣∣yn, rn+1
n

)
p
(
xn+1

∣∣xn,yn+1
n , rn+1

n

) . (3.5)

in this Section. One should pay attention that, the PDF of left margin fn+1

(
·|rn+1

n

)
is not equal

to the right margin fn+1 (·|rn
n+1).

2When talking about Gaussian linear GCOMSM, Gaussian indicates that the conditional dis-
tribution p

(
yn+1

∣∣yn, rn+1
n

)
is Gaussian, and linear refers particularly to G

(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
linear on xn.
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The simulation of this model can be done in the order: rN1 ⇒ yN
1 ⇒ xN

1 . Firstly, we

simulate the Markov chain rN1 according to p (r1), p (rn+1 |rn ). Then as
(
yN
1 , rN1

)
is a HMC-DN, the Acceptance-Rejection method can be used for simulating yN

1

knowing rN1 [126].

Knowing rn+1
n and yn we write p

(
yn+1

∣∣rn+1
n ,yn

)
as equation (3.3), the sim-

ulation of yn+1 conditionally on yn and rn+1
n can be done with the following two

steps:

1. Sample y according to fn+1

(
y|rnn+1

)
and V = v according to the uniform law,

written as U ([0, 1]).

2. Accept yn+1 = y if

v ≤
cn+1

(
u1, Fn+1

(
y|rnn+1

)
|rn+1

n

)
max

u2∈[0,1]
cn+1

(
u1, u2|rn+1

n

) , (3.6)

where u1 = Fn+1

(
yn|rn+1

n

)
.

So that yN
1 can be generated in series. We listed the marginal distributions and

copulas which will be studied in the following statement respectively in Table

C.1 and Table C.2 of Appendix C. Table C.3 shows the analytical solutions for

max
u2∈[0,1]

cn+1

(
u1, u2|rn+1

n

)
of several copulas, those copulas who have no closed-form

solution can be numerically maximized.

Finally, having rN1 and yN
1 , xN

1 are easily simulated with equation (3.4).

3.2 Optimal restoration in GCOMSM

Similar to CGOMSM, GCOMSM has the advantage that optimal filtering and

smoothing are still feasible. Let us recall that filtering calculates E [Xn |yn
1 ] and

smoothing calculates E
[
Xn

∣∣yN
1

]
for which the classical way of calculation has been

given in (2.8) and (2.9).
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3.2.1 Optimal filtering in GCOMSM

As in GCOMSM, we have p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
, it leads

to

p
(
xn

∣∣rn+1
n ,yn+1

1

)
= p (xn |rn,yn

1 ) . (3.7)

Besides, since p
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
is Gaussian defined in (3.4) in a GCOMSM,

we have

E
[
Xn+1

∣∣xn, rn+1
n ,yn+1

n

]
= An+1

(
rn+1
n ,yn+1

n

)
+ Bn+1

(
rn+1
n ,yn+1

n

)
. (3.8)

Then E
[
Xn+1

∣∣rn+1
n ,yn+1

1

]
is computable from E [Xn |rn,yn

1 ] with

E
[
Xn+1

∣∣rn+1
n ,yn+1

1

]
= E

[
E
[
Xn+1

∣∣Xn, rn+1
n ,yn+1

1

]]
= An+1

(
rn+1
n ,yn+1

n

)
E
[
Xn

∣∣rn+1
n ,yn+1

1

]
+ Bn+1

(
rn+1
n ,yn+1

n

)
= An+1

(
rn+1
n ,yn+1

n

)
E [Xn |rn,yn

1 ] + Bn+1

(
rn+1
n ,yn+1

n

)
,

(3.9)

E
[
Xn+1

∣∣rn+1,yn+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,yn+1

1

)
E
[
Xn+1

∣∣rn+1
n ,yn+1

1

]
. (3.10)

in which p
(
rn
∣∣rn+1,yn+1

1

)
is computable because of the Markovianity of

(
RN

1 ,YN
1

)
.

More precisely, we can write

p
(
rn
∣∣rn+1,yn+1

1

)
=

p
(
rn+1
n ,yn+1

1

)∑
rn
p
(
rn+1
n ,yn+1

1

) , (3.11)

and p
(
rn+1
n ,yn+1

1

)
can be calculated recursively with

p
(
rn+1
n ,yn+1

1

)
=
∑
rn−1

p
(
rn−1, rn+1

n ,yn+1
1

)
=
∑
rn−1

p
(
rnn−1,yn

1

)
p
(
rn+1,yn+1 |rn,yn

)
=
∑
rn−1

p
(
rnn−1,yn

1

)
p (rn+1 |rn ) p

(
yn+1

∣∣rn+1
n ,yn

)
,

(3.12)
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where p
(
yn+1

∣∣rn+1
n ,yn

)
is computed from its distribution set by equation (3.3).

Finally, the filtering is given by

E
[
Xn+1

∣∣rn+1,yn+1
1

]
=
∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,yn+1
1

]
. (3.13)

3.2.2 Optimal smoothing in GCOMSM

For smoothing, as in GCOMSM we have p
(
yN
n+1 |xn, rn,yn

1

)
= p

(
yN
n+1 |rn,yn

1

)
from the Markovianity of the PMC

(
RN

1 ,YN
1

)
, only the update of p

(
rn
∣∣yN

1

)
instead

of p (rn |yn
1 ) brings new information to smoothing comparing to filtering. The

smoothing writes

E
[
Xn

∣∣yN
1

]
=
∑
rn

p
(
rn
∣∣yN

1

)
E
[
Xn

∣∣rn,yN
1

]
=
∑
rn

p
(
rn
∣∣yN

1

)
E [Xn |rn,yn

1 ] .
(3.14)

We see that optimal restorations in GCOMSM have quite similar forms as the

optimal restorations in CGOMSM. Nevertheless, their data distributions are quite

different since the distributions of YN
1 conditional on RN

1 are defined with the

distributions p
(
yn+1
n

∣∣rn+1
n

)
of any form in GCOMSM, while they are all Gaussian

mixture in general CGOMSM. Also, the distribution p
(
xn+1
n ,yn+1

n

∣∣rn+1
n

)
is quite

different from the general CGOMSM which can only be Gaussian mixtures.

In the remaining of this Chapter, we will focus on the time independent case

of the general GCOMSM, which means that the parameters depend only on the

switches
(
rn+1
n

)
, since we are going to tackle the parameter estimation prob-

lem. Further, we reduce the number of margins and copulas which construct

p
(
yn+1
n

∣∣rn+1
n

)
with assumption that the pair

(
rN1 ,yN

1

)
is stationary reversible,

which implies that p
(
rn+1
n ,yn+1

n

)
does not depend on n and the distribution

p
(
rn+1,yn+1 |rn,yn

)
and p

(
rn,yn

∣∣rn+1,yn+1

)
are equal. These assumptions re-

sult in

p
(
yn+1

∣∣rn+1
n

)
= p

(
yn+1 |rn+1

)
. (3.15)

So, we do not need to consider the margin is “left” or “right” any more as they
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are the same under these assumptions. In this simple GCOMSM, the definition of

p
(
yn+1

∣∣rn+1
n ,yn

)
in (3.3) is simplified to

p
(
yn+1

∣∣rn+1
n ,yn

)
= frn+1

(
yn+1

)
crn+1

n

(
Frn (yn) , Frn+1

(
yn+1

))
. (3.16)

The dependence on switches is then moved to subscript in frn (yn) since n is no more

needed for referring the time, so as in the other expressions of distributions and func-

tions. The time independent auto-regressive function of G
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
in

(3.4) becomes

Xn+1 = Arn+1
n

(
yn+1
n

)
xn + Brn+1

n

(
yn+1
1

)
+ νn+1, (3.17)

with ν ∼ N
{
0,Vrn+1

n

}
. It is the same that sometimes we write integrally

xn+1 ∼ N
{

Arn+1
n

(
yn+1
n

)
xn + Brn+1

n

(
yn+1
1

)
,Vrn+1

n

}
. (3.18)

We should notice that, the model is set to be time independent, which means

p
(
yn+1
n

∣∣rn+1
n

)
and G

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
are both time independent. However,

p
(
xn+1
n ,yn+1

n

∣∣rn+1
n

)
are complex mixtures that may be not stable, which means

that the model could be non-stationary.

3.2.3 Examples of GCOMSM and the optimal restoration in them

We present here two experimental examples to show the flexibility of the proposed

GCOMSM, as well as the performance of its optimal filtering and smoothing. First

example aims to verify that the CGOMSM can be considered as a special Gaussian

linear case of GCOMSM. Then the second one is a general non-Gaussian non-linear3

case of GCOMSM.

Both these two examples assume that the Markov chain RN
1 has K = 2, and

p1,1 = p2,2 = 0.45, p1,2 = p2,1 = 0.05. To further simplify the notification,

we will denote similarly fj,k
(
yn+1
n

)
= frn=j,rn+1=k

(
yn+1
n

)
, fj (yn) = frn=j (yn),

cj,k
(
Fj (yn) , Fk

(
yn+1

))
= crn=j,rn+1=k

(
Fj (yn) , Fk

(
yn+1

))
with Fj,k, Fj , Cj,k the

3the regime of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
is non-linear on yn and yn+1.
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associated cumulative functions, j, k ∈ Ω. And in (3.17)�the abbreviation is like

Aj,k

(
yn+1
n

)
= Arn=j,rn+1=k,

(
yn+1
n

)
, so as the other notations. The details of the

form of all marginal distributions and copulas applied can be found in Appendix C.

1000 samples are simulated from GCOMSM under specific settings for restoration.

All results presented are average of 100 independent experiments.

3.2.3.1 Example 1 – Gaussian linear case

We set both the margins and copulas of the joint distribution p
(
yn+1
n

∣∣rn+1
n

)
be

Gaussian, so that p
(
yn+1
n

∣∣rn+1
n

)
is actually a two-dimensional Gaussian distribu-

tion. As we consider a stationary reversible case of
(
rn+1
n ,yn+1

n

)
, the distributions in

(3.16) is then constructed by two different margins: f1 (yn), f2 (yn) and four copu-

las c1,1
{
F1 (yn) , F1

(
yn+1

)}
, c1,2

{
F1 (yn) , F2

(
yn+1

)}
= c2,1

{
F2 (yn) , F1

(
yn+1

)}
,

c2,2
{
F2 (yn) , F1

(
yn+1

)}
, and the parameter sets are:

- Margins: θ1 = {loc1 = 0.0, scale1 = 2.0}, θ2 = {loc2 = 1.0, scale2 = 1.0};

- Copulas: α1,1 = 0.7, α1,2 = α2,1 = 0.5, α2,2 = 0.3,

in which locj and scalej represent the mean and standard deviation of Gaussian

distribution of the margin fj (yn), while αj,k denotes the only (linear correlation)

parameter of Gaussian copula cj,k
{
Fj (yn) , Fk

(
yn+1

)}
with ∀j, k ∈ Ω. See details

of the Gaussian margin and copula in Appendix C.

Figure 3.1a shows the two Gaussian marginal distributions of (yn|rn = 0)

and (yn|rn = 1). Figure 3.1b shows the joint Gaussian distribution of(
yn,yn+1|rn = 0, rn+1 = 1

)
set above.

The parameters of p
(
xn+1

∣∣rn+1
n ,xn,yn+1

n

)
defined in (3.17) are set to be more

CGOMSM like, as defined in (2.7) (but with a reverse of places of xn and yn+1),

from p
(
xn,xn+1

∣∣yn+1
n , rn = j, rn+1 = k

)
= N

{
µj,k,σ

2
j,k

}
, parameterized with

µj,k =

 F j 0

Fk,j Fk


 yn

yn+1

 , σ2
j,k =

 Γj (Σk,j)
⊺

Σk,j Γk

 . (3.19)

Similar to the zero set for Fyx
n+1(Rn+1

n ) in (2.7), the zero set in the expression of
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(a) Two marginal distributions.

(b) Joint distribution of
(
yn,yn+1|rn = 1, rn+1 = 2

)
.

Figure 3.1: The distributions in Example 1.
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µj,k here leave out the direct relation between yn+1 and xn, which assures the

Markovianity of the pair
(
RN

1 ,YN
1

)
in such a linear case. For this experimental

example, µj,k and σ2
j,k are assigned by

- µj,k: F1 = 0.3, F2 = 0.7, F1,2 = 0.2, F2,1 = 0.6;

- σ2
j,k: Γ1 = Γ2 = 1.0, Σ1,1 = 0.3, Σ2,2 = 0.7, Σ1,2 = Σ2,1 = 0.5.

Then the equivalent parameters of p
(
xn+1

∣∣rn+1
n ,xn,yn+1

n

)
are

Aj,k = Σk,j (Γj)
−1 , Bj,k

(
yn+1
n

)
= Fkyn+1 +

(
Fk,j −Σk,j (Γj)

−1F j

)
yn,

Vj,k = Γk −Σk,j (Γj)
−1Σj,k.

(3.20)

Aj,k

(
yn+1
n

)
in the original form has becomes a constant so it turns to Aj,k.

1000 samples are simulated according to the setting of this general GCOMSM.

The histograms of the data are displayed in Figure 3.2, in which the sub-figures 3.2a

and 3.2b show the histogram of yN
1 classified by two different values of rn (with

orange lines indicating the distributions they follow). Sub-Figures 3.2c and 3.2d

show respectively the histogram of the total simulated yN
1 and xN

1 , they are both

Gaussian mixtures.

Both optimal filtering and smoothing for GCOMSM are processed to restore

the switches and hidden states from only observations. MPM criterion is applied

on p (rn |yn
1 ) and p

(
rn
∣∣yN

1

)
for getting the filtering and smoothing estimation of

rN1 .

All restoration results are listed in Table 3.1. An improvement of both the esti-

mated rN1 and xN
1 can be observed from the filtering to smoothing, but not too much

regarding the MSE, since the yN
n+1 brings no more information for E

[
Xn

∣∣rn,yN
1

]
in smoothing comparing to E [Xn |rn,yn

1 ] in the filtering.

Table 3.1: Restoration result of Example 1.

Observation Exact filtering Exact smoothing
MSE Error ratio MSE Error ratio MSE
2.328 0.261 1.086 0.229 1.079
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(a) Histogram of YN
1 (rn = 1). (b) Histogram of YN

1 (rn = 2).

(c) Histogram of YN
1 . (d) Histogram of XN

1 .

Figure 3.2: Histograms of simulated data of Example 1 (Gaussian linear case).
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An instance of trajectories in this series is given in Figure 3.3 which shows

the visual performance of these two exact restorations. The restoration of optimal

filtering is actually quite close to the smoothing one that we can not distinguish

them by naked eye.

Figure 3.3: Trajectories of Example 1 (100 samples, Gaussian linear case).

3.2.3.2 Example 2 – non-Gaussian non-linear case

Let us turn to an example of general GCOMSM which has non-Gaussian

p
(
yn+1
n

∣∣rn+1
n

)
and non-linear regime for G

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
.

The parameters of p
(
yn+1
n

∣∣rn+1
n

)
, which are supposed to be non-Gaussian, are

set according to:

- Margins: f1 (yn) = Beta4 {α1 = 1, β1 = 1, loc1 = −3, scale1 = 4},

f2 (yn) = Laplace {loc2 = 0, scale2 = 1}.

- Copulas: c1,1 {·, ·} = Arch125 {·, ·|α1,1 = 2},

c2,2 {·, ·} = FGM {·, ·|α2,2 = 0.5},
4With the setting α1 = 1, β1 = 1, the Beta distribution is equal to a uniform distribution.
5Short for Archimiedean copula, order: 12.
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c1,2 {·, ·} = c2,1 {·, ·} = Arch146 {·, ·|α1,2 = 3}.

where locj is short for location of fj (yn), and scalej represents its scale. How

the parameters form this set of margins and copulas are detailed in Appendix C.

We see the two marginal distributions of p (yn |rn ) and the joint distribution of

p
(
yn+1
n |rn = 1, rn+1 = 2

)
in Figure 3.4, they are far from Gaussian distributions

and hard to be approximated by Gaussian mixture distribution with a small com-

ponent number.

p
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
= N

{
Aj,k

(
yn+1
n

)
+ Bj,k

(
yn+1
n

)
,Vj,k

}
is set with

Aj,k = aj,k, simple non-linear function on yn and yn+1 that Bj,k

(
yn+1
n

)
=

bj,k
√
|yn+1|, and in which the parameters are assigned as

- Aj,k: A1,1 = 0.2, A1,2 = 0.4, A2,1 = 0.6, A2,2 = 0.8,

- bj,k: b1,1 = 0.7, b1,2 = 0.5, b2,1 = 0.6, b2,2 = 0.9,

- Vj,k: V1,1 = V2,2 = 1.0, V1,2 = V2,1 = 0.8.

The histograms of the simulated data follows the general GCOMSM with all the

setting above are given in Figure 3.5. We see the two non-Gaussian Margins makes

the integral histogram of yN
1 an odd shape. The xN

1 is also non-Gaussian in spite of

the conditional Gaussian assumption in GCOMSM that p
(
xn+1
n

∣∣yn+1
n , rn+1

n

)
should

be Gaussian.

The restoration efficiency of optimal filtering and smoothing on this general

case of GCOMSM is proofed by the results listed in Table 3.2. As Bj,k

(
yn+1
n

)
is set

in a non-linear form, observation is quite different from the hidden state, but the

restorations still work well. One trajectories is given in Figure 3.6 as an example.

Table 3.2: Restoration result of example 2.

Observation Filtering Smoothing
MSE Error Ratio MSE Error Ratio MSE

11.496 0.224 2.144 0.193 2.093

6Short for Archimiedean copula, order: 14.
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(a) Two marginal distributions.

(b) Joint distribution of
(
yn,yn+1|rn = 1, rn+1 = 2

)
.

Figure 3.4: The distributions in Example 2.
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(a) Histogram of YN
1 (rn = 1). (b) Histogram of YN

1 (rn = 2).

(c) Histogram of YN
1 . (d) Histogram of XN

1 .

Figure 3.5: Histograms of simulated data of Example 2 (non-Gaussian non-linear
case).

Figure 3.6: Trajectories of Example 2 (100 samples, non-Gaussian non-linear case).
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3.3 Model identification

In the former Sections, we have defined the GCOMSM, and show how the optimal

filtering and smoothing work. From this Section, we start to tackle how to approach

a noised non-Gaussian non-linear system by the time independent GCOMSM with

its learning sample set. The model identification problem we are facing is multi-

folds:

1. what forms the distributions of p
(
yn+1
n

∣∣rn+1
n

)
are of;

2. once we have the distribution of p
(
yn+1
n

∣∣rn+1
n

)
, how to get the related pa-

rameters;

3. what the forms of Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
1

)
are in the regime of

G
(
xn+1

∣∣xn, rn,yn+1
n

)
;

4. what the parameters of Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
1

)
are once their forms

are known7.

We deal with the problems above simultaneously which will result in a general

strategy for model identification and parameter estimation for GCOMSM.

3.3.1 Generalized iterative conditional estimation

Let us deal with the first two problems, which are how to identify the conditional

distribution p
(
yn+1
n

∣∣rn+1
n

)
from the observation of the learning sample. As no

confusion introduced, when we are discussing about the identification problem,(
xN
1 ,yN

1

)
represents the data of learning sample set. To solve the first two problem,

we use an original variant of the “Generalized Iterative Conditional Estimation”

(GICE) method, recently proposed in [38]. GICE is a generalization of “Iterative

Conditional Estimation” (ICE) which has been introduced and applied in Chapter 1

as an alternative method to EM. ICE is an iterative method works on the parameter

estimation of stationary Gaussian PMC, while the GICE is not limited for Gaussian
7 Vrn+1

n
is also a parameter, but if aiming at restoration, we can see from Chapter 3.2 that it

is not necessary in neither the computation of filtering nor smoothing.
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case. It searches the proper form of distributions from an expected form set for PMC

and also give the estimated parameters.

For the stationary reversible case we are dealing with here, knowing fj,k
(
y2
1

)
is equivalent to knowing fj (y1), fk (y2) and cj,k (Fj (y1) , Fk (y2)). For each pair

j, k ∈ Ω = {1, . . . ,K}, the forms of fj (·), fk (·) are unknown, but we assume

that they belong to a known set of possible forms H = {H1, · · · ,HL}; besides,

each form Hl, l ∈ {1, · · · , L} is a parametric set of probability distributions Hl ={
fθ(l)

}
θ(l)∈θ(l). Similarly, cj,k (·, ·) is unknown, but it belongs to a known set of

possible forms G = {G1, · · · , GM} and each of them is a parametric set of copulas

Gm =
{
cα(m)

}
α(m)∈α(m)

, with m ∈ {1, · · · ,M}. Finally, for each j, k ∈ Ω, the two

former problems we are tackling under all these assumptions is to find from yN
1 :

1. The proper forms Hl and Gm;

2. The proper parameters θ(l) and α(m).

To solve these questions, we need two families of estimators. Firstly, for each

l ∈ {1, . . . , L}, we assume that an estimator θ̂(l)(yN
1 ) exists for giving θ(l) of the

marginal distribution p (yn) from yN
1 , with the marginal distribution p (yn) equals

everywhere through yN
1 and belong to Hl. Secondly, for each m ∈ {1, . . . ,M},

another estimator α̂(m)(yN
1 ) exists to estimate the parameter α(m) of the Copula

c(yn+1
n ) from yN

1 , with c(yn+1
n ) equal everywhere through all yN

1 and belong to Gm.

Having the parameters estimated for all possible margins and copulas, we need

to decide the best fit distribution constructed by the best fit margins and cop-

ulas, which needs also two decision rules. For each j, k ∈ Ω, we note the two

required “decision rules” by D1 and D2. They are applied on the observation sam-

ple yN
1 . For any fθ(1) ∈ H1, . . . , fθ(L) ∈ HL, D1 selects an unique element in

the candidate margins forms
{
fθ(1), . . . , fθ(L)

}
corresponding to yN

1 ; and for any

cα(1) ∈ G1, . . . , cα(M) ∈ GM , D2 selects an unique element in the candidate copula

forms
{
cα(1), . . . , cα(M)

}
corresponding to yN

1 .

Dealing with all of these problems, the GICE is an iterative method who runs

the following steps (with i denotes the iterations):
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1. Initialize GICE with
(
p0j,k, f

0
j , c

0
j,k

)
(for each j, k ∈ Ω ) found with a simple

method.

2. Find
(
pi+1
j,k , f

i+1
j , ci+1

j,k

)
from

(
pij,k, f

i
j , c

i
j,k

)
and yN

1 .

(a) set pi+1
j,k = 1

N−1

∑N−1
n=1 p

i
(
rn = j, rn+1 = k|yN

1

)
with

pi
(
rn = j, rn+1 = k|yN

1

)
computed from

(
pij,k, f

i
j , c

i
j,k

)
(the compu-

tation has been introduced in Chapter 1 from (1.7) to (1.14)):

(b) sample
(
rN1
)i+1 according to p

(
rn+1

∣∣rn,yN
1

)
based on parameters(

pij,k, f
i
j , c

i
j,k

)
;

(c) for each j, k ∈ Ω, consider
(
yN
1

)i+1

j
the sub-sequence of yN

1 which corre-

sponds to ri+1
n = j, and

(
yN
1

)i+1

j,k
the sub-sequence of couples

(
yn,yn+1

)
which corresponds to

(
ri+1
n = j, ri+1

n+1 = k
)
;

(d) for each j, k ∈ Ω, each l ∈ {1, . . . , L} and each m ∈ {1, . . . ,M}, calculate

θi+1
j (l) = θ̂j(l)

[
(yN

1 )i+1
j

]
and αi+1

j,k (m) = α̂j,k(m)
[
(yN

1 )i+1
j,k

]
;

(e) apply the decision rule D1 to chose uniquely the element f q+1
j in{

f
θq+1
j (1)

, . . . , f
θq+1
j (L)

}
, and D2 to determine uniquely the cq+1

j,k in{
c
αq+1
j,k (1)

, . . . , c
αq+1
j,k (L)

}
.

3. Stop according to some criterion.

As the GICE is a general frame for finding the distribution forms and their

parameters, different possible ways can be included for parameter estimation, and

for the decision rules. In this dissertation, when conducting the GICE principle, we

adopt Kolmogorov distance [59] for the decision rule D1, while the original paper [38]

is based on Pearson’s system. Besides, all the θ̂ (l) and α̂ (m) are estimated through

Maximum Likelihood (ML), while in [38] α̂ (m) are obtained with the empirical

estimation of Kendall’s tau.

3.3.2 Least-square parameter estimation for non-linear switching
model

Assuming that the first two problems are figured out, which means that we know

the distribution p
(
yn+1
n

∣∣rn+1
n

)
. So, what we are facing now, are the remain-
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ing two problems which deal with the form and parameters of Arn+1
n

(
yn+1
n

)
and

Brn+1
n

(
yn+1
1

)
. We are going to give a simple way to figure out only the parameters

which are necessary for the CGOMSM restoration under a suitable assumption on

their forms.

When p
(
rN1
∣∣yN

1

)
is given, the parameter estimation of G

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
can be considered as estimation of a multi-regimes switching regression. Then nor-

mally, LS is an efficient method to figure out the parameters of this system in clas-

sical way. See the computation of E
[
xn+1

∣∣xn, rn+1
n ,yn+1

1

]
in equation (3.9), only

parameters in Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
1

)
are necessary for the exact restora-

tion. So the simplest is to disregard the heteroscedasticity of the error terms in the

switching regimes regressions. Interpreted in the GCOMSM, it is to neglect the

variance items Vrn+1
n

. Then, the Ordinary Least-square (OLS) aims to minimize

e2 =
1

N − 1

N−1∑
1

{
xn+1 −

∑
rn

∑
rn+1

p
(
rn+1
n

∣∣yN
1

)
[
Arn+1

n

(
yn+1
n

)
xn + Brn+1

n

(
yn+1
n

)]}2

.

(3.21)

In this way, we treat each xn+1 be the same informative about the underlying

relationship of
(
xn+1|xn,yn+1

n , rn+1
n

)8. If not, we need to turn to Weighted Least-

square (WLS) for solution, which considers xn+1 as more or less informative and

gives more ”weight” for the more informative ones while doing the minimization.

The weight should be the reciprocal of the variance of
(
xn+1|xn,yn+1

n

)
which can

be computed by Vrn+1
n

as
(
xn+1|xn,yn+1

n

)
is taken as a Gaussian mixture here.

However, the WLS regression is technically only valid if the weights are known

a-priori, and a rule of thumb for OLS regression is that it isn’t too impacted by

heteroscedasticity as long as the maximum variance is not greater than 4 times the

minimum variance. As Vrn+1
n

is not necessary for restoration of GCOMSM, here

we chose simply the OLS to recover the Aj,k

(
yn+1
n

)
and Bj,k

(
yn+1
n

)
, ∀j, k ∈ Ω =

{1, . . . ,K}, which writes as (3.21).

Minimization of (3.21) takes derivatives with respect to each parameter in
8(xn+1|xn,yn+1

n , rn+1
n

)
notes that xn+1 conditional on xn, yn+1

n , rn+1
n
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Aj,k

(
yn+1
n

)
and Bj,k

(
yn+1
n

)
. If their forms are linear combination of the pa-

rameters, for example, if we have Aj,k

(
yn+1
n

)
= aj,kga

(
yn+1
n

)
, Bj,k

(
yn+1
n

)
=

bj,kgb
(
yn+1
n

)
, where ga

(
yn+1
n

)
, gb

(
yn+1
n

)
are known functions forms, the only two

sets of parameters are aj,k and bj,k, j, k ∈ Ω. The parameters are then acquired by

β̂ = (L⊺L)−1L⊺X, (3.22)

in which β̂ =
[
â1,1b̂1,1 · · · â1,K b̂1,K · · · âK,K b̂K,K

]⊺
are stack of all parameters cor-

responding to switches, X = [x2 · · ·xN ]⊺, and the matrix

L =


p11,1g

1
a,b · · · p11,Kg

1
a,b · · · p1K,Kg

1
a,b

... . . . ... . . . ...

pN−1
1,1 gN−1

a,b · · · pN−1
1,K gN−1

a,b · · · pN−1
K,K g

N−1
a,b ,

 (3.23)

where pnj,k = p
(
rn = j, rn+1 = k

∣∣yN
1

)
with j, k ∈ Ω, and gna,b =[

ga
(
yn+1
n

)
xn gb

(
yn+1
n

)].
When it comes to the case that Arn+1

n

(
yn+1
n

)
, Brn+1

n

(
yn+1
1

)
are non-linear on

parameters, we can turn to various of numerical algorithms for minimizing the

error, for example, the basic Gauss-Newton method with linear approximation of

the functions, the Powell’s Dog Leg method with a control of trust region, and some

hybrid methods introduced in [16], [91], [16], [23]. In practice of the experiments

illustrated in following Chapters, we tackle the non-linear least square problem with

Levenberg–Marquardt (LM) algorithm which is a Damped Gauss-Newton method

as proposed in [88] and completed in [94], [107] and [72].

3.3.3 The overall GICE-LS identification algorithm

Combining the GICE and LS methods for GCOMSM explained in previous Sections,

Figure 3.7 gives the scheme of the entire GICE-LS identification strategy.

In this strategy, we assume that proper forms of Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
n

)
are guessed. If not, similar to the choosing program in GICE, we can take several

initial guess of the form of Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
n

)
, applying LS on each of
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GICE LS
yN
1 xN

1

Possible list of the mar-
gins H and copulas G

Possible forms
of Arn+1

n

(
yn+1
n

)
and Brn+1

n

(
yn+1
n

)

fj (y1), fk (y2),
cj,k (Fj (y1) , Fk (y2))

Arn+1
n

(
yn+1
n

)
,

Brn+1
n

(
yn+1
n

)

yN
1 , p

(
rn+1
n

∣∣yN
1

)

Figure 3.7: GICE-LS scheme.

them, then decide the best fit one by a decision rule D3, which choses the one who

has minimum residual error of LS or the one who have minimal restoration MSE of

sample set etc.

3.4 Performance and application of the GICE-LS iden-

tification algorithm

In this Section, we study how time independent GCOMSM identified by GICE-LS

performs on non-Gaussian non-linear data.

We will firstly test the ability of the regimes and parameter recognition of

GICE-LS on simulated GCOMSM data. Two cases are considered here. One

Gaussian linear case which is the case degenerated to CGOMSM, and one gen-

eral non-Gaussian non-linear case. For comparison, we display also the result of

other two identification restoration algorithms. One replaces the GICE with ICE

and assuming the distribution form of p
(
yn+1
n

∣∣rn+1
n

)
are all Gaussian, another one

is the “CGOMSM Approximation Based Filter” (CGOMSM-ABF) [61], [62], which

is an identification method for CGOMSM, takes entirely p
(
xn+1
n ,yn+1

n

∣∣rn+1
n

)
as

Gaussian. In addition, result of optimal restoration using the true parameters is

given as a reference. Secondly, for further investigating the adaptability of the pro-

posed GCOMSM, we apply the restoration of GCOMSM on other non-Gaussian
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non-linear generable models identified by GICE-LS, with comparison to the result

of CGOMSM-ABF and the supervised particle filter (since no optimal filter exists

for these non-Gaussian non-linear models) [9], [60], [75].

3.4.1 Performance on simulated GCOMSM data

Two series of Monte-Carlo experiments on simulated GCOMSM are provided here

for verifying the ability of GICE-LS on the issue of the identification of time in-

dependent GCOMSM. All experiments based on simulation are under assumption

that the Markov chain RN
1 has K = 2 states, and joint probabilities of switches

pj,k: p1,1 = p2,2 = 0.45, p1,2 = p2,1 = 0.05. Both hidden states and observations are

assumed to be scalar. A set of 5000 simulated
(
xN
1 ,yN

1

)
is taken as learning sample

used for the model identification of both p
(
yn+1
n

∣∣rn+1
n

)
and parameter estimation of

G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
, assuming knowing the true regimes by GICE-LS. Another

set of 1000 simulated data is taken for testing the restoration with the identified

parameters. Meanwhile, replacing the GICE with the classic ICE which leads to

the identification method ICE-LS is also applied on the same data set for com-

parison. This is of interest, because ICE (knowing all distributions are Gaussian)

can be considered as a particular case of GICE which is sufficient for the identifi-

cation of Gaussian p
(
yn+1
n

∣∣rn+1
n

)
(as in CGOMSM). The CGOMSM-ABF which

will also be conducted for comparison is a newly proposed identification method

based on EM for the CGOMSM. It is interesting to see what will happen when the

CGOMSM-ABF is applied to the data which follows GCOMSM but no more its

special Gaussian linear case.

3.4.1.1 Gaussian linear case

In this series, p
(
yn+1
n

∣∣rn+1
n

)
is assumed to be Gaussian. The parameters of its

Gaussian margins and copulas are set as

- Margins: θ1 = {loc1 = 0.0, scale1 = 1.5}, θ2 = {loc2 = 1.0, scale2 = 0.8}.

- Copulas: α1,1 = 0.8, α1,2 = α2,1 = 0.45, α2,2 = 0.2.
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locj and calej denote the mean and standard deviation of the Gaussian mar-

gins respectively. αj,k represents the single parameter of Gaussian copula, j, k ∈

{1, 2}. Figure 3.8 shows the PDF of the margins and the joint distribution

p
(
yn,yn+1 |rn = 1, rn+1 = 2

)
.

The Gaussian distribution p
(
xn+1

∣∣xn,yn+1
n , rn = j, rn+1 = k

)
=

N
(
Aj,k

(
yn+1
n

)
+ Bj,k

(
yn+1
n

)
,Vj,k

)
is assumed with all linear forms condi-

tionally on xn, yn, yn+1. Particularly, here we set Aj,k

(
yn+1
n

)
= aj,k and

Bj,k

(
yn+1
n

)
= bj,kyn + cj,kyn+1 + dj,k. The parameters are assigned as:

- aj,k: a1,1 = 0.3, a1,2 = a2,1 = 0.5, a2,2 = 0.7,

- bj,k: b1,1 = 0.61, b1,2 = 0.05, b2,1 = 0.25, b2,2 = −0.19,

- cj,k: c1,1 = c2,1 = 0.30, c1,2 = c2,2 = 0.70,

- Vj,k: V1,1 = 0.91, V1,2 = V2,1 = 0.75, V2,2 = 0.51,

and the constant dj,k is set to be 0 with ∀j, k ∈ {1, 2}. Specially, for the

identification with GICE, we assume that there are six candidate margin forms

H = {H1, · · · ,H6}, and seven candidate copula forms G = {G1, · · · , G7} (all of

them are one-parameter copula families with details in Table C.2 in Appendix C).

- {H1, · · · ,H6}: {Gamma, Fisk, Gaussian, Laplace, Beta, Beta prime}.

- {G1, · · · , G7}: {Gumble, Gaussian, Clayton, FGM, Arch12, Arch14,

Product}.

In each iteration of GICE, parameters of all the candidate margins and copulas

are estimated by ML here. When estimating the parameters αj,k of copulas, we use

the semi-parametric method [76], [137], which calculates the ML with

α̂j,k = arg max
αj,k

N∑
n=1

log c
(
F̂j (yn) , F̂k

(
yn+1

)
|α̂j,k

)
, (3.24)

where
(
F̂j (yn) , F̂k

(
yn+1

)
|α̂j,k

)
is the empirical CDF of the pair(

yn,yn+1|rn = j, rn+1 = k
)
.
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(a) Two marginal distributions.

(b) Joint distribution of
(
yn,yn+1|rn = 1, rn+1 = 2

)
.

Figure 3.8: The distributions of series 1 (Gaussian linear).
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In fact, we can have variate alternative methods for estimating the parameters.

For margins, one could use also the moments method, while for copulas, a popular

way is to estimate their Kendall’s tau τ [74], which is equivalent to estimating α since

they are linked by specific relations following individual copula forms. Moreover, one

can also use parametric or non-parametric methods to replace the semi-parametric

estimation in (3.24) [70].

The decision rules D1 for deciding the best fit marginal distribution we apply

here, is the minimization of the “Kolmogorov Distance” denoted by “d” between

the distribution specified by estimated parameters and the empirical distribution

of p (yn |rn = j ). It makes decision by computing

D1
((

yN
1

)
j

)
= arg inf

Fl∈{F1,··· ,FL}
[d (Fl, Fe)] . (3.25)

Paying attention that
(
yN
1

)
j

here refers to the data which is considered belonging

to the same candidate distribution. For each iteration of GCOMSM, it is
(
yN
1

)i+1

j
,

the sub-sequence of yN
1 which corresponds to ri+1

n = j. The empirical CDF Fe (y) =

1
N

∑N
n=1 1[yn<y], and the related CDF are F1(y), · · · , FL(y). The Kolmogorov Dis-

tance d between two CDFs is given by d (F, F ′) = sup y∈R|F (y) − F ′ (y) |. As an

alternative method, one can also use the “Bayesian Copula Selection” proposed

in [68].

The decision rule D2 adopted for choosing the best fit copula is called “Pseudo-

Likelihood Maximization” (PLM) [38] [76], whose decision is made by

D2
((

yN
1

)
j,k

)
= arg sup

cm∈{c1,··· ,cM}

N∏
n=2

cm (Fn−1 (yn−1) , Fn (yn)) , (3.26)

in which
(
yN
1

)
j,k

= (y1, y2)j,k , (y2, y3)j,k , · · · , (yN−1, yN )j,k refers to the data pairs

which are considered belonging to the same candidate copulas. For each iteration of

GCOMSM, it is
(
yN
1

)i+1

j,k
, the sub-sequence of couples

(
yn,yn+1

)
which corresponds

to
(
ri+1
n , ri+1

n+1

)
= (j, k). The two associated marginal CDF, Fn−1 (yn−1) and Fn (yn)

are already decided by D1.

In this experiment, the linear form of Aj,k

(
yn+1
n

)
, Bj,k

(
yn+1
n

)
are assumed
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known. Applying the three identification methods GICE-LS, ICE-LS, CGOMSM-

ABF on the sample data set, 100 iterations are set for all GICE, ICE and CGOMSM-

ABF to converge. Then we use the learned parameters to restore the testing set,

the result are reported in Table 3.3.

Table 3.3: Restoration results of series 1 (Gaussian linear).

MSE of observation: 1.726 Optimal GICE-LS ICE-LS CGOMSM-ABF

Filtering Error ratio 0.245 0.289 0.249 0.247
MSE 1.037 1.047 1.044 1.044

Smoothing Error ratio 0.211 0.261 0.215 0.213
MSE 1.032 1.044 1.039 1.040

From Table 3.3, we see that GCOMSM still works on Gaussian case as

CGOMSM does. Under the worst condition that both distribution forms and pa-

rameters of p
(
yn+1
n

∣∣yn+1
n

)
are unclear, the filtering and smoothing with the param-

eters identified through GICE-LS gets competitive result not far from the filtering

and smoothing result identified thorough ICE-LS and CGOMSM-ABF which as-

sumes knowing all the shapes to be Gaussian. However, it still needs to notice that

GICE not always find Gaussian as the “best fitted” distribution, it may sometimes

converge to the others with similar PDF, the identification result of the form of

p
(
yn+1
n

∣∣rn+1
n

)
on the learning sample set is listed in Table 3.4 and Table 3.5.

Table 3.4: Margin selection result of GICE in series 1.

Form Gamma Fisk Gaussian Laplace Beta Beta prime
f1 2% 1% 86% 0% 0% 0%
f2 5% 3% 54% 1% 0% 37%

Table 3.5: Copula selection result of GICE in series 1.

Form Gumbel Gaussian Clayton FGM Arch12 Arch14 Product
c1,1 1% 43% 2% 0% 3% 51% 0%

c1,2 = c2,1 32% 52% 10% 4% 0% 2% 0%
c2,2 14% 60% 4% 19% 0% 3% 0%

Actually, this fact affects not too much in the final restoration, since with specific

parameter settings, different distributions can have very similar PDF. The same

phenomenon will also be reported in next experimental series with details. Table
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3.6 shows the average of estimated parameters of p
(
yn+1
n

∣∣rn+1
n

)
from the instances

that GICE converges to the true Gaussian forms. The estimated parameters related

to G
(
xn+1

∣∣xn,yn+1
n rn+1

n

)
are reported in Table 3.7. The estimated parameters are

all not far away from the true ones. Estimated switching joint probabilities from

GICE are p1,1 = 0.485, p1,2 = p2,1 = 0.047, p2,2 = 0.421; while from ICE are

p1,1 = 0.489, p1,2 = p2,1 = 0.046, p2,2 = 0.419. In addition, the identification

Table 3.6: Estimated parameters of p
(
yn+1
n

∣∣rn+1
n

)
in series 1.

Margins Copulas

f1 (Gaussian) f2 (Gaussian) c1,1
(Gaussian)

c1,2/c2,1
(Gaussian)

c2,2
(Gaussian)

loc1 scale1 loc2 scale2 α1,1 α1,2/α2,1 α2,2

Estimates -0.04 1.47 0.99 0.82 0.78 0.49 0.23
True values 0.00 1.50 1.00 0.80 0.80 0.45 0.20

Table 3.7: Estimated parameters of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
in series 1.

Estimates True values
(j, k) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)
aj,k 0.34 0.56 0.47 0.67 0.30 0.50 0.50 0.70
bj,k 0.50 0.05 0.20 -0.11 0.61 0.05 0.25 -0.19
cj,k 0.39 0.78 0.27 0.64 0.30 0.70 0.30 0.70
dj,k 0.01 0.07 0.01 0.02 0.00 0.00 0.00 0.00

tested is quite efficient in this series, since all the three methods get similar results

as the supervised optimal one. ICE-LS could be taken as an alternative method to

CGOMSM-ABF, as they both work on Gaussian case, and get very close results. An

example of trajectories (smoothing) is given in Figure 3.9 which shows intuitively

very similar performance of all the three identification methods and also the optimal

restoration.

3.4.1.2 Non-Gaussian non-linear case

As last series shows the efficiency of all the three identification method on Gaussian

linear case of GCOMSM, this series is designed to test their performance on the

general non-Gaussian non-linear case of GCOMSM.

The parameters of p
(
yn+1
n

∣∣rn+1
n

)
which are supposed to be non-Gaussian in
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Figure 3.9: Trajectory example in series 1 (100 samples, smoothing).

this experiment are set as:

- Margins: f1 (yn) = Gamma {θ1 = 16, loc1 = −5, scale1 = 0.25},

f2 (yn) = Fisk {θ2 = 4, loc2 = −2.67, scale2 = 2.4}.

- Copulas: c1,1 {·, ·} = Gumbel {·, ·|α1,1 = 1.1},

c2,2 {·, ·} = Clayton {·, ·|α2,2 = 4.67},

c1,2 {·, ·} = c2,1 {·, ·} = Gaussian {·, ·|α1,2 = 0.45}.

See the detail of the parameterization of all margins and copulas in

Table C.1 and Table C.2 in Appendix C. p
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
=

N
(
aj,kxn + Bj,k

(
yn+1
n

)
,Vj,k

)
is set in this series, which completes the relation

in p (tn+1 |tn ). Bj,k

(
yn+1
n

)
= bj,kynyn+1 + dj,k is defined non-linear on yn, yn+1,

with simply one parameter bj,k and all the parameters are assigned as:

- aj,k: a1,1 = 0.2, a1,2 = 0.4, a2,1 = 0.6, a2,2 = 0.8,

- bj,k: b1,1 = 0.7, b1,2 = 0.5, b2,1 = 0.6, b2,2 = 0.9,

- Vj,k: V1,1 = V2,2 = 1.0, V1,2 = V2,1 = 0.8.
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The constants dj,k with ∀j, k ∈ {1, 2} are all set to be zero. The two margins

and a joint distribution, which has Gamma and Fisk as marginal distributions and

Gaussian as copula are displayed in Figure 3.10.

(a) Two marginal distributions.

(b) Joint distribution of
(
yn,yn+1|rn = 1, rn+1 = 2

)
.

Figure 3.10: The distributions of series 2 (non-Gaussian non-linear).
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The same settings (iteration, candidate forms) for GICE-LS, ICE-LS and

CGOMSM-ABF in series 1 are adopted in this series, restoration results are re-

ported in Table 3.8.

Table 3.8: Restoration results of series 2 (non-Gaussian non-linear).

MSE of observation: 27.123 Optimal GICE-LS ICE-LS CGOMSM-ABF

Filtering Error ratio 0.139 0.156 0.404 0.462
MSE 2.380 2.771 5.762 9.353

Smoothing Error ratio 0.084 0.103 0.378 0.456
MSE 2.290 2.631 5.750 9.273

Clearly from Table 3.8, when the case comes to non-Gaussian, non-linear,

GICE-LS is the most suitable method for identifying the GCOMSM compar-

ing to the other two methods. CGOMSM-ABF performs the worst, since it as-

sumes Gaussian in both p
(
yn+1
n

∣∣rn+1
n

)
and p

(
xn+1
n

∣∣yn+1
n , rn+1

n

)
(the regime of

G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
is linear on yn+1

n ), while ICE-LS can better take into ac-

count the consideration of the non-linear form of Bj,k

(
yn+1
n

)
. The very differ-

ence between CGOMSM-ABF and the other LS based methods is that CGOMSM-

ABF takes
(
RN

1 ,XYN
1

)
as a PMC where XYn = [X⊺

n Y⊺
n]

⊺ and XYN
1 =

{XY1, · · · ,XYN}. This assumption can be very sensible and practical in real appli-

cations. But under GCOMSM, the case is
(
RN

1 ,YN
1

)
is a PMC while

(
RN

1 ,XYN
1

)
can be not a PMC (for example under the setting in this experimental series). This

explains why ICE-LS gets better error ratio of estimated rN1 than CGOMSM-ABF.

Inevitably, like briefly illustrated in the Gaussian linear series, the automatic

selection process of GICE sometimes may choose other distributions but not the

optimal one. As listed in Table 3.9, the selection percentage of margins, and Table

3.10, the selection percentage of copulas in this series, Fisk is selected as the optimal

shape with 8% rate which originally should be Gamma distribution. But according

to the result, GICE still converges when the “wrong” shape is selected, since with

specific parameter estimated, the “wrong” shape may also fits the data well. This

situation exists in the copula selection too. An instance of this similarity is reported

in Figure 3.11 from one “wrong” estimated form case in the 100 Monte-Carlo ex-

periments, it has a very close PDF shape compared to true one illustrated in Figure
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3.10b. Nevertheless, the original margins and copulas are selected by GICE most

frequently in this series.

Table 3.9: Margin selection result of GICE in series 2.

Form Gamma Fisk Gaussian Laplace Beta Beta prime
f1 87% 12% 0% 1% 0% 0%
f2 1% 99% 0% 0% 0% 0%

Table 3.10: Copula selection result of GICE in series 2.

Form Gumbel Gaussian Clayton FGM Arch12 Arch14 Product
c1,1 96% 2% 1% 0% 0% 1% 0%

c1,2 = c2,1 34% 58% 4% 0% 0% 0% 0%
c2,2 2% 0% 96% 1% 1% 0% 0%

An example of error ratio tendencies with GICE and ICE iterations of estimated

RN
1 (using MPM criterion) in identification set is given in Figure 3.12. It shows

that GICE and ICE both converge after around 40 iterations, but ICE is not able

to well approximate p
(
yn+1
n

∣∣rn+1
n

)
.

The parameters estimated by GICE-LS are quite near to the true ones as listed

in Table 3.11 (average of the instances where the forms of the distribution are

exactly estimated) and Table 3.12. Estimated switch joint probabilities from GICE

are p1,1 = 0.474, p1,2 = p2,1 = 0.040, p2,2 = 0.445.

Table 3.11: Estimated parameters of p
(
yn+1
n

∣∣rn+1
n

)
in series 2.

Margins Copulas

f1 (Gamma) f2 (Fisk) c1,1
(Gumbel)

c1,2/c2,1
(Gaussian)

c2,2
(Clayton)

θ1 loc1 scale1 θ2 loc2 scale2 α1,1 α1,2/α2,1 α2,2

Estimates 13.72 -4.75 0.29 3.93 -2.60 2.30 1.15 0.46 4.46
True value 16.00 -5.00 0.25 4.00 -2.67 2.40 1.10 0.45 4.67

Table 3.12: Estimated parameters of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
in series 2.

Estimates True values
(j, k) (1,1) (1,2) (2,1) (2,2) (1,1) (1,2) (2,1) (2,2)
aj,k 0.27 0.41 0.69 0.81 0.20 0.40 0.60 0.80
bj,k 0.69 0.56 0.63 0.90 0.70 0.50 0.60 0.90
dj,k 0.00 -0.01 -0.13 -0.01 0.00 0.00 0.00 0.00
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Figure 3.11: “Wrong” estimated joint distribution with (Margins: Fisk,
Fisk; Copula: Gumbel).

Figure 3.12: Error ratio tendency of estimated RN
1 with GICE and ICE

iterations within same individual experiment in series 2.
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Finally, we display a trajectory example of
(
xN
1 ,yN

1

)
, with all estimated hidden

states restored by the parameters identified through all the three identification

methods in Figure 3.13. From this Figure, the superiority of GICE-LS over the

other methods on general GCOMSM data is clearly visible.

Figure 3.13: Trajectory example in series 2 (100 samples, smoothing).

3.4.2 Application of GICE-LS to non-Gaussian non-linear models

The efficiency of GICE-LS on identification of GCOMSM has been proved in pre-

views Sections. We would like to see how it performs on other non-Gaussian non-

linear data. This application means to approximate a non-Gaussian non-linear sys-

tem by GCOMSM, with parameter identified through GICE-LS, and also restored

by the optimal restoration method of the approximated GCOMSM.

3.4.2.1 On stochastic volatility data

Stochastic volatility model is a family of models used in the field of mathematical

finance. It models the volatility as a stochastic process and is widely used as an

approach to solve the shortcoming of the Black–Scholes model, in which the under-

lying volatility is always constant and unaffected by the changes, and it explains
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the “volatility smile” in a self-consistent way that the volatility has its realistic

dynamics [57], [58]. There are stochastic volatility models which formulate the dy-

namic volatility in different ways, for example Heston model [66], CEV model [48],

GARCH model [22] etc.

The article which proposes the CGOMSM-ABF [62] shows that switching Gaus-

sian Markov model can well approximate the non-linear non-Gaussian stochas-

tic volatility models. The associated optimal restoration to the approximated

CGOMSM for the stochastic volatility models can reach a very close performance

as Particle Filter [44], [30] on same stochastic volatility model but with much less

time consumption.

In this Section, we apply the identification method GICE-LS to approach the

stochastic volatility with the general GCOMSM and see the performance comparing

to CGOMSM-ABF of CGOMSM and the Particle filter. Two stochastic volatility

models are considered in this experimental series, one is the standard stochastic

volatility (SV) model [78], [69], [131], which is defined as

X1 = µ+ U1

Xn+1 = µ+ ϕ (Xn − µ) + σUn+1

Yn = β exp

(
Xn

2

)
Vn

, (3.27)

in which, the hidden state XN
1 is normally taken as log-volatility and observations

YN
1 is the so called mean corrected return. UN

1 , VN
1 are independent standard

normal white noises. µ. ϕ, σ represent the mean, persistence, and the volatility of

this hidden log-volatility process. The parameter β is the constant scaling factor.

A second stochastic volatility model which is extended from the canonical one, is

the asymmetric stochastic volatility (ASV) [65], [105], [106], [130], defined as

X1 = µ+ U1

Xn+1 = µ+ ϕ (Xn − µ) + σ

(
ρYn

β exp
(Xn

2

)λUn+1

)

Yn = β exp

(
Xn

2

)
Vn

. (3.28)
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These two stochastic volatility models are both generable HMM models.

SV model

The parameters in SV model in this experiment is set as µ = β = ϕ = 0.5,

and σ is got by
√

1− ϕ2 to ensure the stationarity (both mean and variance are

stationary) of XN
1 . We test the CGOMSM-ABF, ICE-LS, GICE-LS and the Particle

Filter on the same observations generated from this SV model. When carrying out

the three identification methods, we try different state numbers K of the switches.

The size of learning sample set for identification is 20000, while the testing data

set is of 1000 samples. Regarding especially GICE which assumes the distributions

of
(
yn+1
n |rn+1

n

)
is unknown, we prepare six candidate margin shapes {H1, · · · ,H6}

and seven candidate copula shapes {G1, · · · , G7} as in previous experiments. All

candidate forms are listed bellow.

- {H1, · · · ,H6}: {Gamma, Fisk, Gaussian, Laplace, Beta, Beta prime}.

- {G1, · · · , G7}: {Gumble, Gaussian, Clayton, FGM, Arch12, Arch14,

Product}.

The regime G
(
xn+1

∣∣xn,yn+1
n , rn = j, rn+1 = k

)
where j, k ∈ Ω assumed for the

approximated GCOMSM is with the form Aj,k

(
yn+1
n

)
xn + Bj,k

(
yn+1
n

)
, which has

both Aj,k

(
yn+1
n

)
and Bj,k

(
yn+1
n

)
linear forms conditionally on xn, yn, yn+1 for

GICE. Which means that Aj,k

(
yn+1
n

)
= aj,k and Bj,k

(
yn+1
n

)
= bj,kyn+ cj,kyn+1+

dj,k with aj,k, bj,k, cj,k, dj,k the parameters needed to be estimated. 100 iterations

is set for EM in CGOMSM-ABF, ICE and GICE.

As there is no exact filtering for SV model, the result of Particle Filter can

be a reference to see if the switching models fit for the SV model or not. 1500

particles9 are used for Particle Filter in the result reported in this experiment since

empirically we found tiny difference between the performances of Particle Filter

with more particles. The MSE results of all the methods are reported in Table

3.13.

Asymmetric SV model
9PF behaves asymptotically for this particle number in this experimental series.
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Table 3.13: MSE results of four methods on SV model (PF represents the Particle
Filter).

K 2 3 4 5 PF

Filtering
CGOMSM-ABF 0.71 0.69 0.70 0.70

0.70ICE-LS 0.73 0.70 0.70 0.70
GICE-LS 0.79 0.70 0.70 0.69

Smoothing
CGOMSM-ABF 0.69 0.67 0.67 0.67

0.67ICE-LS 0.71 0.68 0.67 0.67
GICE-LS 0.79 0.69 0.69 0.69

We take the same parameter setting of µ, β, ϕ, σ as SV for ASV model, the extra

parameters are assigned by ρ = −0.5 and λ =
√
1− ρ2 (to ensure the stationarity

of XN
1 ). All the conditions set for identification, restoration, and sample size are

the same as the experiment on SV model. Results of the four methods applied on

the simulated data following this ASV are reported in Table 3.14.

Table 3.14: MSE results of four methods on ASV model.

K 2 3 4 5 7 PF

Filtering
CGOMSM-ABF 0.60 0.59 0.58 0.58 0.58

0.57ICE-LS 0.60 0.61 0.60 0.58 0.58
GICE-LS 0.66 0.59 0.59 0.59 0.58

Smoothing
CGOMSM-ABF 0.57 0.56 0.54 0.54 0.54

0.54ICE-LS 0.58 0.59 0.58 0.56 0.55
GICE-LS 0.66 0.58 0.58 0.57 0.56

From the result of these two experiments on SV and ASV models, we can see

that switching Markov models works well on approximating the stationary stochas-

tic volatility models. Their exact filtering or smoothing results are quite close to

Particle Filter. Still, we see the differences of the performance between different

identification methods. Before explaining their performance, let us recall simulta-

neously the characteristics of the three identification methods. CGOMSM-ABF is

specified for CGOMSM which is a Gaussian linear GCOMSM, ICE-LS is for Gaus-

sian GCOMSM which can be non-linear, and GICE-LS is for GCOMSM which can

be non-Gaussian non-linear. No matter what the value K is, the results in Table

3.13 and 3.14 show that CGOMSM-ABF is always the most efficient identification

method on these two stochastic volatility models. It indicates that Gaussian mix-
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ture is a very suitable approximation of p
(
xn+1
n ,yn+1

n

)
for SV models under the

settings in this experiment. As G
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
is set to be linear on xn,

both CGOMSM-ABF and ICE-LS identification methods serve for CGOMSM. But

partial general consideration of dependence that
(
RN

1 ,XYN
1

)
in the identification

procedure may lead to the better performance of CGOMSM-ABF comparing to

ICE-LS. Regarding the identification performance between ICE-LS and GICE-LS,

when the Gaussian linear case fits well for the true system, ICE-LS works better than

GICE-LS which lacks knowledge of the shape of p
(
yn+1
n

∣∣rn+1
n

)
. Implemented by

C programming language, the smoothing for CGOMSM in CGOMSM-ABF takes

0.0038 seconds on a 3.7GHz CPU, while Particle Filter takes 0.56s seconds 10.

The smoothing for GCOMSM costs around 0.40 seconds implemented by python

3.6. Though different programming language based implementations make the time

consumption incomparable at present, both as exact restoration, the smoothing for

GCOMSM should consume time not far (could be a little more due to the calcu-

lation of copulas) from CGOMSM-ABF if implemented in the same programming

language. To conclude, we sum up some interesting points from these two experi-

mental series that

1. Switching Markov model can be a good approach for stationary stochastic

volatility models, the advantage of this approach is that exact restoration

can be derived which is normally less time consuming than MCMC based

restoration methods.

2. Working on CGOMSM, CGOMSM-ABF and ICE-LS are alternative iden-

tification methods of each other, but since CGOMSM-ABF has more gen-

eral assumption in its partial process (which is actually of the prop-

erty of CGPMSM), in practice, it may work better than ICE-LS if

G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
is linear on yn+1

n .

3. With less knowledge, GICE-LS could be the least efficient method when it

comes to the case that linear Gaussian well fits distributions. But it still gets

the result not too far away from the other identification methods.
10The original program is provided by the author of [62]
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Figure 3.14: Trajectory example of SV model (60 samples, K=5).

Two trajectory instances corresponding to these two SV models are displayed

in Figure 3.14 and 3.15. In the experiment of Figure 3.14, for K = 5 different

margins, GICE-LS chose { Gaussian, Beta prime, Gaussian, Laplace, Beta prime

}. In Figure 3.15, theK = 7 different chosen margins by GICE-LS are { Beta prime,

Gamma, Laplace, Gaussian, Gamma, Gaussian, Gaussian, }. The chosen copulas

are too many to list, but they are also not all Gaussian. We see in both figures

that the assistant artificial switches estimated from CGOMSM-ABF, ICE-LS and

GICE-LS can be still very close to each other11 though the estimated distributions of

p
(
yn+1
n

∣∣rn+1
n

)
are quite different between GICE-LS and the other two identification

methods.

11The classes of switches are randomly distributed from K-means, so most of the time, the class
labels of two individual experiments are different.
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Figure 3.15: Trajectory example of ASV model (60 samples, K=7).

3.4.2.2 On Kitagawa data

To better understand these methods and their properties, we also test all of the

methods on the non-Gaussian non-linear model originally used in [103], and has

been reconsidered by [80] and [79] for testing the performance of MCMC based

filter. Here we call this model “Kitagawa model” (KTGW). In addition, we test

the methods on the transformed semi-linear case of KTGW, called “Kitagawa semi-

linear model” (KTGWSL) later which has been studied in [39] as supplementary.

KTGW model is defined as

Xn+1 = 0.5Xn +
25Xn

1 + X2
n

+ 8 cos (1.2n+ 1) + Vn+1

Yn+1 =
X2

n+1

20
+ Un+1

, (3.29)

where Vn+1 and Un+1 are Gaussian white noise sequences, and the KTGWSL
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model is defined just with a change of non-linear measurement to a linear one.

Xn+1 = 0.5Xn +
25Xn

1 + X2
n

+ 8 cos (1.2n+ 1) + Vn+1

Yn+1 = 0.5Xn+1 + Un+1

. (3.30)

They are both non-stationary models.

For the experimental series on Kitagawa models, learning sample set for identi-

fication is of 20000 points and testing sample set is of 1000 samples. All settings of

the identification methods and Particle Filter are the same as previous experimental

series on stochastic volatility models if no specification declared.

KTGW model

We assign the parameters of KTGW with X1 ∼ N {0, 1}, Vn+1 ∼ N {0, 0.5}

and Un+1 ∼ N {0, 2}. Regarding the GCOMSM approximation here (in the identi-

fication of GICE-LS and ICE-LS), we consider a non-linear form on yn, yn+1 which

is a bit similar to the regime of KTGW that

Aj,k

(
yn+1
n

)
= aj,kyn + bj,k;

Bj,k,n
12 (yn+1

n

)
= cj,k

√
|yn+1|+ dj,k cos (1.2 (n+ 1) + ej,k) + fj,k.

(3.31)

The exact restoration results of all applied identification methods are reported in

Table 3.15 with the restorations of Particle Filter in the rightmost column of the

Table. We see that the Markov switching model is less efficient for approaching

Table 3.15: MSE results of four methods on KTGW model.

K 2 3 4 5 7 PF

Filtering
CGOMSM-ABF 105.43 98.96 99.23 98.98 99.31

8.43ICE-LS 41.04 25.96 22.72 20.09 19.84
GICE-LS 39.65 34.96 22.45 19.77 19.25

Smoothing
CGOMSM-ABF 110.87 98.06 99.92 99.22 100.31

0.83ICE-LS 41.19 22.97 4.55 7.54 6.58
GICE-LS 39.95 34.75 4.59 7.81 7.55

KTGW model than SV models, as KTGW is non-stationary. Moreover, the regu-
12Here, Bj,k,n is not time independent, but the parameters which need to be estimated are still

time-independent.
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larity that larger K set gets better restoration is no more held under non-stationary

model. Actually, from Table 3.15, we find better result of both ICE-LS and GICE-

LS when K = 4 than K = 5 or K = 7.

Assuming both stationary and linear, CGOMSM-ABF turns out to be nonef-

fective for KTGW model, while ICE-LS and GICE-LS can still work for restoration

although can not be as efficient as the supervised Particle Filter. This implies

the significance of the generalization from CGOMSM to GCOMSM, especially the

extension of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
which becomes much more flexible in the pro-

posed GCOMSM. A trajectory example is illustrated in Figure 3.16, which shows

the performances of all methods comparing to the true hidden states and observa-

tions.

Figure 3.16: Trajectory example of KTGW model (60 samples, K=7).

KTGWSL model

Regarding the KTGWSL model, we set X1, Vn+1 and Un+1 follow the same

distribution as the settings for KTGW model. For model identification, we consider
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two forms of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
for comparison. One is the linear form that

has been applied already on SV models, which is defined by

Aj,k

(
yn+1
n

)
= aj,k

Bj,k

(
yn+1
n

)
= bj,kyn + cj,kyn+1 + dj,k

(3.32)

The other one is the non-linear form as defined in (3.31) for KTGW experiment.

Results of ICE-LS and GICE-LS applied are reported in Table 3.16, while the

performance of CGOMSM-ABF and Particle Filter are reported in Table 3.17.

Comparing the two subtables in Table 3.16, non-linear assumption of

G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
gets better restoration than linear assumption. This veri-

fies again the importance of the appropriate chosen form of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
,

which can be varied in GCOMSM but not CGOMSM. In addition, the best result

got in both Table 3.16a and Table 3.16b are thorough GICE-LS. This could be cause

by the generality of p
(
yn+1
n

∣∣rn+1
n

)
considered in the identification of GICE. It can

be also inferred by comparing the best restoration of GICE-LS in Table 3.16a and

the best restoration of CGOMSM-ABF in Table 3.17. Although not so significant,

the flexibility of the distribution of p
(
yn+1
n

∣∣rn+1
n

)
assumed in GCOMSM make im-

provement of the fitness when approximate the non-stationary KTGWSL models

by switching Markov model. A trajectory example of this experimental series is

given in Figure 3.17.

In summary, the result of these two experimental series on KTGW models show

that

1. Switching Markov models could be less efficient when approaching the non-

stationary non-Gaussian non-linear system than a stationary one. Under

non-stationary case, more switching classes can not always leads to better

approximation. So, when we chose K, it is not the larger the better.

2. The flexible consideration of p
(
yn+1
n

∣∣rn+1
n

)
and G

(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
in

the proposed GCOMSM contribute to the improvement from CGOMSM of

the fitness to the non-Gaussian non-linear model. In practice, the non-linear

extension from CGOMSM to GCOMSM could be more significant than the
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Table 3.16: MSE results of ICE-LS and GICE-LS on KTGWSL model.

(a) Linear G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
assumption.

K 2 3 4 5 7

Filtering ICE-LS 6.81 6.13 6.10 4.83 4.70
GICE-LS 6.79 6.25 5.80 4.80 4.63

Smoothing ICE-LS 6.80 6.96 5.68 4.15 3.72
GICE-LS 6.79 6.05 5.46 4.02 3.61

(b) Non-linear G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
assumption.

K 2 3 4 5 7

Filtering ICE-LS 6.77 2.93 3.32 2.87 2.85
GICE-LS 6.51 4.00 3.00 2.93 2.75

Smoothing ICE-LS 5.85 2.71 3.05 2.32 2.43
GICE-LS 5.76 3.56 2.76 2.37 2.26

Table 3.17: MSE results of CGOMSM-ABF on KTGWSL model.

K 2 3 4 5 7 PF
Filtering 5.98 5.62 5.36 4.72 4.90 1.69

Smoothing 5.37 5.29 4.56 3.71 4.03 1.32

non-Gaussian extension of p
(
yn+1
n

∣∣rn+1
n

)
.

3. CGOMSM is a special case of GCOMSM, but ICE-LS and CGOMSM-ABF

is more accurate identification method than GICE-LS as they have less con-

sideration of distribution shapes. One may need to consider the balance of

applying a suitable model and keep accuracy of the identification when dealing

with a practical issue.

When wondering how to chose the identification methods among CGOMSM-

ABF, ICE-LS and GICE-LS, a simple way is to observe the restoration MSE of

learning sample set and chose the method who gets the minimum MSE. Normally,

the MSE of learning sample set is close to the result got from the testing set.
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Figure 3.17: Trajectory example of KTGWSL model (60 samples, K=7).

3.5 Conclusion

The CGOMSM model introduced in Chapter 2 is extended to a more general switch-

ing model called “Generalized Conditionally Observed Markov Switching Model”

(GCOMSM). GCOMSM can incorporate any distribution of p
(
yn+1

∣∣yn, rn+1
n

)
and

includes non-linear formation of the regime of G
(
xn+1

∣∣xn, rn+1
n ,yn+1

n

)
on yn and

yn+1, while still keeping the advantage of CGOMSM that the optimal restorations

are feasible.

This Chapter defines the new general GCOMSM, gives the model simulation

method, and derives the associated optimal restorations (filtering and smoothing).

Two different examples of data simulation and optimal restorations of GCOMSM

are given. One is with special Gaussian linear settings which degenerates the model

to the CGOMSM, the other is with general non-Gaussian non-linear settings to

show the interest of the extension in GCOMSM. Moreover, a GCOMSM identifi-

cation method based on the recent “Generalized Iterative Conditional Estimation”
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(GICE) and the Least-square (LS) principles from sample data set is proposed,

called “GICE-LS”. The identification ability of GICE-LS for GCOMSM is verified

by also two experiments on Gaussian linear and non-Gaussian non-linear GCOMSM

data respectively with comparison to a variant identification method called “ICE-

LS” which combines the classic “Iterative Conditional Estimation” (ICE) and LS

principles assuming that p
(
yn+1
n

∣∣rn+1
n

)
is Gaussian; and also to the identification

method of CGOMSM called CGOMSM-ABF. Results show that the identification

and restoration methods which suit for Gaussian linear switching model are no more

valid for approximating the general GCOMSM and getting its appropriate restora-

tion. Finally, experiments on the restorations for GCOMSM approximation identi-

fied by GICE-LS and ICE-LS for other generable non-Gaussian non-linear systems

(stochastic volatility models and Kitagawa models) are conducted, with comparison

to the restoration for CGOMSM approximation identified by CGOMSM-ABF, and

by Particle Filter. The results show that GCOMSM can perform better when ap-

proximating a non-stationary non-Gaussian non-linear system than CGOMSM. Ap-

proaching an unknown non-Gaussian non-linear system with GCOMSM by GICE-

LS, then restoring by the optimal restorations of the approximated GCOMSM can

be an alternative of MCMC based methods under high dimension state-space con-

dition, since MCMC based methods will become much more time consuming when

large amount of particle is required.
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Conclusion and perspectives

Switching Markov models are widely used in many fields to describe the dynamic

state-space systems. When applying switching Markov models on imitating real sys-

tems, the issues of learning their suitable parameters and data restoration (filtering

and smoothing) are indispensable. This dissertation focuses on finding solutions for

these two problems of recent switching Markov models without taking use of the

Markov Chain Monte-Carlo (MCMC) method which is the generic train of thought

when dealing with these problems.

The main contribution of this dissertation is two folds:

1. An unsupervised parameter estimation method named “Double EM” is pro-

posed for the recent Conditionally Gaussian Pairwise Markov Switching Model

(CGPMSM) which is based on two successive Expectation-Maximization

(EM) algorithms:

a) EM for discrete state-space Pairwise Markov Chain (PMC), with a mild

approximation that the pair of switches and observations,
(
RN

1 ,YN
1

)
,

has the Markov property in CGPMSM.

b) An extension of the EM algorithm for constant parameter Pairwise Gaus-

sian Markov Model (GPMM) to switching case, under condition that the

switches are known, called “Switching EM”.

Besides, two restoration approaches were proposed for CGPMSM:

a) one is based on parameter modification to a sub-model known as Con-

ditionally Gaussian Observation Markov Switching Model (CGOMSM),

called “CGO-Appro”.
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b) A second one is based on EM algorithm assuming that
(
RN

1 ,YN
1

)
is a

PMC, called “EM-Appro”.

Simulations were conducted to evaluate all proposed methods. Results show

that Switching EM can furnish good estimation of parameters for Gaussian

switching case. The two restoration approaches are superior to other param-

eter modification based restorations and can get competitive results w.r.t.

Particle Filter. Integrally, the Double EM algorithm combined with the

EM-Appro works well on solving the unsupervised restoration problem of

CGPMSM. Its performance even has great chance to surpass the other sub-

optimal supervised restoration methods. In addition, the effects of observation

means and noise level defined by covariances on restoration are studied in the

meanwhile.

2. Copulas are introduced in the CGOMSM and fused to a more general

one, called “Generalized Conditionally Observed Markov Switching Model”

(GCOMSM). The main advantage of this general switching Markov model is

that, it incorporates more flexible distributions and regimes while still allows

the fast optimal restoration as CGOMSM does. The extensions are on two

aspects that

a) Introduction of copulas in the distribution of observations condition-

ally on switches, p
(
yn+1
n

∣∣rn+1
n

)
, enriches the distributions in GCOMSM

which are always assumed Gaussian or Gaussian mixtures in the classic

CGOMSM.

b) The auto-regressive function G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
is linear on xn, but

can be of any form on yn and yn+1 in GCOMSM, whereas they are all

linear defined in the classic CGOMSM.

Moreover, an identification method called “GICE-LS” is proposed to learn the

distributions and parameters of time-independent GCOMSM from its sample

data set
(
xN
1 ,yN

1

)
. GICE-LS is based on two principles:

a) The “Generalized Iterative Conditional Estimation” principle (GICE)
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for identifying p
(
yn+1
n

∣∣rn+1
n

)
from candidate forms and estimating the

associated parameters.

b) The Least-Square (LS) principle for estimating the parameters of the

supposed regime form of G
(
xn+1

∣∣xn,yn+1
n , rn+1

n

)
.

Experiments verify the capability of GCOMSM to work on data under flexible

distributions and non-linear regimes. The GICE-LS can get proper distribu-

tions and parameters of GCOMSM and the associated optimal restorations

work well on the data simulated from GCOMSM model, while the methods of

identification and restorations for the inchoate CGOMSM turn out to be an

improper choice for the data following this more general system settings. The

“identification-restoration” method combining GICE-LS and optimal restora-

tion of GCOMSM is also tested on other generable non-Gaussian non-linear

systems (the Stochastic Volatility and Kitagawa models), results show the

merits of the extensions embedded in GCOMSM comparing to CGOMSM.

Due to the limitation of time, the efficiency of proposed methods in this disserta-

tion has not been evaluated by real data applications. Also, the proposed methods

may still have some inadequacies and maybe some unnecessary assumptions. Con-

sidering the current state of the methods, the future work may include:

1. For the unsupervised restoration of CGPMSM

a) The performance of Double EM is dependent on the accuracy of the

realization of RN
1 from the first EM principle applied, which can be

further replaced by the probability of p
(
rn
∣∣yN

1

)
, to reduce the influence

brought by arbitrariness of the MPM criterion on Switching EM.

b) In this work, the parameter initialization of Switching EM is assumed to

be not very far away from the true one. An initialization method will be

incorporated or developed later for completing the Double EM algorithm

for suiting the real issues.

c) The proposed Double EM can not work on the CGOMSM, for which, we

may find another parameter estimation method other than applying the
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“EM” principle.

2. For the identification of newly proposed GCOMSM model

a) Only parameter estimations of Arn+1
n

(
yn+1
n

)
and Brn+1

n

(
yn+1
n

)
in equa-

tion (3.18) are considered in GICE-LS, as they are already sufficient for

the restoration under a GCOMSM model. Further, we can include the

estimation of Vrn+1
n

, since the fully consideration of the parameteriza-

tion of
(
xn+1|xn, rn+1

n ,yn+1
n

)
may also influent the estimation of each

individual parameter.

b) In the implementation of GICE, the Maximum-Likelihood (ML) prin-

ciple is used for all parameter estimation of the stationary distribution

p
(
yn+1
n

∣∣rn+1
n

)
. In practice, it can be replaced by other alternative meth-

ods. For example, to get the parameters of some marginal distributions,

the moments method can be considered; and to get the estimation of

copulas, the empirical calculation of Kendall’s tau, τ can replace the

calculation of α [81]. They are all worth a try for comparison. In addi-

tion, we use the semi-parametric method to estimate the parameters of

copulas. It might be also interesting to try the other copula estimation

methods, such as non-parametric methods to further improve the GICE

efficiency [10], [73].

c) The model and methods proposed in this dissertation are easy to ex-

tend to higher dimensional state-space, at least when parameters are

known. Their interest with respect to MCMC based methods could in-

crease when the state-space dimension grows, since under high dimension

circumstance, much more particles will be required by MCMC methods.
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Appendix A

Maximization of the likelihood

function in Switching EM

The likelihood (2.47) we want to maximize in the Switching EM concerns the pa-

rameter Θ4 as

L(Θ4) =

N−1∑
n=1

Ln

(
Θ4(rn+1

n )
)
, (A.1)

with

Ln

(
Θ4(rn+1

n )
)
= E

[
lnp
(
z′n+1

∣∣z′n )] , (A.2)

where z′n+1 = zn+1 − Mz(rn+1) and z′n = zn − Mz(rn). p
(
z′n+1 |z′n

)
is Gaussian.

Specifically, when rn = j, rn+1 = k:

Ln (Θ4(rn = j, rn+1 = k))

=E

{
ln
[

1√
(2π)q|Qj,k|

exp

(
−1

2

(
z′n+1 −F j,kz′n

)⊺Qj,k
−1
(
z′n+1 −F j,kz′n

))]}
=− 1

2

{
qln(2π) + ln|Qj,k|+ tr

[
Qj,k

−1E
((

z′n+1 −F j,kz′n
) (

z′n+1 −F j,kz′n
)⊺)]}

=− 1

2

{
qln(2π) + ln|Qj,k|+ tr

[
Qj,k

−1Cz′
n+1,z′

n+1

]
− tr

[
Qj,k

−1F j,k

(
Cz′

n+1,z′
n

)⊺]
− tr

[
Qj,k

−1Cz′
n+1,z′

nF j,k
⊺
]
+ tr

[
Qj,k

−1F j,kC
z′
n,z′

nF j,k
⊺
]}

,

(A.3)

in which

Cz′
n,z′

n = E
[
z′nz′tn|yN

1

]
=

x̂n|N − Mx(rn)

yn − My(rn)


x̂n|N − Mx(rn)

yn − My(rn)


t

+

Pn|N 0

0 0

 , (A.4)
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Cz′
n+1,z′

n = E
[
z′n+1z′tn|yN

1

]
=

x̂n+1|N − Mx(rn+1)

yn+1 − My(rn+1)


x̂n|N − Mx(rn)

yn − My(rn)


t

+

Cn+1,n|N 0

0 0

 ,
(A.5)

as defined in (2.51) and (2.52).

Taking partial derivative of the likelihood function with respect to F j,k, we get

(2.53), and make it equal to zero we have

N−1∑
n=1

δn (j, k)

{
−∂tr

[
Qj,k

−1F j,k

(
Cz′

n+1,z′
n

)⊺]
− ∂tr

[
Qj,k

−1

Cz′
n+1,z′

nF j,k
⊺
]
+ ∂tr

[
Qj,k

−1F j,kC
z′
n,z′

nF j,k
⊺
]}/

∂F j,k

=

N−1∑
n=1

δn (j, k)
{
−
((

Cz′
n+1,z′

n

)⊺
Qj,k

−1
)⊺

−Qj,k
−1Cz′

n+1,z′
n

+Qj,k
−1F j,kC

z′
n,z′

n +Qj,k
−tF j,k

(
Cz′

n,z′
n

)⊺}
=

N−1∑
n=1

δn (j, k)
{
−2Qj,k

−1
(
Cz′

n+1,z′
n −F j,kC

z′
n,z′

n

)}
=0.

(A.6)

So we get F̂ j,k = C̃
z′
n+1,z′

n

j,k

(
C̃

z′
n,z′

n
j,k

)−1
, with C̃

z′
n,z′

n
j,k and C̃

z′
n+1,z′

n

j,k where

C̃
z′
n,z′

n
j,k =

N−1∑
n=1

δn (j, k)C
z′
n,z′

n ;

C̃
z′
n+1,z′

n

j,k =

N−1∑
n=1

δn (j, k)C
z′
n+1,z′

n ;

C̃
z′
n+1,z′

n+1

j,k =

N−1∑
n=1

δn (j, k)C
z′
n+1,z′

n+1 ,

(A.7)

as defined in (2.56).

Also, taking partial derivative of the likelihood function (A.3) with respect to
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Qj,k and making it equal to zero we have

N−1∑
n=1

δn (j, k)

{
∂ln|Qj,k|+ ∂tr

[
Qj,k

−1Cz′
n+1,z′

n+1

]
− ∂tr

[

Qj,k
−1F j,k

(
Czn+1,zn

)⊺ ]− ∂tr
[
Qj,k

−1Cz′
n+1,z′

nF j,k
⊺
]
+

∂tr
[
Qj,k

−1F j,kC
z′
n,z′

nF j,k
⊺
]}/

∂Qj,k

=Card (j, k)Qj,k
−1 +

N−1∑
n=1

δn (j, k)
{
−Qj,k

−1
(
Cz′

n+1,z′
n+1

)⊺
Qj,k

−1 +Qj,k
−1Cz′

n+1,z′
nF j,k

⊺Qj,k
−1 +Qj,k

−1F j,k(
Cz′

n+1,z′
n

)⊺
Qj,k

−1 −Qj,k
−1F j,k

(
Cz′

n,z′
n

)⊺
F j,k

⊺Qj,k
−1
}

=0.

(A.8)

After simplification, we have

Card (j, k)Qj,k +
N−1∑
n=1

δn (j, k)
{
Cz′

n+1,z′
nF j,k

⊺+

F j,k

(
Cz′

n+1,z′
n

)⊺
−Cz′

n+1,z′
n+1 −F j,kC

z′
n,z′

nF j,k
⊺
}
= 0.

(A.9)

Bringing F̂ j,k into expression, we get

Q̂j,k =
1

Card (j, k)

(
C̃

z′
n+1,z′

n+1

j,k − F̂ j,k

(
C̃

z′
n+1,z′

n

j,k

)t)
. (A.10)
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Appendix B

Particle filter for CGPMSM

Given the observations and parameters of CGPMSM, we are interested in two op-

timal problems:

1. Filtering: Obtain the filtering distribution p (rn,xn |yn
1 ), and get the state

estimation E [xn |yn
1 ].

2. Smoothing: Obtain the smoothing (fixed interval) distribution

p
(
rn,xn

∣∣yN
1

)
, and get the state estimation E

[
xn

∣∣yN
1

]
.

If we are able to sample M random samples called particles{
(rn(m)

1 ,xn(m)

1 );m = 1, . . . ,M
}

according to p (rn1 ,xn
1 |yn

1 ), then an empirical

estimation of this distribution would be given by

pM (rn1 ,xn
1 |yn

1 ) =
1

M

M∑
m=1

δ
(rn(m)

1 ,xn(m)
1 )

(drn1 , dxn
1 ) , (B.1)

and also a corollary, one can easily estimate the mean of function f (rn,xn |yn
1 ),

noted by I
(
fn|n

)
IM
(
fn|n

)
=

∫
f (rn,xn |yn

1 ) pM (rn,xn |yn
1 ) drndxn

=
1

M

M∑
m=1

f
(
r(m)
n ,x(m)

n |yn
1

)
.

(B.2)

This estimate is unbiased and from strong law of large numbers (SLLN), IM
(
fn|n

)
converges almost surely toward I

(
fn|n

)
as M → +∞.

Solution to estimate the p (rn1 ,xn
1 |yn

1 ) and to get IM
(
fn|n

)
consist of using the

well-know importance sampling method. Let us introduce an arbitrary importance

distribution π (rn1 ,xn
1 |yn

1 ) and p (rn1 ,xn
1 |yn

1 ) > 0 implies π (rn1 ,xn
1 |yn

1 ) > 0. Then
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I
(
fn|n

)
=

Eπ(rn1 ,xn
1 |yn

1 )p
[f (rn,xn |yn

1 ) , ω(rn1 ,xn
1 )]

Eπ(rn1 ,xn
1 |yn

1 )
[ω(rn1 ,xn

1 )]
(B.3)

where the importance weight is equal to

ω(rn1 ,xn
1 ) =

p (rn1 ,xn
1 |yn

1 )

π (rn1 ,xn
1 |yn

1 )
, (B.4)

If we have M random samples
{
(rn(m)

1 ,xn(m)

1 );m = 1, . . . ,M
}

distributed according

to π (rn1 ,xn
1 |yn

1 ), then a Monte Carlo estimate of I
(
fn|n

)
is given by:

IM
(
fn|n

)
=

M∑
m=1

f
(
r(m)
n ,x(m)

n |yn
1

)
ω
(

rn(m)

1 ,xn(m)

1

)
M∑

m=1

ω
(

rn(m)

1 ,xn(m)

1

)
=

M∑
m=1

ω̃n((m))

1 f
(
r(m)
n ,x(m)

n |yn
1

)
,

(B.5)

where the normalized importance weights ω̃n((m))

1 are equal to

ω̃n((m))

1 =
ω
(

rn(m)

1 ,xn(m)

1

)
M∑

m=1

ω
(

rn(m)

1 ,xn(m)

1

) . (B.6)

B.1 Particle Filter

Under CGPMSM, it is possible to reduce the problem of estimating p (rn,xn |yn
1 )

to sampling from p (rn1 |yn
1 ), since p (rn1 ,xn |yn

1 ) = p (rn1 |yn
1 ) p (xn |yn

1 , rn1 ), where

p (xn |yn
1 , rn1 ) is Gaussian, and can be evaluated by Kalman filter. This simplifica-

tion is the so called variance reduction in [43].
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So, the estimation of I
(
fn|n

)
can be simplified to

IM
(
fn|n

)
=

M∑
m=1

E
p
(

xn

∣∣∣yn
1 ,rn

(m)
1

) [f (r(m)
n ,xn |yn

1

)]
ω
(

rn(m)

1

)
M∑

m=1

ω
(

rn(m)

1

) (B.7)

where

ω(rn1 ) =
p (rn1 |yn

1 )

π (rn1 |yn
1 )
. (B.8)

B.1.1 Sequential Importance Sampling

According to the structure of CGPMSM, we can rewrite the importance function

at time n as follows:

π (rn1 |yn
1 ) = π (r1 |y1 )

π (r2,y2 |r1,y1 )

π (y2 |y1 )
. . .

π
(
rn,yn

∣∣rn−1
1 ,yn−1

1

)
π
(
yn

∣∣yn−1
1

)
= π (r1 |y1 )

n∏
k=2

π
(
rk,yk

∣∣∣rk−1
1 ,yk−1

1

)
π
(

yk

∣∣∣yk−1
1

) ,

(B.9)

so that π (rn1 |yn
1 ) admits π

(
rn−1
1

∣∣yn−1
1

)
as marginal distribution at time n − 1.

We can propagate the estimated distribution of p
(
rn−1
1

∣∣yn−1
1

)
in time without

modification, and so as the simulated particles
{

rn−1(m)

1 ;m = 1, . . . ,M
}

. Such an

importance function allows us to compute the importance weight recursively with

ω(rn1 ) = ω
(
rn−1
1

)
ωn, where the incremental weight ωn is given by

ωn =
p
(
rn,yn

∣∣rn−1
1 ,yn−1

1

)
p
(
yn

∣∣yn−1
1

)
π
(
rn
∣∣rn−1

1 ,yn
1

)
∝
p
(
rn,yn

∣∣rn−1
1 ,yn−1

1

)
π
(
rn
∣∣rn−1

1 ,yn
1

) .

(B.10)

B.1.2 Importance distribution and weight

There are infinite possible choices for π (rn1 |yn
1 ), the only condition is that it should

include the one of p (rn1 |yn
1 ), that is the support of p (rn1 ). To choose a proposal

that minimizes the variance of the importance weights at time n, given rn−1
1 and yn

1
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as the importance weight, the optimal importance distribution is p
(
rn
∣∣rn−1

1 ,yn
1

)
.

It can be computed with

p
(
rn = k

∣∣rn−1
1 ,yn

1

)
=
p
(
yn

∣∣rn−1
1 , rn = k,yn−1

1

)
p (rn = m |rn−1 )

p
(
yn

∣∣rn−1
1 ,yn−1

1

) . (B.11)

The associate importance weight computed following (B.10) is

ωn ∝
p
(
rn,yn

∣∣rn−1
1 ,yn−1

1

)
p
(
rn
∣∣rn−1

1 ,yn
1

) ∝ p
(
yn

∣∣rn−1
1 ,yn−1

1

)
. (B.12)

As RN
1 is Markov chain, we have

p
(
yn

∣∣rn−1
1 ,yn−1

1

)
=

K∑
k=1

p
(
yn

∣∣rn−1
1 , rn = k,yn

1

)
p (rn = k |rn−1 ) . (B.13)

We can also choose prior distribution p (rn |rn−1 ) as importance distribution,

then the associate importance weight is

ωn ∝
p
(
rn,yn

∣∣rn−1
1 ,yn−1

1

)
p
(
rn
∣∣rn−1

1

)
∝ p

(
yn

∣∣rn−1
1 , rn = k,yn−1

1

)
.

(B.14)

B.1.3 Sampling importance resampling (SIR)

Assuming that before we have weighted distribution p̃M (rn1 |yn
1 ) =∑M

m=1 ω̃
(m)
n δ

r̃n(m)
1

(drn1 ) with particles r̃n(m)

1 , and after sampling from p̃M (rn1 |yn
1 )

M times, we get new particles rn(m)

1 , and have all weights become 1, the estimated

distribution becomes

p̂M (rn1 |yn
1 ) =M−1

M∑
m=1

δrn(m)
1

(drn1 ) . (B.15)

Resampling allows reallocating particles from low-density regions into high-density

ones making thus a more optimal use of available articles.
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B.2 Particle Smoother

The simulation based filter can be straightforwardly extended to smoothing. As we

have the Monte Carlo approximation of p
(
rN1
∣∣yN

1

)
that

p̂M
(
rN1 |yN

1

)
=M−1

M∑
m=1

δrN(m)
1

(
drN1

)
. (B.16)

Therefore, the estimation of the marginal distribution is

p̂M
(
rn1 |yN

1

)
=M−1

M∑
m=1

δrn(m)
1

(drn1 ) . (B.17)

However, this direct extension suffers from the so-called sample depletion problem,

which means that the trajectories have been resampled N − n times and it causes

a loss of diversity of particles [45].
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Appendix C

Margins and copulas used in

this dissertation

The standard form of marginal distribution studied in this dissertation are listed

in Table C.1. Parameter set of present distributions are denoted by {θ, loc, scale},

where “loc”,“scale” represent the location and scale of the distribution respectively

from its standard form. In detail, loc and scale transform a distribution from

standard one by y = (y − loc)/scale and the pdf f = f/scale. “θ” denotes the

parameters other than loc and scale, here can be absent, when the distribution

is only defined by loc and scale; θ1, if only one parameter besides loc and scale

presents (maybe replaced by θ); or
{
θ1, θ2

}
if two parameters present.

Table C.1: Marginal distributions studied in this dissertation.

Name cdf F pdf f parameter θ
Gamma1 F =

γ(θ1,y)
Γ(θ1)

f = yθ
1−1exp(−y)

Γ(θ1)
θ1 > 0

Fisk2 F = 1

1+y−θ1
f = θ1yθ

1−1

(1+yθ1)
2 θ1 > 0

Gaussian3 F = 1
2

(
1 + erf

(
y√
2

))
f = 1√

2π
exp

(
−y2

2

)
-

Laplace4 F =

{
1
2exp (y) if y < 0

1− 1
2exp (−y) if y ≥ 0

f = 1
2exp (−|x|) -

Beta5 F =
Iy(θ1,θ2)
B(θ1,θ2)

f =
Γ(θ1+θ2)yθ

1−1(1−y)θ
2−1

Γ(θ1)Γ(θ2)
θ1 > 0, θ2 > 0

Beta prime6 F = I y
1+y

(
θ1, θ2

)
f = yθ

1−1(1+y)−θ1−θ2

B(θ1,θ2)
θ1 > 0, θ2 > 0

1γ (x,=)
∫∞
0

tx−1exp (−t) dt is a complete Gamma function and γ (s, x) =
∫ x

0
ts−1exp (−t) dt

represents the lower incomplete gamma function.
2Also known as log-logistic distribution.
3erf (x) = 2√

π

∫ x

0
exp

(
−t2

)
dt represents the error function.

4Sometimes called double exponential distribution.
5B (x, s) =

∫ 1

0
tx−1 (1− t)s−1 dt is the Beta function and Ix (a, b) =

∫ x

0
ta−1 (1− t)b−1 dt is the

incomplete Beta function.
6Also called beta distribution of the second kind or inverted beta distribution.
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Table
C
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Appendix C. Margins and copulas used in this dissertation

All the copulas studied in this article are one parameter copulas, listed in Table

C.2. The solutions of the maximum of max
u2∈[0,1]

cn+1

(
u1, u2|rn+1

n

)
for copulas which

can be closed-form are listed in Table C.3.

Table C.3: Closed-form solutions for u2 = arg maxu2 ∈ [0, 1]c (u1, u2) and
max (c (u1, u2)) of several copulas (u1 ∈ [0, 1]).

Name u2 max (c (u1, u2))

Gaussian ϕ
(
ϕ−1(u1)

α

)
1√

1−α2
exp

(
1
2

[
ϕ−1 (u1)

]2)
FGM


0 if (1− 2u1)α > 0

1 if (1− 2u1)α < 0

− else
1 +max ((1− 2u1)α,− (1− 2u1)α)

Clayton min
(
1,
(
α+1
α

(
u−α
1 − 1

))− 1
α

)  (1 + α)uα1 if u2 = 1(
α+1
2α+1

2α+1
α

)
α

u1(1−uα
1 )

else
Product - 1
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