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ABSTRACT
The paper deals with blind separation and recovery of a
noisy mixture of two binary signals on two sensors. Such a
model can be applied in the context of recovery of scanned
documents subject to show-through and bleed-through ef-
fects. The problem can be considered as a blind source
separation one. Due to a complex noise and data structure,
it is tackled from the more general approach of Bayesian
restoration. The data is assumed to follow a Pairwise
Markov Chain model: it generalizes Hidden Markov Chain
models but it still allows one to calculate the a posteriori
distributions of the data. The Expectation-Maximization
(EM) and Iterative Conditional Estimation (ICE) methods
are considered for parameter estimation, yielding an unsu-
pervised processing. Finally, simulations show the interest
of our approach on simulated and real data.
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1 Introduction

In the last years, Blind Source Separation (BSS) has
been an active research area [2]. Independently, Pairwise
Markov based models have proved their efficiency for re-
covering hidden discrete data, with application to image
segmentation [4, 9]. Inspired from the problem formulation
of recovery of scanned documents subject to show-through
and bleed-through effects [10, 15, 11, 14, 16], we make
in this paper a link between the two approaches. We also
highlight in this context the interest of Pairwise Markov
Chain (PMC) models, which have been recently introduced
in [4], and we study the performance of the corresponding
methods.

The PMC model is an extension of Hidden Markov
Chain (HMC) models [6, 7, 13]. In both models, the a pos-
teriori probability can be calculated, allowing one to imple-
ment a Bayesian restoration or segmentation. The interest
and the efficiency of the PMC model have been recently
illustrated [4] in the case of a scalar observation; in par-
ticular, PMC models are able to deal with more complex
noise or signal structure.

In this work, for source signals which have a fi-
nite number of states, we recast the BSS problem in the
more general framework of Bayesian hidden data restora-
tion. In our context of vector observed data, we apply
a Marginal Posterior Mode (MPM) restoration technique
based on a PMC model. This requires first a parameter es-
timation which is performed using either the Expectation-
Maximization (EM) [9] or Iterative Conditional Estimation
(ICE) estimators [4, 3]. In the case of multidimensional
data, PMC models are quite involved and we are not aware
that it has been considered so far: our work is thus an ex-
tension of [4] in the case of a vector observation process.
One can expect that PMC models should help dealing with
complicated noise structures.

We especially focuse on the separation problem for
process vectors whose elements take binary values, black
and white images. We also deal with the separation
problem of real scanned images. The different models
(HMC,PMC) are considered in simulations. We first de-
scribe in Section 2 the considered models. Then, estima-
tion and restoration techniques are explained in Section 3.
Simulation results are provided in Section 4. Finally, Sec-
tion 5 concludes the work

2 Models and notations

2.1 Mixture model and hidden variables

In many applications, the observations can be modeled as
a mixture of unknown sources. More specifically, a se-
ries of T samples xt, t ∈ {1, . . . , T} of a vector signal
is available, where for any t, xt = (x1

t , . . . , x
Q
t )T is a

Q-dimensional vector. These observations result from a
mixture of N unknown source signals. For any sample
time t ∈ {1, . . . , T}, the source values are stacked in
the vector st = (s1t , . . . , sNt )T. The objective is to re-
store the unknown sources only from the observed values
xt, t ∈ {1, . . . , T}. In other words, we want to retrieve for
any i ∈ {1, . . . , N} the signal sit, t ∈ {1, . . . , T}.

In order to propose a solution to the described prob-
lem, the process xt should depend on st. We only assume a
probabilistic dependence and no specific dependence struc-
ture. In particular, our method is applicable to the case
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where:

xt =M(st) + bt, t ∈ {1, . . . , T} (1)

whereM(.) denotes an unknown, linear or nonlinear func-
tion and bt is an additive noise. The structure of bt may
be complicated and in conjunction with M(.) defines the
dependency between st and xt. A model such as 1 occurs
when trying to separate two images obtained from a text
scanned document subject to ink bleed-through effect.

Finally, we will assume that each component of st
belongs to a finite set and hence the vector st also belongs
to a finite set denoted by Ω , {ω1, . . . , ωK}. This occurs
when separating only black/white (or gray level) mixtures
of images.

In this context, restoring the value of the source vector
st is actually equivalent to determining to which class in
Ω it belongs. We will hence tackle the problem of source
separation similarly to the problem of segmentation. In our
work, the parameter models are unknown and need to be
estimated. Consequently, the problem is said to be blind or
unsupervised.

2.2 Hidden variables models

2.2.1 Temporally iid variables and HMC models

We denote by S , (s1, . . . , sT ) (resp. X , (x1, . . . ,xT ))
the set of all samples of the hidden source process (resp.
the observation process). The variables (X,S) are gen-
erally described by a distribution such that p(X,S) =
p(S)p(X |S), where p(.) stands for the probability distri-
bution and p(. | .) for the conditional probability. The fol-
lowing assumptions are among the most common ones:

A1 p(X |S) =
∏T
t=1 p(xt | st);

A2 The vector process st is a stationary Markov pro-
cess, that is: p(S) = p(s1)

∏T−1
t=1 p(st+1 | st) and

p(st, st+1) does not depend on t.

When assumptions A1 and A2 hold, the model is referred
to as a Hidden Markov Chain model (see Fig. 1(a)) and the
distribution reads:

p(S,X) = p(s1)
T−1∏
t=1

p(st+1 | st)
T∏
t=1

p(xt | st)

One can see that the situation in Equation (1) in Sec-
tion 2.1 is also described by the above model as soon as
st and bt are mutually independent processes and st is
a Markov process : in this case, the conditional density
p(xt | st) is given by the density of the noise bt. An even
simpler situation is obtained in the particular case where
assumption A2 is strengthened and the vectors st are tem-
porally independent and identically distributed (iid). This
case is however very rare in applications and it is generally
more realistic to introduce some temporal dependence.

2.2.2 PMC models

It turns out that HMC models present some weaknesses in
some situations. For example, S does not necessarily fol-
low a Markov process or the additive noise bt in Section
2.1 may depend on the whole process S. In both cases, the
HMC model is no longer valid and does not describe cor-
rectly the data. In the following we propose to use a PMC
model [4] which generalizes the HMC model.

In the PMC model, we consider the process zt ,
(xt, st) and we assume that zt, t ∈ {1, . . . , T} is a Markov
Chain (see Fig. 1(b)). This model is strictly more general
than HMC [4] because the hidden process st is not nec-
essarily Markov. In a PMC, st is indeed the marginal of
a Markov process. The distribution of Z , (z1, . . . , zT )
is given by p(Z) = p(z1)

∏T−1
t=1 p(zt+1 | zt). We will

consider only stationary reversible PMC, in which case
p(zt, zt+1) does not depend on t and the distribution of Z
is entirely defined by:

p(zt, zt+1) = p(st, st+1)p(xt,xt+1 | st, st+1) (2)

Note that the PMC model becomes a HMC if the following
holds [8]:

p(xt,xt+1 | st, st+1) = p(xt | st)p(xt+1 | st+1)

2.2.3 Gaussian model and PMC with independent
noise

Until now, we have not specified the distribution of the
observations conditionally on the hidden process. Gaus-
sian PMC is a simple possibility, in which the conditional
distributions p(xt,xt+1 | st, st+1) are Gaussian. Since the
distribution of Z is entirely given by the distributions in
(2), it is characterized by K2 probability parameters of
p(st, st+1) and K2 joint conditional probability densities
p(xt,xt+1 | st, st+1).

As xt is a vector in this paper, the number
of parameters required to characterize each density
p(xt,xt+1 | st, st+1) may become rapidly large. Since
there are K2 such densities, the problem may become in-
tractable. For simplification we consider the specific model
of “independent noise PMC” (see Fig.1(c)) which satisfies:

p(xt,xt+1 | st, st+1) = p(xt | st, st+1)p(xt+1 | st, st+1)
(3)

As shown in [12], in an “independent noise PMC”, S is not
a Markov chain. Hence such a PMC is not a HMC.

We will assume that both p(xt | st, st+1) and
p(xt+1 | st, st+1) are Gaussian. When xt is of dimension
Q = 2, p(xt | st, st+1) and p(xt+1 | st, st+1) are defined
respectively by the parameters (µi,j1 ,σi,j1 ) and (µi,j2 ,σi,j2 ). In
the following we consider the bidimensional case (Q = 2).



(a)

(b)

(c)

Figure 1. Graphical dependence scheme of: (a) HMC
model, (b) PMC model, (c)Independent noise PMC model.

3 Methods

3.1 Bayesian restoration

3.1.1 Maximum Posterior Mode (MPM)

The hidden vector process S is recovered using the MPM
classification method which is based on selecting the class
that maximizes the marginal posterior probability. More
precisely, the decision rule is:

{ŝt = ωi} ⇐⇒ {p(st = ωi |X) = max
j
p(st = ωj |X)}

3.1.2 Forward-backward procedure

The above restoration method requires to calculate the
marginal posterior probability. Let us introduce the follow-
ing coefficients:

αt(i) = p(st = ωi |x1, ...,xt)

βt(i) =
p(xt+1, ...,xT | st = ωi,xT )
p(xt+1, ...,xT |x1, ...,xT )

We have then:

p(st = ωi |X) = αt(i)βt(i) (4)

For both HMC and PMC models the coefficient αt(i) and
βt(i) can be calculated exactly with an efficient forward-
backward procedure [4, 5]. No numerical approximation
or integration is required to calculate the marginal posterior
probability.

3.2 Parameter estimation

As we consider the unsupervised context, we now address
the problem of parameter estimation. For each class transi-

tion (ωi, ωj) we calculated 2 mean vectors of size (Q× 1)
and 2 covariance matrices of size (Q×Q).

3.2.1 Expectation-Maximization (EM)

A well known parameter estimation method is the itera-
tive Expectation-Maximization algorithm, which can also
be applied to PMC [9]. After parameter initialization, each
loop of the EM algorithm consists of the two following
steps:

• ”Expectation” step : we calculate ψt(i, j) = p(st =
ωi, st+1 = ωj |X) the joint probability of being at
time t in the class ωi and at time (t + 1) in the class
ωj knowing the observations.

ψt(i, j) =
αt(i)p(st+1 = ωj ,xt+1 | st = ωi,xt)βt(i)∑

(ω1,ω2)∈Ω2 αt(ω1)p(st+1 = ω2,xt+1 | st = ω1,xt)βt(ω2)

• ”Maximization” step : we estimate and update the
K2 probability parameters of p(st, st+1) and K2 bi-
dimensional parameters defining (3) using ψt(i, j) as
follows:

p(st = ωi, st+1 = ωj)← 1
T−1

∑T−1
t=1 ψt(i, j)

µ̂i,j1 ←
∑T−1
t=1 ψt(i, j)xt∑T−1
t=1 ψt(i, j)

µ̂i,j2 ←
∑T−1
t=1 ψt(i, j)xt+1∑T−1
t=1 ψt(i, j)

Γ̂i,j1 ←
PT−1

t=1 ψt(i,j)(xt−bµi,j
1 )(xt−bµi,j

1 )T

PT−1
t=1 ψt(i,j)

Γ̂i,j2 ←
PT−1

t=1 ψt(i,j)(xt+1−bµi,j
2 )(xt+1−bµi,j

2 )T

PT−1
t=1 ψt(i,j)

3.2.2 Iterative Conditional Estimation (ICE)

Another way to estimate the model parameters consist in
using the ICE algorithm which has shown a remarkable
flexibility [4]. It is based on the conditional expectation of
any estimator valid when the complete data Z = (S,X) is
available: all parameters are estimated as soon as samples
of X according to p(X |S) can be simulated. Concretely
after parameter initialization, the ICE algorithm consist in
successively sampling X according to p(X |S) and updat-
ing the parameters. p(st = ωi, st+1 = ωj) is obtained the
same way as in EM and the other parameters are given by:

µ̂i,j1 ← 1
Card(Ai,j)

∑T−1
t=1 1Ai,jxt

µ̂i,j2 ← 1
Card(Ai,j)

∑T−1
t=1 1Ai,jxt+1

Γ̂i,j1 ←
PT−1

t=1 1Ai,j .(xt−bµi,j
1 )(xt−bµi,j

1 )T

Card(Ai,j)

Γ̂i,j2 ←
PT−1

t=1 1Ai,j .(xt+1−bµi,j
2 )(xt+1−bµi,j

2 )T

Card(Ai,j)

where Ai,j denotes the set of indices 1 ≤ t < T for which
(st, st+1) = (ωi, ωj) ∈ Ω2.



4 Simulation Results

Similarly to the previous section, Q = 2 observations are
available in our simulations. The vector hidden process st
is also of dimensionN = 2 and it consists of two processes
sit, i ∈ {1, 2} which are assumed to take binary values ±1.
Equivalently, we consider that st belongs to the set Ω =
{(±1,±1)} composed of four classes. This experimental
setting corresponds to the considered application of bleed-
through effect in scanned documents.

4.1 Simulated processes

4.1.1 Data generation

We first tested our method on simulated processes with
T=2000 samples. The process st was either iid distributed
(table 2) or was a Markov chain (table 1, case HMC) with
transition parameters:

aij =




0.8 0.1 0.05 0.05
0.1 0.8 0.05 0.05
0.1 0.05 0.8 0.05
0.1 0.05 0.05 0.8




The two sources have been mixed linearly with ma-
trix M = ( 0.8 0.7

0.7 0.8 ) and a noise has been added.The global
model can hence be expressed by the following equation:

xt = Mst + bt (5)

The nois bt is independent of st and presents either of the
following characteristics:

• iid noise: In this situation, chains are corrupted with
an independent noise (with variance equal to 0.4), the
global model obtained follows HMC model.

• PMC noise: a more complex situation is to consider
a noise following a PMC model in which the depen-
dency between successive observations conditionally
on the successive hidden sources p(xt,xt+1 | st, st+1)
is given by a Gaussian distribution defined with 2(K2)
variance parameters.

4.1.2 Restoration results

The MPM restoration is completely unsupervised: all pa-
rameters are unknown and are estimated by the algorithm
(either EM or ICE). The simulations results are collected in
the following tables :

Method iid noise (s1, s2) PMC noise (s1, s2)
PMC-ICE (12.3, 11.8) (29.6, 31.9)
PMC-EM (11.3, 11.7) (29.7, 31.3)
HMC (12.2, 11.3) (35.6, 38.2)

Table 1. Misclassification rates for Markov Chains in%

For the first column of the table 1, the data follows
the HMC model. We can observe that PMC model has ap-
proximatively the same behaviour as HMC model. How-
ever, when the data does no longer follow an HMC model
(second column), the PMC algorithm consistently performs
better than HMC. This proves that PMC model is more gen-
eral than the HMC model.

Method iid noise (s1, s2) PMC noise (s1, s2)
PMC-ICE (22.7, 22.9) (34.7, 32.4)
PMC-EM (20.0, 19.4) (34.6, 32.5)
HMC (20, 8, 20.4) (35.5, 36.4)

Table 2. Misclassification rates for iid Chains in %

For the table 2 especially in the second column, the
data follows neither HMC model nor the PMC model. The
structure of the global process is unknown. The results
show that the PMC model is more advantageous than the
HMC model.

We deduce from tables 1 and 2 that the PMC model is
a generalization of HMC model. The results obtained for
PMC with EM and ICE algorithms are comparable.

4.2 Noisy mixture of real images

In this section, we present results regarding the application
of Gaussian PMC model in image separation. Similarly
to [4, 9, 1] we transform the images into chains using the
Hilbert-Peano scanning of the image (see Fig.2) .

Figure 2. Hilbert-Peano curves and scannings for images of
respective size: 2×2, 4×4, 8×8, 16×16, 32×32, 64×64.

We considered the two black and white images (each
color corresponding to +1 or −1) showed in Fig.3. Simi-
larly to the previous experiment, they have been mixed ac-
cording to (5) with the same matrix M as previously.

We have considered two different noise which are de-
scribed in Sections 4.2.1 and 4.2.2 respectively. Images are



Figure 3. Original images (128×128 pixels)

recovered using MPM restoration and the parameters have
been estimated with the ICE algorithm.

4.2.1 Mixture of numerical images affected with noise
following a PMC model

In this experiment, we take the images in Fig. 3 that we mix
with M and we have added a noise following a Gaussian
PMC model as in Section 4.1.1. The observations are in
Fig. 4.

Figure 4. Mixed images affected with a PMC noise

The MPM restoration with PMC model on Fig.5(b)
gives results better than results obtained with HMC on
Fig.5(a). It is due to the inability of HMC model to take
into account the dependency between noise and sources.

In the following section we consider a correlated
noise model which more realistically corresponds to the sit-
uation encountered in the show-through and bleed-through
effects.

4.2.2 Mixture of numerical images affected with a cor-
related noise

In this section, we consider the same mixture as the previ-
ous experiment. Each noise component is now correlated
and has been generated according to:

b(r) =
1

1 + 4a
[ε(r) + a

4∑

i=1

ε(ri)]

where r denotes an image pixel, ε(r) is an iid image
Gaussian noise, ε(ri) i = 1, . . . 4 are the noise value at
four neighbors of r in the image and a is a given parameter.

17.99% (a) 18.06%

7.32% (b) 8.76%

Figure 5. Separated images and missclassification rate with
(a) MPM based on HMC and ICE, (b) MPM based on PMC
and ICE. The misclassification rate is given by the percent-
age of the restored image pixels that are different from the
original image pixels.

The hidden data has been recovered using MPM
method with HMC and PMC model. The results are re-
spectively represented in Fig. 7(a) and Fig. 7(b).

The MPM restoration with the PMC algorithm
(Fig. 7(b)) is better than the restoration based on HMC al-
gorithm (Fig. 7(a)). Like in the case of simulated chains,
the algorithm based on PMC shows a better performance
in image separation than the method based on HMC model.
It is due to its capacity to consider the characteristic of all
elements on the mixture and it proves that PMC are more
general than HMC.

Figure 6. Mixed images affected with a correlated noise, a
= 0.7

4.3 Real scanned images with show-through effect

In this section we consider the problem of show-through
and bleed-through effects in scanned document [10, 15, 11,
14, 16]. In this situation, we propose to apply our algorithm
which allows a good separation automatically without any



18.62% (a) 22.75%

7.10% (b) 7.49%

Figure 7. Separated images and missclassification rate with
(a) MPM based on HMC and ICE, (b) MPM based on PMC
and ICE.

manual intervention. We compare the performance of the
PMC algorithm with respect to HMC model. In both algo-
rithms (PMC and HMC) the estimation of the parameters
is done using ICE. Fig. 8 shows the recto and verso scan of
the same real document, the show-through phenomenon is
clearly observed. Fig. 9(a) represents the images restored
by HMC model, and in Fig. 9(b) the images are obtained
by restoration based on the PMC model.

From these figures, we can conclude that the HMC
model is not able to separate correctly the handwriting at
each side in the document contrary to PMC model which
yielding intersting results. Further investigations on how to
apply PMC for the bleed-through problem seem promising.

Figure 8. Real scanned document with show-through effect
(from://www.site.uottawa.ca/ edubois/documents).

5 Conclusion

In this paper we have presented the application of the re-
cent PMC Model to signal and image separation. The main

(a)

(b)

Figure 9. Images separated with (a) MPM based on HMC
and ICE, (b) MPM based on PMC and ICE.

contribution was to extend PMC algorithm to multidimen-
sional observed data. The PMC model is richer and more
general than the classical HMC model and allows one to
take into account more complicated noise structures. We
have first validated the performance of the proposed al-
gorithm in the case of simulated iid sources and Markov
chains sources. We have applied our method to image sep-
aration for both synthetic and real images. We have used
Bayesian restoration techniques in the context of PMC, and
then we have illustrated that PMC models are more effi-
cient than HMC models. We have shown that using the
proposed method, the problem of source separation can be
solved even in delicate situations.
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Wojciech Pieczynski. Unsupervised segmentation of
randomly switching data hidden with non-gaussian
correlated noise. Signal Processing, 2(91):163–175.

[9] Pierre Lanchantin and Wojciech Pieczynski. Un-
supervised non stationary image segmentation using
triplet markov chains. Advanced Concepts for Intelli-
gent Vision Systems (ACVIS.04), Sept. 2004.

[10] Farnood Merrikh-Bayat, Massoud Babaie-Zadeh1,
and Christian Jutten. A nonlinear source separa-
tion solution for removing show-through effect in the
scanned documents. 16th European Signal Process-
ing Conference EUSIPCO.08, Aug. 2008.

[11] Boaz Ophir and David Mallah. Show-through cancel-
lation in scanned images using blind source separa-
tiob techniques. IEEE Int.Conf. on Image Processing
ICIP-07, 3:233–236, 2007.

[12] Wojciech Pieczynski. Multisensor triplet markov
chains and theory of evidence. International Journal
of Approximate Reasoning, 45(1):1–16, 2007.

[13] Lawrence R. Rabiner. A tutorial on hidden markov
models and selected application in speech recogni-
tion. Proc.IEEE, 77:257–286, Feb. 1989.

[14] Gaurav Sharma. Cancellation of show-through in du-
plex scanning. Proc. IEEE Int. Conf. Image Process-
ing, 2:609–612, Sept. 2000.

[15] Anna Tonazzini, Emanuele Salerno, Matteo Mochi,
and Luigi Bedini. Bleed-through removal from
degraded documents using a colour decorrelation
method. Proc. Document Analysis Systems VI:
6th International Workshop, Springer-Verlag GmbH,
LNCS, 3163:229–240, 2004.

[16] Christian Wolf. Document ink bleed-through removal
with two hidden markov random fields and a single
observation field. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (PAMI), 32(3):431–
447, 2010.


