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Abstract: This paper addresses the problem of parameter estimation in the case of hidden
data. The aim is to discuss two general iterative parameter estimation methods “Expectation-
Maximization” (EM) and “Iterative Conditional Estimation” (ICE) in the context of the
classical Hidden Markov Models (HMMs) and in the context of the recent Triplet Markov
Models (TMMs). A very general method of TMMs identification based on ICE and copulas
is also specified.
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1 Introduction
Let ¥ =(Y,,....Y,) be observed data and X =(X,,...,X,) hidden ones. In the

whole paper, each Y, takes its values from the set of real numbers R , and each X,
takes its values from a finite set of classes Q= {wl,...,wk}. Let p,(x,y) be the
probability distribution depending on a parameter 6eR™, and let
l,(x,y)=log[p,(x,y)] be the log-likelihood. Besides, let é(X ,Y) be an

estimator of €€ R" defined from complete data (X,Y). Both “Expectation-
Maximization” (EM) and “Iterative Conditional Estimation” (ICE) define a sequence of
parameters from the observation y . After having chosen an initial value 6°, the
EM sequence is defined by

0" () = argmax E[I, (X, V)Y = y,0°],  (L.1)
0

while the ICE sequence is defined by
6" (v) = E[0(X, Y)Y = ,0'].  (1.2)

The EM method (McLachlan and Krishnan (1997)) is well known and widely used,
while ICE is less popular. However, ICE has been successfully used in different
problems of unsupervised image processing; let us mention (Cao et al. (2005),
Carincotte et al. (2006), Derrode and Pieczynski (2004), Destrempes and Mignotte
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(2004), Provost et al. (2004), and Salzenstein et al. (2007)), among recent
references. Concerning general considerations to compare EM and ICE, let us
underline the following points:

(1) ICE is more general than EM because the estimator é(X ,Y) can be of any

form; in particular, it can be the “maximum likelihood” (ML) estimator or not. It is
also often easier to perform because the maximization step does not exist in ICE ;
(i1) as stated in Delmas (1997), in the case of an exponential family of distributions
EM and ICE can produce the same sequence (67) ;

(iii)) many comparisons between EM and ICE have been performed in classical
contexts with Gaussian noise, like adaptive estimations (Peng and Pieczynski
(1995)), hidden Markov chains (Benmiloud and Pieczynski (1995)), or hidden
Markov trees (Monfrini (2002)). In all these situations the EM formulae are
computable and it turns out that both EM and ICE methods are of quite a
comparable efficiency ;

(iv) the use of EM is justified by the theoretical results concerning the optimal
asymptotic behavior of the ML estimator, and by the fact that EM produces a

sequence (67) such that the sequence p(y|@?), being increasing, often converges

to a local maximum. We have to notice that this does not imply the convergence of
(6%) to the real parameter & ; however, if the initial value @° is close enough to
the real value @, the convergence can be shown under some mild hypotheses. The

idea behind ICE is different and is based on the following. Assuming that é(X ,Y)

has interesting quadratic error - or is even optimal, being, for example, an ML
estimator in an exponential model - one wishes to approximate it by a function of
the only observed variables y. The “best” - with regard to the same “quadratic

error” criterion - approximation is the conditional expectation. As this expectation
depends on the parameter, we arrive at (1.2). Concerning the convergence of ICE,
let us mention a recent theoretical result obtained in the case of independent data
(Pieczynski (2008)). As in the case of EM, convergence can be obtained under
some reasonable hypotheses if the initial value 8° is close enough to the real value
0

(v) EM encounters more difficulties in hidden Markov field models, where the
maximization step cannot be calculated and one is obliged to simplify the model,
for example by introducing the “mean field” as indicated in (Celeux et al. (2006)).
ICE can be used without model modification, even in more complex situations, as
in the context of recent triplet Markov fields (Benboudjema and Pieczynski
(2007)).

The aim of the paper is to discuss and compare the difficulties when applying these
two methods in the context of the classical Hidden Markov Models (HMMs
(Cappe et al. (2005), Ephraim (2002), (Koski (2001)) and the recent Triplet
Markov Models (TMMs (Pieczynski and Desbouvries (2005), (Pieczynski (2007),
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Pieczynski (2010)). A very general method of TMM identification based on ICE
and copulas is also briefly described.

2 Pairwise and Hidden Markov Models

Let us consider the couple of stochastic sequences (X,Y)=(X,.Y,,...,X,,Y,) and
let us set Z=(X,Y)=(Z,,...Z,), with Z =(X,.Y)), ..., Z,=(X,.,Y,). The
couple Z =(X,Y) is a “Pairwise Markov Model” (PMM) if its distribution is
given by

p(2) = p(z)p(z,|z)..p(z,|2,). @1

We will say that a PMM Z = (X,Y) is “stationary” if the distributions p(z,,z,,,)
do not depend on i=1, ..., n—1. Thus the distribution of a stationary PMM
(SPMM) is given by p(z,,z,), which can be written:

p(z,.2,) = p(x,,x,) p(y,. y,|x.x) . (22)

There are then two kinds of SPMM Z = (X,Y). Either X is a Markov chain or it
is not. If it is, the SPMM Z = (X,Y) will be called a “stationary hidden Markov

model” (SHMM), which is consistent with the fact that the hidden model is a
Markov one. One can then show that a “reversible” (which means that

p(z,.2,,) = p(z,,,2)) SPMM is an SHMM if, and only if, p(y,,y,|x.x,) in
(2.2) verifies

P |x.x)=pfx) . (23)

In fact, a reversible SPMM Z =(X,Y) is an SHMM if, and only if, the two
equivalent conditions: (i) for each 2<i<n, p(y, |x[,x‘.71) =p( y[|xl,) ; (i1) for each
1<i<n, p(y|x) = p(y|x,) , are verified (Pieczynski (2007)).

Let us remark that the very classical SHMM, whose distribution is defined by

p(x,y) = p(x)p(x,[x) . p(x, [x, ) p( [x) o p(,[x,) . (2.4)

is obtained when p(y, ,y2|x1 ,X,) 1in (2.2) verifies

POy x)= p[x) POl . (25)
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which is stronger than (2.3).
In a similar way to the classical HMMs, the transitions p(x,

i+1

x,,y) and the
marginal distributions p(x,.| y) can be computed in the following way. Let us
consider the following "forward" a(x,)= p(»,,....»,,,z,) and "backward"

ﬁ('xi) = p(ym seees Vy
when the PMM considered is an HMM. Then we have

z,) probabilities, which again give the classical probabilities

o, (x)=p(z,),and o, (x,) = D a,(x)p(z,,

¥ eQ

z,) for 2<i<n; (2.6)

B.(x)=1,and B,(x)= 3 B.(x.)p(z.|z) for 1<i<n-1; (2.7)

2 ) = p(z,-ﬂ;,-zfi; (x..) 2%
p(x)y) = Z”;(fx)—ﬁ);‘(i) L @9)
PG, x,») = p(x |[y)px,|x.p) . (2.10)

The formulae (2.6)-(2.10) are extensions of the well known HMM formulae, which
are obtained by taking p(z,) = p(x)p(y|x,) and p(z|z) = p(x,.|x)p(y.|x..) -

Let us underline the fact that considering SPMMs which are not SHMMs (in which
(2.3) does not hold) can be of real interest in the unsupervised segmentation of real
or simulated data: see different results presented in (Derrode and Pieczynski
(2004)).

3. EM and ICE in SPMM

Let us consider an SPMM whose distribution given by (2.2) is such that
Py, y2|xl,x2 are Gaussian. The parameters to be estimated are

P =px, =0,,x, =0,) and the mean vectors M, and variance-covariance
matrices I, of the Gaussian distributions p(y,, ))2|)c1 =w,,x, =,) . In both EM

and ICE methods (p,, ) are re-estimated by
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n—
g+l

1 1
Py =—lzpq(x, =0,X, =a)k|y)’ (31)

i=1

where p'(x, =0,,x,, =0, | y) are computed with (2.6)-(2.10).

i+l

The parameters M, and I, are re-estimated in EM by

n—1 y
Cp(x = 0,x., = 0]y
i+1

My = 2L (G2
zpq(x,- =0;X,, :a)k|y)
i=1

i+

SPENZ . Vi .

- (|: i|_M,qkl)(|:y' }_M}]kl)rpq(xr=wj’xi+l=wk|y)

= 1 i+l , (33)
pl(x, =0,x, =0l

g+l _
I_‘fk - n—

1
i=1

while in ICE they are re-estimated by

n—1 y‘
. = [x=0;,xf, =0
M = . (3.4)

Jk n-1 2

q_ 4 g
[xi' =0, xl =]

yi + yr +
(|:y :| ] quk | )(|:y :| B quk | )T 1“?=”/*"?+1:“’H
i+l i+l

n—l1 4

1

A=y xd =
= [xi'=w;. x/, =0 ]

n—

i

ry = 3.5)

where x’ = (x/,...,x!) is sampled according to p(x| y) using the current values of

the parameters.

Dealing with the Gaussian case under consideration here with either EM or ICE
would probably provide similar results, as they do in the classical HMMs.
However, when one leaves the Gaussian case and deals with the “generalized”
mixture estimation, ICE is much easier to apply. In the SHMM context one is faced
with the “generalized” mixture estimation problem when the forms of the noise

distributions p(y1|x1 =wo,) are not known and can vary with the class o, .

However, for each @, one knows that p(yl|xl =w,) belongs to a given set of
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forms. For example, one knows that p(yl|x1 =w,) is either Gaussian or gamma,

(¥, |xl =w,) can be Gaussian, exponential, or Rayleigh, ... and so on. Such

situations are of interest and they can occur, in particular, in radar images models
(Delignon and Pieczynski (2002), Nadarajah and Kotz (2008)). Estimating such a
mixture therefore contains two problems: (i) finding the right form for each class;
and (ii) estimating the related parameters. ICE has been extended to a
“generalized” ICE (GICE) to deal with such problems in SHMMs in (Giordana and
Pieczynski (1997)) and different experiments have shown its efficiency.
Afterwards, the extension of ICE to “generalized” reversible SPMMs has been
suggested in (Pieczynski (2010)). Let us briefly recall its principle.

For K classes there are (K —1)K/2 distributions p(y, ,)/2|)c1 ,X,) on R’.
Besides, let H(y,,y,) be a cumulative distribution function (cdf) over R’, and
H (y,), H,(y,) the related marginal cdfs. Then, according to the Sklar theorem
(Brunel and Pieczynski (2005), Nelsen (1998)), there is a unique cdf C on [0,1]°
with uniform marginal distributions (called a “copula”) such that

H(y,»,) = C(H (y),H,(3,))  (3.6)

Thus each of the (K —1)K /2 distributions p’(y,,»,) = p(y, ,y2|x1 =0,x,=0,)
on R? is defined by (K —1)K /2 marginal distributions p”(y,) and (K —1)K /2
copulas C”. Assuming that for each (i, j) the form of the marginal distribution
p’(y,) belongs to a given set @’ = {E”,...,E‘fm} of admissible forms and the
form of the copula C” belongs to a given set X’ = {C{",...,C"”’;(l.\/.)} of admissible
forms, one is faced with the following problem : for each (i, /) select from @’
and X" the correct forms and estimate the related parameters. At each iteration of
ICE these two problems are then dealt with using x* =(x/,...,x!) sampled

y,07).

according to p(x

4. Generalized ICE in Stationary Triplet Markov Models

Let us consider the couple (X,Y) as above. Let U =(U,,...,U,,) be a third
random chain, each U, taking its values from A= {ﬂ,l,...,lM } The triplet
T =(X,U,Y) is called a “Triplet Markov Model” (TMM) if its distribution is a
Markovian one. Setting V' = (X,U) one sees that a TMM can also be seen as a
PMM (V,Y); in fact, V =(V,,...,V,) with each V, taking its values from a finite

set Qx A . Thus both X and U can be estimated by some Bayesian method, and
the parameters can be estimated with EM or ICE as discussed above.
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The choice of the interpretation of the third chain U and the choice of the
Markovian distribution for 7 =(X,U,Y) lead to a very rich family of possible

distributions for (X,Y). One possible choice is a Markov distribution for
V =(X,U) such that X is a semi-Markov chain (Pieczynski and Desbouvries
(2005)); T =(X,U,Y) is then a classical hidden semi-Markov chain. Other
choices lead to a non-stationary distribution for (X,Y), where the switches among

the different stationarities are modeled by U (Lanchantin and Pieczynski (2004)).
Let us also mention the use of TMM to perform the Dempster-Shafer fusion in a
Markovian context (Pieczynski (2007)). It is also possible to consider multivariate
U, to model different properties simultancously. For example, one can take

U=(@U"'U?), where U' models the semi-Markovianity of X and U’ models its

non-stationarity (Lapuyade-Lahorgue and Pieczynski (2006)). In each of these
situations, one can then apply the “generalized” ICE described above to the related
PMM T =(X,U,Y)=(V.,Y).
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