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Abstract: In this paper we consider conditionally Gaussian state space models with
Markovian switches and we propose a new method of approximating the optimal solution by
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1 Introduction

Let X'=(X,,..X,), R'=(R,,..R,) and Y"=(¥,.,Y,) be three
sequences of random variables. Each X, and Y, take their values from R, while
each R, takes its values from a finite set of switches Q:{a)l,...,a)K}. The

sequences X" and R are hidden and the sequence Y, is observed. For each

n=1, ..., N we will denote by p(r,

»,') the distribution of R, conditional on

Y" =y, and we will denote by E[X|r,y') the expectation of X, conditional

on (R.Y")=(r,,»'). We deal with the classical problem of filtering, which
y') and E[X

complexity. We consider the following classical partly non linear model:

consists of computation of p(r, r.,y'") with a reasonable

n+l

n+l

R is a Markov chain;  (1.1)

1
Xn+1 = Ez (Rn+1 )Xn + Hn (Rn+1 )Wn+1 ; and (1 2)

Y, =G,(R,,X)+K(R)Z, . (13)

n?

where X, W,, ..., W, , V,, ..., V, are independent Gaussian variables, and for
each n=1, ..., N, F(R), H/(R), G(R), K,(R) are real numbers
1
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depending on switches. Such models are of interest in numerous situations (Cappe
et al. (2005), Costa et al. (2005), Zoeter and Heskes (2006)), among others.
However, it has been well known since (Tugnait (1982)) that exact filtering and
smoothing are not feasible with linear - or even polynomial - complexity in time in
such models, and different approximations must be used. Many papers deal with
this approximation problem and a rich bibliography can be seen in (Andrieu et al.
(2003), Cappe et al. (2005), Costa et al. (2005), Zoeter and Heskes (2006)), among
others.

The problem lies in the fact that the distribution of (R",Y,") is not easy to manage
and, in particular, does not allow one to compute the conditional probabilities
P(”n| ;') with a reasonable complexity. In fact, we have

p(xn+l ’ rn+1 ylml ) = p(rnﬂ yl,Hl )p('xn+l rn+l > yl””) > (1 4)

n+l

where the probabilities p(x,, |7, ,,y'") can be recursively computed with a

n+l

Kalman filter once they have been classically approximated by Gaussian densities,

and the probabilities p(r,_|y/"') have to be approximated. Then they are

n+l

approximated with different methods among which particle filtering is widely used
(Andrieu et al. (2003)). The aim of this paper is to propose an alternate

approximation of the distribution of (R",Y,") based on the two following models.
The first one is the very classical hidden Markov chain (HMM) model, in which
p(r”| ;') are computable with the classical recursive “forward” procedure. The

second one is the recent Markov chain hidden with the long-memory noise (HMM-
LMN) (Lanchantin et al. (2008)), in which p(7,

two models we propose an original recursive parameter estimation method based
on the general “Iterative Conditional Estimation” (ICE) procedure, which implies
the possibility of partially unsupervised filtering.

Finally, we will consider the model (1.1)-(1.3) in which the distribution of

(R, YY) will be approximated either by an HMM or an HMM-LMN distribution.

»,') are computable too. In these

2 Filtering switches in hidden Markov models

Let (R",Y,") be the classical HMM, whose distribution is of the form

N-1
p(" ) = p)p D[ ] pClr)p,alr) . @D
n=1

The conditional probabilities p(r

v are then computed from p(r,

y') by
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PO, m)Zp(r AV
Ty 2.2)
P = > P +1)Zp(r,+lr)p(r "

141€Q

Let us consider the following distribution, called a « partially » Markov
distribution (Lanchantin et al. (2008)):

p(r,y) = pr)p( |1 )]_[p( ralrp,alna v (23)

One can see how the model (2.3) extends the classical HMM (2.1) : the former is

obtained setting p(v,,...»')=p(,.I..,) in the latter. However, similarly to (2.2)
one has
POl ), )Zp( vl )
P
Zp(y s Zp(w)p(r Nl

3 Parameter estimation

In the classical HMM with Gaussian noise the model parameters are usually
estimated with the classical “Expectation-Maximization” (EM) algorithm. They
can also be estimated by the “Iterative Conditional Estimation” (ICE) algorithm,
which is another iterative parameter estimation method. For fixed N both EM and

ICE provide a sequence of parameters &', &, ...,0", where the vector of
parameters ¢ contains the distribution of (R,R,), which defines the distribution of

the stationary Markov chain R", K means and K variances defining the K

®), ..., p(y,|r,=0,), which are identical for each
n=I1,..., N.
ICE provides the next & from the current ¢ and y' =(y,,...,y,). For jk=1, ...,

K,let p,=p(rn=w,r,=w) and let 1, o’ be the common mean and the variance

q+l

of the Gaussian distributions p(y]|r1 =), ..., p(y,[ry =0,). The next values p

1", (6" are obtained from the current ¢ and y=(y,...,y,) in the following

g+l

way. The parameters p!’ are given by

Zp<r r=oLe),  (3.1)
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where p(r=o,r, =a)k|y]”,¢9") are classically computed with the “forward” and

J2i+1
B =)

“backward” recursions. To obtain ", (c’')’, one samples

according to p(rlN| ¥',0") and one sets

N

Dl

’Ll;ﬁ»l — i=l (32)

N
2o
i=l

N
1\2
Z(-yx _/”ljﬁ ) 1[;;qy/]

(o) =- = (3.3)
Z]:l[r,w,-]

J

EM provides the next @' from the current ¢ and y" =(y,,...,y,) in the following
way. The next parameters p;’ " are given by (3.1), exactly as in the case of ICE. The

next 4", (¢/")" are computed with

> o=y’ 0)y,
= (3.4)

N
=00
i=l

(") = Zp(’ =o|3.0)0, -y
o Xpte=olie
i=l

3.5)

Let us notice that there is a stochastic aspect in the sequence produced by ICE,
while the sequence related to EM is deterministic. This can make EM more
sensitive to the initialization ¢ than ICE. However, numerous comparisons
between EM and ICE have been performed and, on the whole, in the case of
classical HMM with Gaussian noise they provide similar results (Benmiloud and
Pieczynski (1995)).

We propose the following adaptive parameter estimation method, based on EM or

ICE. Let @ be the parameter obtained from y’. Then 6" is obtained from ' by
applying EM (or ICE) and using &' as the initial value. Thus one obtains a

4
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sequence &, 0, .. 0, cach ¢ being estimated from y’. The computation of

yi) from p(r,

o, y!') using (2.2) is then unsupervised and is performed in two

steps:
(i) compute ¢ with EM (or ICE) from ¥ using @' as initialization;

(i1) compute p(r y!) using (2.2) and &'

n+l

y") from p(r,

Thus for each n=1, ..., N-1 one has to perform a finite number, defined in some
way, of EM or ICE iterations.

In the following section these methods will be called “adaptive EM (AEM) and
adaptive ICE (AICE).

Let us return to the « partially » Markov distribution defined by (2.3) and let us
consider the following particular case. One considers K Gaussian distributions

L Yi) 0 (2.3):

r.,.=a,y') is the conditional

p'OY), ..., p*(»¥") which are used to define the distributions p(y,,

for each n=1, ..., N-1 and k=1, ..., K, p(y,,

Gaussian distribution given by the Gaussian distribution p'(3/"), which is the

marginal distribution of the Gaussian distribution p*(3"). Besides, for each k=1,
.., K, p'(yY) is defined by the mean vector M*=(m",...,m') and a variance-
with

covariance matrix I =[], ..,

7y =0 (+li—jh (3.5

The distribution of such a model, which will be called in the following HMM with
“long memory noise” (HMM-LMN), is then defined by the parameters p,, which

give the distribution of the Markov chain X , and K triplets (m',07,a,), ..., (m",0},a,).

HMM-LMN has been recently proposed in (Lanchantin et al. (2008)) and an
extension of ICE, which is not trivial, to the HMM-LMN context has been
described and successfully tested. As above, we propose using this ICE to estimate
the parameters in an “adaptive” manner. One has the same two steps as above:

(i) compute &' with ICE from ¥ using ¢ as initialization;

(ii) compute p(r,,

) from p(r"‘ y!') using (2.4) and 0.

4 Experiments

Let us consider an HMM with two classes Q = {a)l,a)2 } The distribution of R is
defined by p(n=0)=pt =0,)=05 and the transitions
p(rm-l = a)l
are N(u,,07)=N(-1/2,1/2), N(u,,02)=N(1/2,1/3). We consider N =200 for

5

r = a)z): P(VM =, =0, ): p . The two Gaussian noise distributions
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the sample size and the results for four different values of p are presented for each
case in Table 1. An example of the evolution with respect to n of the estimation
with AEM and AICE of p (for the true p =0.2) is presented in Figure 1.

It is difficult to compare AEM and AICE as they are very sensitive to the
initialization and give very stochastic results for small »n. However, in all
experiments performed they are of similar efficiency when » increases.

P 0.1 0.2 0.3 0.4
EM p 0.10 0.19 0.36 0.51
ICE p 0.09 0.18 0.39 0.52
EM 7 8.5% 6.8% 9.0% 17.1%
ICE ¢ 13.0% 6.0% 11.3% 22.0%

Tab. 1. Estimates of p and error ratio 7 of unsupervised adaptive filtering.

Fig. 1. Evolution with n of the estimation with AEM and AICE of p .

Let us now consider the case of data simulated with the model (1.1)-(1.3) and
filtered by three methods. The first one is the method based on the particle filter
(Andrieu et al. (2003), Doucet et al. 2001)). The second one is based on HMM, and
the third one on HMM-LMN. As p has to be known in the particle filter based
method, we also assume it to be known in the other two methods; however, let us
underline the fact that it could be estimated which is an advantage of the HMM and
HMM-LMN based methods over the particle filter based one.

True parameters are N(u,,07)=N(-1/2,1/2), N(u,,0.)=N(1/2,1/3),
F(o)=-025, F(0,)=025, G(w)=-2, Gw,)=2, H(w)=0.1,
H(w,)=0.5, K(o,)=0.5, K(®,)=1. The squared error is given by
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Fig. 2. Data simulated according to the model (1.1)-(1.3) with p =0.1 and the true

parameters related to Tab. 2.(continuous line) (a) : particle filter (500 particles
sampled) based filtering ; (b) HMM-LMN based filtering, and (c) : HMM based

filtering.
P 0.1 | 0.40 | 0.80
Error ratio 7
Particle Filter 17.0% 31.7% 37.0%
HMM-LMN 13.3% 27.3% 27.5%
HMM 29.0% 32.0% 37.3%
Squared error &
Particle Filter 0.0273 0.16 0.19
HMM-LMN 0.0211 0.09 0.11
HMM 0.0301 0.12 0.13
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Tab. 2. Error ratio 7 of unsupervised adaptive segmentation and squared error &
(4.1) in the case of data simulated with the model (1.1)-(1.3). p=0.1 is given for

the three methods, means and variances in HMM and HMM-LMN are estimated
with AICE.
According to the results presented in Table 2 and other similar results obtained,
one can say that, on the whole, an HMM-LMN based method is the most efficient,
while the Particle Filter based method works better than the HMM based one.

5 Conclusion

In this paper we considered the problem of optimal filtering in the conditionally
Gaussian state space models with Markovian switches given by (1.1)-(1.3). We presented

two original methods of approximation of the distribution of the couple (R",Y,"), where

RY =(R,,..,R,) is the random chain of switches and Y," =(¥,,...,Y,) is the

random chain of observations. In the first one this distribution is approximated by
the classical hidden Markov model (HMM) distribution, and in the second one it is
approximated by a recent Markov model hidden with a “long memory noise”
model (HMM-LMN) (Lanchantin et al. 2008). In these two models the parameters
can be estimated by the “adaptive” methods also proposed in the paper. Using
these two approximations makes the exact filtering possible with a reasonable
complexity. The two related filtering methods have then been compared to the
classical Particle Filter based approximation. Different experiments showed that
the HMM-LMN based methods take the upper hand over the Particle Filter based
ones, while the efficiency of the latter is, roughly speaking, similar to the
efficiency of the HMM based methods.

As perspective, let us mention further comparisons of our methods with some
recent models based exact filtering, as the method proposed in (Pieczynski (2008)).
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