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Abstract— Track-before-detect (TBD) aims at tracking tra-
jectories of a target prior to detection by integrating raw
measurements over time. Many TBD algorithms have been
developed in the literature, based on the Hough Transform,
Dynamic Programming or Maximum Likelihood estimation.
However these methods fail in the case of maneuvering targets
and/or non straight-line motion, or become very computationally
expensive when the SNR gets low. Other techniques are based
on the so-called switching or jump-Markov state-space system
(JMSS) model. However, a drawback of JMSS is that it is not
possible to perform exact Bayesian restoration. As a consequence,
one has to resort to approximations such as particle filtering (PF).
In this paper we propose an alternative method to approximate
the optimal filter, which does not make use of Monte Carlo ap-
proximation. Our method is validated by computer simulations.

I. INTRODUCTION

Tracking weak targets in a noisy or clutter environment is
an important and non-trivial task in defence radar systems.

In classical radar target tracking, detection and tracking
are performed successively. The radar measurements are
thresholded in each frame, yielding so-called plots, and a
hard decision is made instantaneously, i.e. without using other
measurements from the near past. The subset of measurements
where a detection has been done are then used for extracting
tracks, i.e. for estimating the target kinematic state properties
(position, velocity, acceleration).

Since the raw data is thresholded there is inevitably a
loss of information. In particular, for targets with a weak
signal-to-noise ratio (SNR), the threshold must be very low
to enable an acceptable detection rate. However such a low
threshold will also generate a high false alarm rate and then
a lot of false tracks.

By contrast, in TBD algorithms detection and tracking are
processed simultaneously. This approach uses the whole set
of raw measured data (i.e., reflected power) and detection is

performed only at the end of the processing chain, when all
the information has been treated and integrated over time.
Since the pre-thresholding step is avoided, this approach
facilitates the detection of low-SNR targets.

Many TBD algorithms have been developed in the literature.
In [1], a feature detector based on the Hough Transform
is used to detect the tracks from the measured data. This
method gives good results for slow maneuvering targets
with straight-line motion but fails when those conditions
are not satisfied. This issue is avoided by the use of a
Dynamic Programming (DP) algorithm [2], [3], [4] which
extracts tracks by performing an efficient exhaustive search
over all possible trajectories. However the method becomes
computationally very expensive when the SNR gets too low.
In [5], a maximum likelihood approach is applied to track
targets, but only with a constant velocity.

Another classical TBD approach consists in modelling the
radar problem by a JMSS model [6], [8], [9], [10], [12].
However, even in the simplest (i.e. linear and Gaussian)
case, exact Bayesian restoration is not feasible since the
posterior density is a Gaussian mixture in which the number
of components grows exponentially with time index [11],
[12], [13]. Hence a practical filter in such a model has to be
suboptimal and based on some approximations. An intuitive
solution would be to limit the number of mixture components
in some way (e.g. by pruning or merging) as done in the
popular Interacting Multiple Model (IMM) algorithm [14].
Even if these methods are computationally cheap they can
fail in difficult situations. More recently, an alternate class of
algorithms based on sequential Monte Carlo approximations
has been developed and widely disseminated in the tracking
field.

The aim of this paper is to introduce an alternative
approximate solution to the radar TBD problem in the
JMSS model, which is not based on a Monte Carlo



approximation. More precisely, we modify the relationship
between the random variables of the model to perform an
exact calculation of some probability density function (pdf)
of interest.

The paper is organized as follows. In section II we recall
the JMSS model and the associated particle filtering (PF)
methodology. In section III we present our alternate Bayesian
filtering algorithm, which performances as compared to
existing techniques are demonstrated by simulations in
section IV.

II. PARTICLE FILTERING ALGORITHMS IN JMSS

JMSS are generalizations of the classical state-space
system in which a so-called "jump" variable is introduced in
order to monitor the abrupt change of channel or kinematic
characteristics and/or the presence (or absence) of a target in
a tracking context.

Let us consider the following general JMSS model :

xn = f(rn, xn−1, wn) (1)
yn = h(rn, xn, vn) (2)

in which n denotes the discrete time index, xn is the state
vector, yn the observation, wn the process noise, vn the
measurement noise, rn ∈ {1, ..., S} is the discrete jump
variable which classically is modeled by an exogeneous
Markov chain, and f and h are possibly nonlinear functions
(in our tracking application it will be assumed that the state
equation (1) is linear with additional noise (see section
4), however for the moment we do not need to make this
assumption and we thus directly deal with the general
model (1)-(2)). Furthermore we assume that {wn} and {vn}
are sequences of identically distributed random variables
from known probability density functions (pdf) which are
independent, mutually independent and independent of x0,
the pdf of which is also known.

This model has been widely used for single target tracking
in radar environment (see [6], [8], [9], [15] or [17] for
example). The jump variable rn can classically model the
absence or presence of the target in the measurement yn, or
the changes of the kinematic characteristics of the state-space
model in the case of a maneuvering target.

A classical Bayesian filtering problem consists in
propagating in time the joint posterior pdf p(x0:n, r1:n|y1:n).
This problem cannot be solved exactly, even in the linear and
Gaussian case [12], [13], so one has to resort to suboptimal
solutions. In particular, PF based methods propagate in time
a discrete random approximation of p(x0:n, r1:n|y1:n) (or a
marginal thereof).

More precisely, these methods can be subdivided into
two groups: those in which PF is used for estimating both
x0:n and r1:n, and those in which PF is used for estimating
p(r1:n|y1:n) only.

Let us briefly describe the first class of methods (see e.g.
[16], [17], [18]), that is a Sequential Importance Sampling and
Resampling (SISR) procedure applied to the augmented state
(xn, rn). Assume that at time n − 1, we have Np weighted
trajectories {xi0:n−1, r

i
1:n−1}

Np

i=1 sampled from an importance
distribution q(x0:n−1, r1:n−1|y1:n−1) and associated with the
importance weights {win−1}

Np

i=1, where:

win−1 =
p(xi0:n−1, r

i
1:n−1|y1:n−1)

q(xi0:n−1, r
i
1:n−1|y1:n−1)

Then it is possible to approximate p(x0:n−1, r1:n−1|y1:n−1)
by the weighted random measure:

Np∑
i=1

win−1δ(xi
0:n−1,r

i
1:n−1)

(x0:n−1, r1:n−1) (3)

At time n, we extend each trajectory (xi0:n−1, r
i
1:n−1) by

sampling (xin, r
i
n) from the conditional importance density

(CID) q(xn, rn|xi0:n−1, r
i
1:n−1, y1:n) and updating the impor-

tance weights as:

win ∝
p(yn|xin, rin)p(xin|xin−1, r

i
n)p(rin|rin−1)

q(xin, rin|xi1:n−1, r
i
1:n−1, y1:n)

win−1

Then {(xi0:n, ri1:n) = (xi0:n−1, x
i
n, r

i
1:n−1, r

i
n), win}

Np

i=1

yields an approximation of p(x0:n, r1:n|y1:n).

The performance of the algorithm depends in particular
on the choice of the CID. The one that minimizes
the variance of the weights conditionally to y1:n is
p(xn, rn|xn−1, rn−1, yn) = p(rn|rn−1)p(xn|xn−1, rn, yn)
and is commonly called optimal CID. However it is often not
computable so that a common choice is the transitional prior
p(xn, rn|xn−1, rn−1) = p(rn|rn−1)p(xn|xn−1, rn).

Let us now describe methods in which PF is used only for
estimating p(r1:n|y1:n). This Rao-Blackwellised algorithm has
been first proposed in [10] for linear JMSS models, and further
extended to nonlinear systems (see e.g. [15]). Let us start from
the following factorization of the joint posterior pdf:

p(xn, r1:n|y1:n) = p(xn|r1:n, y1:n)p(r1:n|y1:n) (4)

Given r1:n, the first term in the right side of (4) is the
familiar filtering pdf in a general state-space system and can
thus be approximated by a nonlinear filtering method, such
as the Extended Kalman Filter (EKF) or the more efficient
Unscented Kalman Filter (UKF) [25], [26], which we briefly
present now.



The principle of UKF is as follows: instead of linearizing
the equations of the JMSS model, UKF approximates the
first and second order statistics of the conditional distribution
of the state random variable p(xn|y1:n) with a minimal set
of deterministically chosen sample points and propagates
them through the true nonlinear equations of the model.
More precisely, assume that a set of L points {x̄ln−1|n−1}

L
l=1

called "sigma points" possesses the correct conditional
mean mn−1|n−1 and covariance Pn−1|n−1. Then the set
{x̄ln|n−1 = f(x̄ln−1|n−1)}Ll=1 obtained by propagating the
sigma points through the state equation has a mean and a
covariance reasonably close from the true mn|n−1 and Pn|n−1.
Then the computation of {ȳln|n−1 = h(x̄ln|n−1)}Ll=1 leads to
a reasonable approximation of E[yn|y1:n−1], Cov(yn|y1:n−1)
and Cov(xn, yn|y1:n−1). From that it is possible to compute
mn|n and Pn|n by a Kalman-like procedure.

Therefore the second term p(r1:n|y1:n) in (4)
can be estimated by a PF with optimal CID
p(rn|ri1:n−1, y1:n) ∝ p(yn|ri1:n−1, rn, y1:n−1)p(rn|rin−1),
where p(yn|ri1:n−1, rn, y1:n−1) is the value at point yn of a
Gaussian distribution with parameters calculated via UKF.
The associated weights are thus given by

wik ∝ p(yn|ri1:n−1, y1:n−1) =
S∑
j=1

p(yn|ri1:n−1, rn = j, y1:n−1)

and require the execution of S prediction steps of UKF. Then
an estimate of the conditional expectation of xn is

Ê(xn|y1:n) =
Np∑
i=1

winE(xn|y1:n, ri1:n).

At each time the algorithm requires then to run SNp UKF in
parallel.

The complexity of this algorithm can be reduced by using
the prior distribution p(rn|rin−1) and the associated weights
win ∝ p(yn|y1:n−1, r

i
1:n), which are evaluated by only one

prediction step of UKF. At the end the estimate of the
conditional expectation of xn requires to run Np UKF at
each time.

III. AN ALTERNATIVE BAYESIAN FILTERING ALGORITHM

Let us consider again the nonlinear model (1)-(2). Instead
of approximating (totally or partially) a posterior pdf by PF,
and then taking an expectation of interest, we directly focus
on the computation of E[xn|y1:n] itself, which is our ultimate
goal for tracking problems. So let us start from:

E[xn|y1:n] =
∑
rn

E[xn|rn, y1:n]p(rn|y1:n) (5)

We see that E[xn|y1:n] can be computed if we can calculate
(or estimate) E[xn|rn, y1:n] and p(rn|y1:n) for each value of
rn ∈ {1, ..., S}. Let us consider these two subproblems one

after the other.

First, when the value of rn is fixed, the problem is
equivalent to the computation of a conditional expectation
in a nonlinear state-space model (x1:N , y1:N ), which can
be done by some nonlinear filtering technique. In particular
E[xn|rn, y1:n] can be computed at time n by using UKF .
As a result, if p(rn|y1:n) can be evaluated, the computation
of (5) requires to run S UKF in parallel. Compared to the
algorithm presented in section II, this is a major improvement
in term of computational complexity since N � S in general.

Let us now focus on the computation of p(rn|y1:n). Since
the exact computation of this quantity is an NP-hard problem
we need to use some approximation.

In order to avoid the estimation of rn by PF, we make the
assumption that (r1:N , y1:N ) is a stochastic model in which
the computation of p(rn|y1:n) is feasible.

Let us thus assume that (r1:N , y1:N ) is a Partially Pairwise
Markov Chain (PPMC) [23], whose joint distribution satisfies
the following equation:

p(r1:N , y1:N ) = p(r1, y1)
N−1∏
n=1

p(rn+1, yn+1|rn, y1:n) (6)

and such that p(y|r) are Gaussian and p(rn+1|rn, y1:n) =
p(rn+1|rn) (which implies that r1:N is a Markov Chain) [22].

The interests of this assumption are multiple. First it takes
into accounts long memory observations; next the densities
p(rn|y1:n) can be computed exactly from the estimated
parameters by a forward procedure. Finally the parameters
p(r1, y1), p(rn+1|rn) and p(yn+1|rn+1, rn, y1:n) of the
PPMC which is closest to the true model (r1:N , y1:N ) can be
estimated by an Iterative Conditional Estimation (ICE) method
[22]. This implies in particular that the prior distribution
p(rn+1|rn) of the Markov Chain can be estimated. Hence it
has not to be necessarily known and partially unsupervised
estimation is feasible.

To sum up, rather than using PF for approximating
p(r1:n|y1:n) in (4) (as in the methods described at the end
of section II), we approximate the stochastic model which
describes the relations between r1:N and y1:N , but we
compute p(rn|y1:n) exactly.

At this point of the discussion it is not clear to see which
method is the most efficient. However simulations show that
our alternative filtering algorithm indeed outperforms the PF
method presented at the end of the section II, see section IV.



IV. SIMULATIONS

A. Specification of the model

For the TBD application we use a model similar to [7]. Let
us consider the following dynamic model:

xn = Axn−1 +Gwn

in which the state vector xn = [ρn dn]T is composed by
the range and the doppler speed of the target at time n. If T
denotes the sampling interval, we will take

A =
(

1 T
0 1

)
, G = σ

(
σρ 0
0 σd

)
, wn ∼ N (0, 1).

To modelise the fact that the target can be either present
or absent from the field-of-view, we introduce a two-state
stationary Markov chain {r1:N} which takes its values in
{0, 1}: rn = 0 (resp. 1) if the target is absent (resp. present)
at time n. This chain is characterized by its initial distribution
µ1 and its transition probabilities matrix

Π =
(

1− P01 P01

P10 1− P10

)
.

At each time the observation yn is a vector composed by
Nρ×Nd measurements yijn , where Nρ and Nd are the number
of range and doppler cells. The measurement equation is the
following:

yn = hn(xn) + vn if rn = 1
yn = vn if rn = 0

When the target is present, we have:

hij(xn) = P − (ρi − ρn)2

Kρ
Lρ −

(di − dn)2

Kd
Ld

in which Kρ and Kd are constants related to the size of
the cells, Lρ and Ld are somme constants of loss, and ρn
and dn are the range and doppler of the target.

Furthermore the additive noise vn is assumed to follow an
exponential distribution.

B. Simulations results

We compare the UKF/PF algorithm presented in the end
of section II and the UKF/PPMC algorithm presented in
section III by simulations. Since ICE is an iterative procedure
the accuracy of the algorithm depends on the number of
iterations. In practice, we see that only a few are sufficient to
ensure good estimation results. Hence the procedure is very
fast and requires a low computational cost.

The performance of the PF depends on the number of
particles and on the choice of the importance density. To limit
the computational complexity we use the prior distribution
p(rn|rn−1). We have run the algorithms for different numbers
of particles (see figure 1 and table I), and found that a good
compromise between a reasonable computational cost and
good estimation results is Np = 500.
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Fig. 1. Estimates of p(rn = 1|y1:n) for different values of Np - The true
density is in squared line, the UKF/PF estimated density in circled line and
the UKF/PPMC estimated density in crossed line

UKF/PF UKF/PPMC
Np = 250 0.2803 0.2902
Np = 500 0.2766 0.2902
Np = 700 0.2744 0.2902

TABLE I
MSE OF THE STATE VARIABLE ESTIMATES x̂n FOR DIFFERENT VALUES OF

Np OVER 50 TIME STEPS

In figure 2 and table II we compare the estimates of the
jump variables rn given by the UKF/PF and UKF/PPMC



algorithms to the true values of rn and give the associated
mean square errors (MSE), for different values of the
probability of transition P01 (which we take equal to P10).
We can remark that the UKF/PPMC algorithm needs about
10 time steps to become accurate, and then provides an
estimate very close to the true value of the jump variable. If
the performances of the two filters are quite similar for small
values of P01, it has to be noticed that for a larger probability
of transition, that corresponds to a more stealthy target, the
UKF/PPMC algorithm gives much more accurate estimates
of rn than the UKF/PF algorithm.

In tables I and II it has to be noticed that the calculated
mean square errors take into account all the estimates x̂n up
to time n = 50. Since the UKF/PPMC algorithm needs a few
iterations to become efficient, these quantities are not always
lower than those associated to the UKF/PF algorithm. However
after some time steps the estimates x̂n themselves are more
accurate for the UKF/PPMC algorithm, as a consequence of
a better estimation of the jump variable.

UKF/PF UKF/PPMC
P01 = 0.02 0.0229 0.0178
P01 = 0.1 0.0352 0.0297
P01 = 0.3 0.0631 0.0309

TABLE II
MSE OF THE JUMP VARIABLE ESTIMATES r̂n FOR DIFFERENT VALUES OF

P01 OVER 50 TIME STEPS

Remark: Our algorithm is based on model (6), which enables
the exact computation of p(rn|y1:n). Note that this is not the
only model in which p(rn|y1:n) can be computed exactly. For
instance we could assume the classical Hidden Markov Chain
model with independent noises defined by:

p(r1:N , y1:N ) = p(r1)
N∏
k=2

p(rk|rk−1)
N∏
k=1

p(yk|rk)

and use the Forward-Backward (or Baum-Welch) algorithm
[27], [28], [29], or a Pairwise Markov Chain Model:

p(r1:N , y1:N ) = p(r1, y1)
N∏
k=2

p(rk, yk|rk−1, yk−1)

and use the algorithm presented in [23]. We implemented
these different algorithms; the best results are available when
(r1:N , y1:N ) is assumed to follow model (6), probably because
this model takes into account long dependencies, see [22] for
details.

V. CONCLUSION

In this paper we addressed a Bayesian restoration algorithm
in nonlinear JMSS model for Track-Before-Detect. We pro-
posed a new solution in which a Monte Carlo approximation
is replaced by an exact computation in an alternate model
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Fig. 2. Estimates of p(rn = 1|y1:n) for different values of P01 - The true
density is in squared line, the UKF/PF estimated density in circled line and
the UKF/PPMC estimated density in crossed line

which takes into account long-range dependencies. Simula-
tions showed that this algorithm is competitive in term of
efficiency and performance.
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