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ABSTRACT

This work deals with the statistical unsupervised image
segmentation. We propose a new _fast algorithm based on hidden
Markov chains. The originality of our approach is situated at two
levels. First, the pixels are numbered according to a Peano curve and
we show that it improves the efficiency of the classical "line by line"
numbering. Second, the parameter estimation phasis is performed by
the use of a new general method of estimation in the case of hidden
data, so called "iterative conditional estimation”. The segmentation
phasis is performed by the "maximiser of posteriors marginals”,
where the posterior marginal distributions are computed be the
“backward-forward" algorithm. The efficiency of our method is
compared with the efficiency of a "classical" one, where the
segmentation is performed by the ICM algorithm and the Markov
random hidden fields parameters are estimated, using segmentations
based on "current values" of parameters, by the estimator of Derin
and Elliot.

INTRODUCTION

Our work treats the nonsupervised segmentation of images. When
all the useful parameters are known (supervised case) there is a
number of efficient methods of statistical segmentation. Some
among these, called global (MAP, MPM, ICM) use a Markovian
spatial model, while others (local or contextual) satisfy themselves
with a stationarity assumption. When the parameters are unknown,
what is usually the case in practical applications, the problem
becomes more complex. The efficiency of a given method depends
as much on the quality of the estimators as on the robustness of the
segmentation method used: Dubes and Jain demonstrate in [8] the
degradation in performance of the ICM as the parameters diverge
from their values.

Several solutions to this problem have been proposed the last few
years. Some algorithms (Chalmond ([3]), Devijver ([6], [7]),
Masson and Pieczynski ([15]), Qian and Titterington ([18])) use
variations of the EM algorithm ([4]), adapted to the models
considered, One alternative technique (Besag ([1]), Lakshmanan
and Derin ([11])) consists of a re-estimation of the parameters based
on the segmentations obtained with the current parameters, Younes
(120]) proposed a new method based on the notion of stochastique
gradient. A new method of estimation in the case of incomplete
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data, called "iterative conditional estimation" (ICE, [17]), can
provide a large number of Bayesian unsupervised segmentatirn
algorithms. Braathen et al. ([2]) applied it in the case of global
methods and Marhic et al.in the case of local ones ([12], [13]).The
algorithms obtained provide quite satisfactory results. The MAP or
MPM based unsupervised techniques mentioned above are rather
time consuming and in practical applications one often uses the
ICM. As ICE can also be applied to the estimation of all parameters
of a hidden Markov chain, which is much quicker than the
estimation in the hidden Markov fields, the idea of our method is to
range pixels in a sequence and to treat the problem by considering
Markov random chains. We choose to range the pixels according to
a Peano curve. Doing this we make the "past" and the "future” of
the Markov chain considered better suit to the spatial context. In
fact, results obtained by our method are better than those obtained
by the use of the classic "line by line" curve.

The efficiency of the method we propose is compared with the
efficiency of the Besag's one ([1]), where the segmentation is
performed by the ICM algorithm and the Markov random hidden
fields parameters are ¢stimated, using segmentations based on
"current values” of parameters, by the estimator of Derin and Elliot

AsD.

ICE PROCEDURE

AA
Let us suppose that we have an estimator 0 =0 (X,Y) of 9 defined
from (X,Y). Conditional expectation, denoted by E [./Y], is the best
approximation to 6, as far as the mean square error is concerned, by
a function of Y : let us put:
A
0*=E[0/Y] @

0* is not an estimator of 6: in fact, the conditional expectation,
which can be seen as an expectation of the identity function
according to the distribution of X conditioned upon Y, depends on
0. So the use of (1) requires a "current” value of 0.This defines an
iterative procedure, which is called ICE (iterative conditional
estimation). This procedure runs as follows ([17]): using an initial
value 6 of 8 we put:

A
Op+1 =E, [6/Y] @
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where E, denotes the conditional expectation based on the current
value 8, of the parameter.

As we will see in next section it can occur that (2) is not workable
but simulations of realisations X}, X,-. Xr;q of X according to the

posterior distribution (conditioned upon Y) based on 6, are
obtainable, then (2) can be replaced by a "stochastic" ICE :

0,41= %[6 X}, Y) + o+ B(Xp 1)

which converges, according to the law of large numbers, t0 8,1
defined by (2).

HIDDEN MARKOV CHAINS

We consider the following modelling: X = (X{,....Xy) is a Markov
chain and the random variables Y,...,Y,, are real, Gaussian and
independent conditionally to each realization of X. Every X takes

its values in a finite space Q = {®y,..., @y ). The distribution of X

is given by q; =P [ X = o] and q; = P [Xpy = @, Xpp41 = 051 -
(qjj) defines the transition matrix (agj) by :

9y
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The likelihood of X at the point x = (0 1 Pigres (oin) is

f(x)= qil a‘iliz ai2i3."‘ain_1in

and, if we denote by f; the likelihood of the distribution of each Yj

conditioned by Xj = @;, the likelihood of the distribution of (X,Y) at
the point (x,y), with y = (Y1,....¥p)s I8 :

h (xy) =q;, fil (y1) ajgiy fiz (y2).e ain-lin f; n (¥n)
s0, the posterior likelihood of X is

h(x,y)

> h(xy)

b’ (x) =

which can be written :

y
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The result is that the posterior distribution of X is that of a non-
stationary Markov chain, which makes its simulation quite easy.
Thus we can use the SICE procedure whenever we have at our

disposal an estimator 6:6(X,Y) of the parameter 6 = (Q, By,...By),
where Q = (qij) defines the distribution of X and B = (B{,...,By)
defines the distributions of Y conditional to X (every B; defines the
distribution of each Yj conditional to X; = ;). For instance, if (Yj)

3
are Gaussian and take their values in R™, §; is given by the mean

vector and covariance matrix. We can often find such an estimator
because Q can be estimated from X by the frequencies and we

dispose, in general, of estimators (B;) of (B;) from (X,Y) (which

are in the Gaussian case empirical mean vectors and covariance
matrices.

FAST UNSUPERVISED ALGORITHM

The fast algorithm we propose runs as follows:

1° Number the pixels according to a Peano curve

2° Suppose the stochastic process obtained is a hidden Markov chain
3° Estimate all parameters by the stochastic ICE

4° Calculate the posterior marginal distributions using the "backward
-forward" algorithm ([6])

5° Perform the segmentation using the MPM

Thus our method can be seen as an approximation of the real, based
on the modelling by hidden Markov fields, MPM method. The
approximation consists on substitution of the spatial context by the
"past” and "future” of a stochastic process. The use of a Peano
curve makes this approximation less rough. The saving of the
computing time is mainly realised in the parameter estimation phasis:
when considering Markov chains the simulation of realisations
according to the posterior distribution, used in the ICE procedure, is
direct and one is not obliged to call on iterative methods, as it is the
case when using Markov fields. When the sequence of the estimated
parameters becomes steady we stop the parameter estimation step
and apply the "backward-forward" algorithm in order to calculate
the marginal posterior distributions, and classify each pixel
according to the MPM principle. Let us note that the possibility of
the computing of the posteriors by the "backward-forward" is
another source of time saving, in fact when using the MPM based
on Markov random fields modelling these posteriors can not be
computed and have to be estimated using simulations of the class
field according to the posterior distribution.

SOME NUMERICAL RESULTS

Let us consider two images Im.1 (Fig.1), Im.2 (Fig.2). They are
corrupted with the white Gaussian noise of variance 1 and means 0
and 2 respectively, which gives images represented in Fig.3 and
Fig.4 respectively. Let us denote by Al the Besag's unsupervised
algorithm, A2 our ICE based fast method using the "line by line"
curve and A3 our method using the Peano curve. The results,
expressed in the per cent of wrong classified pixels, of the
corresponding unsupervised segmentations are given in the Tab.1
below. The segmented images by A2 and A3 are given by Fig.5,
Fig.6, Fig.7, Fig.8.



Fig.7 A3(Im.1) Fig.8 A3(Im.2)
Al A2 A3
Im.1 15.67 15.24 11.48
Im.2 720 9.10 7.40
Tab.1

CONCLUDING REMARKS

The efficiency of our method seems to be equivalent to the
efficiency of the Besag's algorithm in the case of a relatively
homogeneous image and is much better in the case of a non
homogeneous one. In both cases the use of the Peano curve implies
a real improvement with respect to the use of the classic "line by
line" one.
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