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Abstract: The problem considered in this paper is the problem of the exact calculation of 

smoothing in hidden switching state-space systems. There is a hidden state-space chain 

X, the switching Markov chain R, and the observed chain Y. In the classical, widely used 

“conditionally Gaussian state-space linear model” (CGSSLM) the exact calculation with 

complexity linear in time is not feasible and different approximations have to be made. 

Different alternative models, in which the exact calculations are feasible, have been re-

cently proposed (2008). The core difference between these models and the classical ones 

is that the couple (R, Y) is a Markov one in the recent models, while it is not in the clas-

sical ones. Here we propose a further extension of these recent models by relaxing the 

hypothesis of the Markovianity of X conditionally on (R, Y). In fact, in all classical mod-

els and as well as in the recent ones, the hidden chain X is always a Markov one condi-

tionally on (R, Y). In the proposed model it can be of any form. In particular, different 

“long memory” processes can be considered. In spite of this larger generality, we show 

that the smoothing formulae are still calculable exactly with the complexity polynomial 

in time. 
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1 Introduction 

Let us consider )...,,(
11 N

N XXX =  and )...,,(
11 N

N YYY =  two sequences of ran-

dom vectors, and let )...,,(
11 N

N RRR =  be a finite-values Markov chain. Each 

n
X  takes its values from qR , while each 

n
Y  takes its values from mR . The se-

quences NX
1
 and NR

1
 are hidden and the sequence NY

1
 is observed. We deal 

with the problem of smoothing, which consists of a computation, for each 1=n , 

…, N , of the conditional expectation ],[
11

NN

nnn
yYrRXE == . To simplify nota-

tions, this expectation, as well as other similar quantities, will be denoted by 

],[
1

N

nn
yrXE . To fix ideas, let us consider the classical widely used “condition-

ally Gaussian state-space linear model” (CGSSLM), which consists of consider-

ing that NR
1
 is a Markov chain and, roughly speaking, ),(

11

NN YX  is the classical 

linear system conditionally on NR
1
. This is summarized in the following: 

  NR
1
 is a Markov chain;    (1) 

  
nnnnn

WXRFX +=+ )(
1

;    (2) 

  
nnnnn

ZXRHY += )( ,     (3) 
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where 
1

X , 
1

W , …, 
N

W  are independent (conditionally on NR
1
) Gaussian vectors 

in qR , 
1

Z , …, 
N

Z  are independent (conditionally on NR
1
) Gaussian vectors in 

mR , )(
11

RF , …, )(
NN

RF  are matrices of size qq ×  depending on switches, and 

)(
11

RH , …, )(
NN

RH  are matrices of size mq ×  also depending on switches 
1

R , 

…, 
N

R . It has been well known since the publication of (Tugnait, 1982) that the 

exact computation of ],[
1

N

nn
yrXE  is not feasible with linear - or even polyno-

mial - complexity in time in such models, and different approximations must be 

used. There are dozens of papers dealing with this approximation problem and a 

rich bibliography can be seen in recent books (Cappe et al. 2005, Costa et al. 

2005). Roughly speaking, there are two families of approximating methods: the 

stochastic ones, based on the Monte Carlo Markov Chains (MCMC) principle 

(Andrieu et al. 2003, Cappe et al. 2005, Giordani et al. 2007, among others), 

and deterministic ones (Costa et al. 2005, Zoeter et al. 2006, among others). To 

remedy this impossibility of exact computation, two different models have been 

recently proposed in (Abbassi and Pieczynski 2008, Pieczynski 2008). Based on 

ideas issued from the general triplet Markov chains considerations (Pieczynski 

and Desbouvries 2005), they make the exact computation of optimal Kalman-

like filters possible. The exact calculation of smoothing is also possible in these 

models, as shown in (Bardel et al. 2009). The general idea leading to these mod-

els is to consider the independence of the NX
1
 and NY

1
 conditionally on NR

1
. Of 

course, this does not mean that NX
1
 and NY

1
 are independent. Once this hy-

pothesis assumed, there is a wide range of different models in which exact 

smoothing and exact filtering can be performed with complexity linear in time. 

In addition, Gaussian distributions are not required, neither for 

)(),(
11111

NNNNN
rypxryp =  nor for )(),(

11111

NNNNN
rxpyrxp = . Moreover, the dis-

tribution of NR
1
 is no longer necessarily a Markov distribution and can be ex-

tended to others ones, such as a semi-Markov distribution.  

Afterward these early models were extended to more general ones, in which the 

independence of NX
1
 and NY

1
 conditionally on NR

1
 is no longer required (Piec-

zynski 2009, Pieczynski and Desbouvries 2009). Called “Markov marginal 

switching hidden models” (MMSHMs), these models verify: 

  ),(
11

NN YR  is a Markov chain;   (4) 

  
nnnnnn

WXYRFX +=+ ),(
1

,    (5) 

where 
1

X  is given, 
1

W , …, 
N

W  are independent random centered vectors in qR  

with finite covariance matrices 
1

Σ , …, 
N

Σ , and )(
11

RF , …, )(
NN

RF  are matri-

ces of size qq×  depending on the switches and on the observations. 

The important difference between the classical model (1)-(3) and the recent 

model (4)-(5) is the following. In the classical model (1)-(3) the couple 

),(
11

NN RX  is Markovian, the couple ),(
11

NN YR  is not, and neither filtering nor 

smoothing is possible with complexity linear - or even polynomial - in time. In 

the models (4)-(5) the couple ),(
11

NN YR  is Markovian (note that NR
1
 is not nec-
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essarily Markovian (Pieczynski 2007)), the couple ),(
11

NN RX  is not in the gen-

eral case, and both filtering and smoothing are calculable with complexity linear 

in time. From a modeling point of view, it does not seem to appear clearly why 

one model should fit real situations better than the other; however, from the 

computational point of view the possibility of exact calculations is a clear ad-

vantage of the MMSHM model over the classical one. 

The aim of this paper is to extend the models (4)-(5) to more general ones, in 

which the triplet ),,(
111

NNN YRX  in no longer necessarily a Markov one. In fact, 

let us focus on the distribution ),(
111

NNN
yrxp  of the hidden chain NX

1
 condi-

tional on the couple ),(
11

NN YR . In both models (1)-(3) and (4)-(5) this distribu-

tion is a Markov one, and thus it is a “short memory” distribution. In practice, 

many phenomena must be modeled by a “long- memory” - thus non Markovian 

– distribution (Beran and Taqqu 1994, Doukhan et al. 2003). Our aim is to show 

that exact smoothing remains feasible for a wide range of distributions 

),(
111

NNN
yrxp , including “long memory” distributions. 

Finally, the problem we deal with is the following. Let us assume that we have a 

random chain NX
1
 with stochastic switches modeled by a Markov chain NR

1
. 

Neither NX
1
 nor NR

1
 are observable and we observe a “noisy” version NY

1
. 

What can be done to estimate ),(
11

NN RX ? We propose a new model, which ex-

tends the model (4)-(5) and in which both )(
1

N

n
yrp  and ][

11

NN

n
yYXE =  are 

computable with complexity polynomial in time. This makes an estimation of 

),(
11

NN RX  for very large N  feasible. The general idea is to use the recent re-

sults presented in (Lanchantin et al. 2007), where one considers a long memory 

chain with switches ),(
11

NN RX  in which it is possible to compute ][
1

N

n
rXE . 

Roughly speaking, here we add a noise NY
1
 to the model studied in (Lanchantin 

et al. 2007), and we show the calculability of )(
1

N

n
yrp  and ][

1

N

n
yXE . 

The new model is proposed and discussed in the next section, and the exact 

computation of smoothing is described in the third one.  

 

2. Hidden conditionally Markov switching chains  

Let us consider the triplet ),,(
111

NNN YRX  as above. The starting point of the 

model we propose is to consider that, conditionally on NY
1
, the distribution of 

the couple ),(
11

NN RX  is the distribution of the “partially Markov chain”, which 

is an extension of the “partially Markov Gaussian chain” (PMGC) introduced in 

(Lanchantin et al. 2007). Although the situation here is different from the situa-

tion in this paper where NX
1
 was observed and NR

1
 was being searched for, the 

extension of the PMGC used here will here be a basic brick to build a model for 

the triplet ),,(
111

NNN YRX . A PMGC verifies  
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  ),()(),,(
11111111

n

nnnn

nn

nn
xrxprrprxrxp +++++ =   (6) 

where ),(
111

n

nn
xrxp ++  are assumed Gaussian. We see that ),(

11

NN RX  is Mark-

ovian with respect to NR
1
, but is not necessarily Markovian with respect to NX

1
, 

which is why it is named “partially” Markov. 

Finally, the model we propose is the following 

 

Definition  

A triplet ),,(
111

NNN YRX  will be said to be a “hidden conditionally Markov 

switching chain” (HCMSC) if it verifies  

),(
11

NN YR  is a Markov chain ;    (7) 

 for 2=n , …, N , 
n

n

nn

n

n
WXYRFX += −1

1
),(  ,  (8) 

with )],(),...,,(),,([),(
121 nnnnnnnnn

n yrFyrFyrFyrF −= , where each ),(
nni
yrF  is a 

matrix of size qq×  depending on ),(
nn
yr , and 

1
X , 

1
W , …, 

N
W  are independ-

ent centred vectors in qR  such that each 
n

W  is independent from ),(
11

NN YR . 

The oriented dependence graphs of the classical CGSSLM and the new HCMSC 

are presented in Figure1, (a) and (b), respectively.  

 

 
 

1r 3r2r1r 3r2r

1x 2x 3x 3x

2y 1y 2y 3y

1x 2x

1y 3y

                                     (a)               (b)  
 

Fig. 1 : (a) classical model (1)-(3); (b) new model (7)-(8). 
 

Let us underline the following points: 

(i) The hypotheses on the sequence 
1

W , …, 
N

W  are very weak, as only the exis-

tence of their means is requested. If the chain 
1

W , …, 
N

W  is Gaussian then 

),(
11

NN RX  is a PMGC conditionally on NY
1
; 

(ii) the variables 
1

W , …, 
N

W  do not necessarily have a covariance matrix; 

(iii) the chain NR
1
 is not necessarily Markovian, which is the reason why we call 

the model a “conditionally Markov switching” model and not a “Markov switch-

ing” model. However, NR
1
 is Markovian conditionally on NY

1
, which is of core 

importance in the computation of the smoothing. 
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3. Exact smoothing in HCMSC 

Let us consider an HCMSC ),,(
111

NNN YRX . As ),(
11

NN YR  is a Markov chain, we 

have ),(),(
1111

N

nnn

N

nn
yrrpyrrp −−− = . Then these transitions and )(

11

Nyrp  are classi-

cally given by 
)(

)(
),(

11

11

−−
−− =

nn

nnN

nnn
r

r
yrrp

β
β

 and 
∑

=

1

)(

)(
)(

11

11

11

r

N

r

r
yrp

β
β , where )(

nn
rβ  are 

classically computable by the backward recursions 1)( =
NN
rβ , 

∑ −−−− =
nr

nnnnnnnn
ryryrpr )(),,()(

1111
ββ : see (Derrode and Pieczynski 2004). Finally, 

)(
1

N

n
yrp  are classically computed from )(

11

N
yrp  and the transitions 

),(
11

N

nn
yrrp −  by the forward recursions: )(

11

Nyrp  given above, =)(
1

N

n
yrp  

∑
−

−−
1

),()(
1111

nr

N

nn

N

n
yrrpyrp . Knowing the transitions ),(

11

N

nn
yrrp −  and the mar-

ginal distributions )(
1

N

n
yrp  makes feasible to compute, for Nnk ≤<≤1 , all 

),(
1

N

kn
yrrp  with complexity polynomial in time. Consequently, for Nnk ≤<≤1  

all ),(
1

N

nk
yrrp  are also computable with complexity polynomial in time. 

We can state the following result 

 

Proposition  

Let ),,(
111

NNN YRX  be an HCMSC such that ),(
11
yrp  and the transitions 

),,(
11 nnnn

yryrp ++  of the Markov chain ),(
11

NN YR  are given.  

Then )(
1

N

n
yxp  and ][

1

N

n
yXE  can be computed with polynomial complexity in 

time in the following way: 

(i) compute )(
1

N

n
yrp  for each Nn ≤≤1 , and ),(

1

N

nk
yrrp  for each Nnk ≤<≤1  

as specified above; 

(ii) for known ],[
111

NyrXE , ],[
122

NyrXE , …, ],[
111

N

nn
yrXE −− , compute ],[

1

N

nn
yrXE  

with  

           ∑
−≤≤

− ==
11

11

1

11
],[),(],[),(],[

nk

N

nknn

n

k

N

n

n

nn

nN

nn
yrXEyrFyrXEyrFyrXE , (9) 

where ],[
1

N

nk
yrXE  are given by 

),(],[],[
111

N

nk

r

N

kk

N

nk
yrrpyrXEyrXE

k

∑= ;  (10) 

(iii) compute )(],[][
111

N

n

r

N

nn

N

n
yrpyrXEyXE

n

∑= . 

Proof. 

Taking the expectation of (8) conditional to ),(),(
11

N

n

N

n
yrYR =  leads to (9). To 

show (10) let us notice that according to the model, the variables 
n

R  and 
k

X  are 

independent conditionally on ),(
1

N

k
YR . This leads to =],[

1

N

nk
yrXE  
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∑∑∑ ==
kkk r

N

nk

N

kk

r

N

nk

N

nkk

r

N

nkk
yrrpyrXEyrrpyrrXEyrrXE ),(],[),(],,[],,[
11111
, which is (10) 

and which ends the proof. 
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