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Abstract. Let X be a hidden real stochastic process, R be a discrete finite Markov chain, Y 

be an observed chain. The problem of filtering and smoothing is the problem of recovering 

both R and X from Y. In the classical models the exact computing with linear - or even 

polynomial - complexity in time index is not feasible and different approximations are 

used. Different alternative models, in which the exact calculations are feasible, have been 

recently proposed (2008). The core difference between these models and the classical ones 

is that the couple (R, Y) is a Markov one in the recent models, while it is not in all the 

classical ones. Here we propose a further extension of these models. The core point of the 

extension is the fact that the observed chain Y is not necessarily Markovian conditionally 

on (X, R) and, in particular, the long-memory distributions can be considered. We show 

that both filtering and smoothing are computable with complexity polynomial in the 

number of observations in the new model.  

Keywords: exact filtering, exact smoothing, Markov switches, hidden linear system, long-

memory noise 

 

1 Introduction 

Let )...,,(
11 N

N XXX =  and )...,,(
11 N

N YYY =  be two sequences of random 

variables, and let )...,,(
11 N

N
RRR =  be a finite-value Markov chain. Each 

n
X  

takes its values from qR , while each 
n

Y  takes its values from mR . The sequences 

NX
1
 and NR

1
 are hidden and the sequence )...,,(

11 N

N YYY =  is observed. We deal 

with two problems: the filtering problem and the smoothing one, whose 

formulation considered in this paper are 

(i) calculation of )(
1

n

n
yrp  and ),[

1

n

nn
yrXE  ; 

(ii) calculation )(
1

N

n
yrp  and ),[

1

N

nn
yrXE , 

respectively. Let us consider a simple classical Gaussian state-space system, 

which consists of considering that R  is a Markov chain and, roughly speaking, 

that ),( YX  is the classical linear system conditionally on R . This is summarized 

in the following: 

  R  is a Markov chain;    (1) 

  
nnnnn

WXRFX +=+ )(
1

 ;    (2) 

  
nnnnn

ZXRHY += )( ,     (3) 
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where 
1

X , 
1

W , …, 
N

W  , 
1

Z , …, 
N

Z  are independent (conditionally on N
R

1
) 

Gaussian vectors, )(
11

RF , …, )(
NN

RF  are matrices of size qq×  depending on 

switches, and )(
11

RH , …, )(
NN

RH  are matrices of size mq ×  also depending on 

switches. The exact filtering and smoothing are not feasible with linear - or even 

polynomial - complexity in time in such models, and different approximations 

must be used. Many papers deal with this approximation problem and a rich 

bibliography can be seen in recent books (Cappe et al. 2005, Costa et al. 2005). 

Roughly speaking, there are two families of approximating methods: the 

stochastic ones, based on the Monte Carlo Markov Chains (MCMC) principle 

(Andrieu et al. 2003, Doucet et al. 2001, Cappe et al. 2005, Giordani et al. 2007, 

among others), and deterministic ones (Costa et al. 2005, Zoeter et al. 2006, 

among others). 

To remedy this impossibility of exact computation two different models have 

been recently proposed in (Abbassi and Pieczynski 2008, Pieczynski 2008). 

Based on the general triplet Markov chains (Pieczynski and Desbouvries 2005), 

they make the exact computation of optimal Kalman-like filters possible, and the 

exact calculation of smoothing is also possible, as shown in (Bardel et al. 2009). 

The general idea leading to these models is to consider the independence of the 
NX
1
 and NY

1
 conditionally on NR

1
. 

Then these early models have been extended to more general ones, in which the 

independence of N
X

1
 and N

Y
1
 conditionally on N

R
1
 is no longer required 

(Pieczynski 2009, Pieczynski and Desbouvries 2009). Called “Markov marginal 

switching hidden model” (MMSHM), they verify: 

  ),(
11

NN YR  is a Markov chain;   (4) 

  
nnnnnn

WXYRFX +=+ ),(
1

,    (5) 

with 
1

X  given and 
1

W , …, 
N

W  independent random centered vectors in qR . 

The oriented dependence graphs of the models (1)-(3), (4)-(5), and the new one 

are given in Figure 1. 

 
 

1r 3r2r1r 3r2r

1x 2x 3x 1x 2x 3x3x

1r 3r2r

1x 2x

1y 2y 3y2y 1y 2y 3y1y 3y

        (a)           (b)           (c) 

 
Fig. 1. Classical model (a), recent model making exact filtering and smoothing feasible 

(b); proposed long correlation model (c) 
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2 Markov switching state model with Gaussian correlated 

noise 
 

Let us consider the triplet ),,(
111

NNN
YRX  as above. The core point of the model 

we propose is to consider that the distribution of the couple ),(
11

NN
YR  is the 

distribution of the “partially Markov Gaussian chain” (PMGC) recently 

introduced in (Lanchantin et al. 2007). A PMGC verifies  

  ),()(),,(
11111111

n

nnnn

nn

nn
yryprrpryryp +++++ =   (6) 

where ),(
111

n

nn
yryp ++  are assumed Gaussian. Important in these models is that the 

conditional distributions ),(
111

n

nn
yryp ++  are computable: see (Lanchantin et al. 

2007) for details. 

We see that ),(
11

NN YR  is Markovian with respect to NR
1
, but is not necessarily 

Markovian with respect to N
Y
1
, which is at the origin of its appellation “partially” 

Markov. 

Finally, the model we propose is the following 

 

Definition  

A triplet ),,(
111

NNN
YRX  will be said to be a “hidden Markov switching 

conditionally linear model” (HMSCLM) if:  

),(
11

NN
YR  is a PMGC;    (7) 

  
11111

),( +++++ +=
nnnnnn

WXYRFX  ,   (8) 

where each ),(
nnn
yrF  is a matrix of size qq×  depending on ),(

nn
yr , and 

1
W , 

…, 
N

W  independent centered vectors in qR  such that 
n

W  is independent from 

),(
11

NN YR  for each 1=n , …, N . 

 

The oriented dependence graph of the new model (7)-(8) is given in Figure 1, (c). 

Let us underline the fact that there are no arrows going from 
1
y  to 

2
y , which 

means that conditionally on ),(
11

NN RX  the chain NY
1
 is not necessarily 

Markovian. Let us also highlight that the main difference between the classical 

models of kind (a) and the models of kind (b) or (c) consists of the fact that in (a) 

the arrows go from 
1
x , 

2
x , and 

3
x  to 

1
y , 

2
y , and 

3
y , while in the models (b) 

and (c) they go from 
1
y , 

2
y , and 

3
y  to 

1
x , 

2
x , and 

3
x . 

Let us also notice that, as described in (Lanchantin et al. 2007), (7) includes 

different “long memory” distributions for )(
11

NN ryp .  

According to the results presented in (Lanchantin et al. 2007), we have the 

following 
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Lemma 

Let ),(
11

NN YR  be a PMGC. Then the posterior margins )(
1

N

n
yrp  and transitions 

),(
11

N

nn
yrrp +  are computable with complexity linear in time.  

 

As a consequence, ),(
11

N

nn
yrrp +  are also computable. 

 

3 Exact filtering 
 

We can state the following result: 

 

Proposition 1 

Let us consider an HMSCLM ),,(
111

NNN
YRX . Then ],[ 1

111

+
++

n

nn
yrXE  and 

)( 1

11

+
+

n

n
yrp  are given from ],[

1

n

nn
yrXE  and )(

1

n

n
yrp  by 

 
∑∑

∑

+

+++

+++
+

+ =

1

),()()(

),()()(

)(
11111

11111

1

11

n n

n

r r

n

nnnn

n

n

r

n

nnnn

n

n

n

n
yryprrpyrp

yryprrpyrp

yrp   (9) 

=+
++ ],[

1

111

n

nn
yrXE ∑

∑ +

+
+++

n

n

r

r

nn

n

n

nn

n

nn

nnnnn
rrpyr

rrpyrp
yrXEyrF ]

)()(

)()(
[],[),(

11

11

1111
 (10) 

Proof 

To show (9), we write 

====
+

+++

+

++

+

+++
+

∑∑

)(

),(),(

)(

),,(

)(

),(
)(

11

11111

11

111

11

1111

11 n

n

r

n

nn

n

nn

n

n

r

n

nnn

n

n

n

nnn

n
yyp

yrypyrrp

yyp

yyrrp

yyp

yyrp
yrp nn  

)(

),()()(

11

11111

n

n

r

n

nnnn

n

n

yyp

yryprrpyrp
n

+

+++∑
, and ==∑

+

+++
1

),()(
11111

nr

n

nn

n

n
yrypyyp  

∑∑
+

+++
1

),()()(
11111

n nr r

n

nnnn

n

n
yryprrpyrp . 

To show (10), let us take the conditional expectation of (8). We get 

=== ∑
+

++++
+

++++
+

++
nr

n

nnnnnn

n

nnnnn

n

nn
yrrXEyrFyrXEyrFyrXE ],,[),(],[),(],[ 1

11111

1

11111

1

111

=∑
+

+
+

++++
nr

n

nn

n

nnnnnn
yrrpyrrXEyrF ),(],,[),( 1

11

1

11111
 

∑
+

++++
nr

n

nn

n

nnnnn
yrrpyrXEyrF ),(],[),( 1

111111
, 
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the last equality being due to the independence of 
n

X  and ),(
11 ++ nn

YR  

conditionally on ),(
1

n

n
YR  (see the dependence graph (c), Figure 1). 

Otherwise, 
∑∑ +

+

+

+
+

+
+ ===

nn r

nn

n

n

nn

n

n

r

n

nn

n

nnn

nn

n

nn
rrpyr

rrpyrp

yrrp

yrrp
yrrpyrrp

)()(

)()(

),(

),(
),(),(

11

11

11

11

11

1

11
. 

Reporting this quantity to the expression of ],[
1

111

+
++

n

nn
yrXE  above gives (10). 

 

4 Exact smoothing 
 

We can state the following result: 

 

Proposition 2 

 

Let ),,(
111

NNN YRX  be an HMSCLM with given transitions ),,(
11 nnnn

yryrp ++ . Then 

],[
111

N

nn
yrXE ++ can be computed from ],[

1

N

nn
yrXE  by: 

 ],[
111

N

nn
yrXE ++ ),,(],[),(

111111

N

nn

r

N

nnnnn
yrrpyrXEyrF

n

++++ ∑= . (11) 

If, in addition, the covariance matrices 
1

Σ , …, 
N

Σ  of 
1

W , …, 
N

W  exist, then 

],[
1111

N

n

T

nn
yrXXE +++

 satisfies  

11111111111111
),(]),(],[)[,(],[ +++++++++++ Σ+= ∑ nnn

T

n

r

N

nn

N

n

T

nnnnn

N

n

T

nn
yrFyrrpyrXXEyrFyrXXE

n

, (12) 

and thus ][
1

N

n
yXCov  can also be computed with complexity linear in time. 

 

Proof. 

By assumption, 
11111

),( +++++ +=
nnnnnn

WXYRFX . Since 
1+nW  and ),(

1

N

n
YR  are 

independent, and 
1+nW  is zero-mean, we have by taking the expectation of the 

both sides conditional on ),(),(
11

N

n

N

n
yrYR =  

],[
111

N

nn
yrXE ++ ],[),(

11111

N

nnnnn
yrXEyrF ++++=      

  ),,(],,[),(
1111111

N

nn

r

N

nnnnnn
yrrpyrrXEyrF

n

+++++ ∑= .   

On the other hand, from model ],[],,[
111

N

nn

N

nnn
yrXEyrrXE =+

, which gives (11).  

Equation (2.7) is shown similarly: the independence of 
1

W , …, 
N

W  implies that 

n
X  and 

n
W  are independent conditionally on ),(

11

NN YR , so (1.5) gives 

],[
1111

N

n

T

nn
yrXXE +++

 ],[),(],[),(
11111111111111

N

n

T

nnnn

T

n

N

n

T

nnnnn
yrWWEyrFyrXXEyrF ++++++++++++ +=  

 
11111111111

),(],[),( ++++++++++ Σ+=
nnn

T

n

N

n

T

nnnnn
yrFyrXXEyrF .  (13) 
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On the other hand ==∑ ++++++
nr

N

nn

T

nn

N

n

T

nn
yrrXXEyrXXE ],,[],[
11111111

 

),,(],[
11111

N

nn

r

N

n

T

nn
yrrpyrXXE

n

+++∑ . Combining it with (13) gives (12) and ends the 

proof. 
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