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1 Introduction
Let X =(X,,...,X,,...) be a “hidden” random sequence, each X, taking its values in R’,
Y=(,..,Y,,...) an “observed” random sequence, each Y, taking its values in R", and
R=(R,,..,R,,..) a discrete random sequence, each R, taking its values in a finite set S :{1,...,5}.
For each »n=12,3,.. we will set X/ =(X,,...X,), Y"=({,,...,Y,), and R' =(R,...,R,),
respectively. The three chains are linked via some probability distribution denoted by p(x/,r",»/).
The problem considered in this paper, which is called the “filtering” problem, is to sequentially
calculate E[ X, [Y,"" =y™"] from E[X,

which comes from the fact that the discrete process R models the random changes of regime, or

ol Y" =y']. We will call such a computation “Jumping Filter”,
“jumps” of the distribution of (X ,,Y,). Such models are vital in non stationary cases, and find
numerous applications in different classical problems, like those needing the use of the classical
Kalman filter. Otherwise, such filter is an “optimal” one as the conditional expectation classically is
the best approximation when the means squared error is considered. The contribution of the paper is to
consider a family of distributions p(x;,r",y;) which are very different from the classical models,
and which make possible the exact computation of the filter with linear complexity in number of
observations. The ideas introduced here are inspired by the general ideas according to which finding
X from Y is possible once the triplet (X, R,Y)- with R some auxiliary chain — is a Markov chain,
and none one of the six marginal distributions of X, R, ¥, (X,R), (X.,Y), (R,Y) needs to be
Markovian. These ideas lead to numerous possibilities of defining particular triplet Markov chains
(X,R,Y), some of which are not more complex that the classical hidden Markov chains and though
very different from them (Pieczynski and Desbouvries (2005), Ait-El-Fquih and Desbouvries (2006),
Pieczynski (2007)).

Let us consider the classical Gaussian model, which consists of considering that R is a Markov chain
and, roughly speaking, (X,Y) is the classical linear system conditionally on R. This is summarized

in the following:

R is a Markov chain; (D)
Xn+1 = Fn (Rn )Xn + Wn ; (2)
Yn = Hn (Rn )Xn + Zn 4 (3)

where W, ..., W

n?o

... are independent Gaussian vectors in R?,and Z,, ..., Z , ... are independent

n



. the calculation of E[X ., |V,"" =y™"]

Y" =y] is obtained by the well known Kalman filter, which has linear complexity in

Gaussian vectors in R". For fixed R =v#, ..., R =r, ..
from E[X,

number of observations. However, such kind of calculation is no longer possible when R is random

n+l

and different approximations, like “particle filtering”, must be used ((Andrieu ef al. (2003), Costa et
al. (2005)). In fact, setting V' = (X, R), we have classically

PG [ PO PO, v,

ylnﬂ ) — SR - (4)
P,

p(vn+l

but the computation of p(y,,|y'") is not feasible with linear complexity in number of observations.

The dependence graph of the classical model (1)-(3) is presented in Fig.1, (a).

(a) (b) (©)

Figure 1: (a) Classical model; (b) Simplified classical model; (c) Model (b) with semi-Markov jumps

As stated above, the aim of this paper is to propose some different models allowing the exact
calculation of E[X,,[Y,"" =y/") from E[X,

observations. The general idea is to leave the framework of the classical linear model conditionally on

el Y" =y') with linear complexity in number of
the jumps. In fact, we are faced with three random chains, such that the triplet 7 =(X,R,Y) is a
Markov chain and such “triplet” Markov chains (TMC) have been recently studied in different kind of
situations (Pieczynski and Desbouvries (2005)). Although the situation here is different from different
cases previously studied in that the searched chains X and R are here of different kind (X is
continuous and R is discrete, when they were either both discrete as in (Pieczynski et al. (2002),
Lanchantin and Pieczynski (2004), Le Cam et al. (2008)) , or both continuous as in (Desbouvries and
Pieczynski (2003), Ait-El-Fquih and Desbouvries (2006)). However, the general idea is inspired from
these different TMC.

As we are going to see, the main hypothesis allowing one to compute E[X
E[X,

complexity in number of observations, is to assume, roughly speaking, that X and Y are independent

1 - 1
¥ =] from

Y =y with linear

n+l

Y" =y'], which makes possible the calculation of E[X

n+l

conditionally on R . Then, partly exploiting different recent ideas relative to TMC, we will see that it

is possible to consider Markov jumps, semi-Markov jumps, or even still more general random jumps

models.

The contents of the paper is following. In the next section we provide the general theorem. The section
2/8



three briefly recalls the first results concerning the problem proposed in (Abbassi and Pieczynski
(2008)), and it is showed how these results are particular cases of the general theorem in section 2.
The fourth section is devoted to two original models in which the jump chain is a Markov one or not,

and the fifth section provides some conclusions and perspectives.
2 General theorem
Let us consider the three random chains X =(X,...X,,...), Y=,..,Y,.), and

R=(R,,...,R,,...) as above. We can state the following result.

Theorem 1

—yl]—ZM( r.,»"). Under the

For each n2>1, let M(r,,y)= Ixnp(xn, vdx,
R'i

following hypotheses

(1) (R,Y) is a Markov chain with given transitions p(7,,,, ¥, .|

n’ y n )
(ii) the chains X and Y are independent conditionally on R;

(iii) there exist W, ..., W

PEEREE

X, =F/(R)X,+W, foreach n>1,

independent random centered vectors in R? such that

we have

n’yn)
)

r > n+
M( n+l) zp( n+l y 1

> Vi F,(r)M(r,, ), (5)
",, PV

and

( n+l’yln+l) Zp(rn’rnﬂ’yl ’yl1+|) Zp( 5yl )p(rn+l’yn+l n’yn)' (6)

As aresult, p(y,,,|y') in (5) is computable from p(y/")= Z p(r..,y'™") given by (6), and thus the

expectation E[X,, |V"" = y'™'] is calculable from M(r ,y')""

n+l

Consequently, the optimal filter E[X ., |Y,"" = y'™] is computable with linear complexity in number

n+l

of observations.
In addition, the transitions and the marginal distributions of the Markov distribution p(r| y) are also
classically computable with linear complexity in number of observations, which make possible the

estimation of R =r.
Proof.

According to the hypotheses 7 = (X,R,Y) is a Markov chain; moreover, we have
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p(xn+l’rn+l7yn+l r,y) p(r+l7yn+1 XV V) )p(xn+1 Varto Ve X051V, )_

(7)
= p(rn-ﬂ ’yn+l rn ’yn )p(‘xn+l ‘xn >'n )
Thus we can write
nHlN p(‘xn’ n yl )p(‘xn+l’ n+l ’yn+l ‘xn’rn’yl ) _
p(‘xn’ n’ n+l’rn+l yl )_ -
p(yn+l yl )
®)
p(xn7 n yl )p(x1+l7 n+l7yn+l xﬂrn’yn) _ p(xn7 n|yl )p(rn+lﬂyn+l n’yn)
- ][p(‘an ‘xn 4 rn )]
P, V) PYu))

Then we use p(x ,7 ,x

n2"n2>7 n+l 2" ntl

™) expressed by (8) to compute M(r,,,,y"™"):

Vs, j Xl [ Pt X T

n, RY

M ¥1™) = [ 200 P v, Jdx, , =
Rfl

j[ 1 px,.r,

D

xn >'n )dan ]dx

yl )p(rn+17yn+l n’y )J. n+lp(xn+l

p(yl1+|

and thus

‘xn >'n )dxlﬁ-l = E1 (rn )‘xn >

According to (iii) we have J.x"+I p(x,.,

RY

n+l ’yl"+1) = I[ ][Z p( no n|yl )p(rn-H ’yn+l n ’yn )E1 (rn )‘xn ]dxn =
p(y,,+. D
r > n+ rn’ n n rn+’ n+ rn’ n
= p( - y l n y)F:1(rn)J.xnp(x;17r;1yl )dxnzzp( l y l n y)F(r )M(r ’yl)’
T p(yn+l yl ) RY T p(yn+l yl )
which is (5).

(6) classically comes from the fact that (R,Y) is a Markov chain; in fact, we have

P Tas V15 Vi) = P VO PFrpats Vit [Fas V1) = PFs VIO PFrpas Vst [Fas V) -

Finally, (R,Y) is a “pairwise” Markov chain (which simply means that (R,Y) is a Markov chain)

according to (i) and thus the same calculations as in the classical hidden Markov chains are workable
(Derrode and Pieczynski (2004)), which ends the proof.
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Figure 2: (d) Second simplified classical model: Markov jumps with independent noise; (e)
Simplified classical model: Markov jumps with correlated noise; (f) General new model, with

non necessarily Markov jumps

Remark 1

Let us insist on the fact that the distribution of the jumping chain R is not necessarily a Markov one.
For example, for stationary and reversible chain (R,Y) it has been showed in (Pieczynski (2007)) that
R is a Markov chain if and only if for each =1 and 1<i<n one has p(y,,‘rl”) = p(y[|r,,). Thus the
Markovianity of (R,Y) is a rather mild condition, and the model (i)-(iii) contains a number of
particular simpler models. The dependence graphs of some models are presented in Fig. 2: the very
classical hidden Markov chain with independent noise corresponds to (d), a hidden Markov chain
model with correlated noise corresponds to (), while the graph corresponding to the general model is
given in (f). In addition, different experiments presented in (Derrode and Pieczynski (2004)) show that
the pairwise Markov chains which are not the classical hidden Markov chains (i.e. in which the
hidden chain R is not a Markov one) can be much more efficient. Therefore using pairwise Markov
chains instead of the classical hidden Markov ones should also be of interest in the context of the

present paper.

Remark 2

The independence of X and Y conditionally on R - hypothesis (ii) — is the key point in the model
and one could wonder whether such hypothesis can turn out to be penalizing in real situations.
Important is to notice that the “conditional independence” is a very different notion from the
“independence” notion; in other words, “conditional independence” can be very close, or event
identical, to the “dependence”. For example, having two dependent Gaussian real random variables
A and B, one can always find a third real Gaussian random variable C such that 4 and B are
independent conditionally on C. In other words, the “dependence” and the “conditional
independence” are identical notions in the case of Gaussian real variables. In addition, such kind of
triplet Markov models has already been successfully used in (Lanchantin and Pieczynski (2004)).
There are a searched discrete X , an auxiliary discrete U (which models different stationarities of the
model, and thus whose meaning is similar to the meaning of R in the present paper), and an observed
continuous chain Y. The chain (X,U,Y) is assumed to be a Markov one and both X and U are
searched from Y . Although the chains U and Y are independent conditionally on X , the estimation

of U from Y is not worse that the estimation of X .
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3. General model and semi-Markovian jumps
We have seen in the previous section that the general model of the Theorem 1 can produce either a
Markov jumps process (Fig. 2, (d) and (e)), or more general one, whose distribution is the marginal
distribution of a Markov one (Fig. 2, (f)). The aim of this section is to present a new model, where the
jump process is a semi-Markov one. The general idea is the following. As already specified in
(Lapuyade-Lahorgue and Pieczynski (2006)), a semi-Markov distribution of R can be seen as the
marginal distribution of a particular pairwise Markov chain (R,U). Then the hidden semi-Markov
chain (R,Y) can be seen as a triplet Markov chain (R,U,Y) . In other words, we are going to specify
the same kind of results as in the previous section, replacing the pairwise Markov chain (R, Y) by the
triplet Markov chain (R,U,Y) . Finally, we will have a quadruplet random chain (X,R,U,Y), where
X is the searched chain as above, R is the jump process as above, U is an auxiliary process which
will make R be semi-Markov, and Y is the observed process as above. Such kind of models could
appear as somewhat complex; however, a similar model has been used in (Lapuyade-Lahorgue and
Pieczynski (2006)). In fact, in the latter paper there are a hidden discrete searched chain X , an
observed continuous chain Y, a jump chain R which models the different stationarities, and an
auxiliary chain U , which makes X semi-Markov. We see that there are two differences between the
model in (Lapuyade-Lahorgue and Pieczynski (2006)) and the model we are going to develop: (i) in
this paper X is continuous instead of being discrete, and (ii) U is used to make semi-Markov R,
instead of X . However, the results produced in (Lapuyade-Lahorgue and Pieczynski (2006)) show
that such models can be of real interest, even in the unsupervised context, where all the model
parameters are estimated from the only observed data Y .
Let us first recall how to introduce the distribution of (R,U) to make the distribution of R semi-
Markov. Following the model proposed in (Lapuyade-Lahorgue and Pieczynski (2006)), we will
assume that each U, takes its values in Y = {0, 1,...,m} , so that (R,U) is a finite Markov chain. For
(R,,U )=(r,,u,), the number u, denotes the minimal sojourn time of the next R ,, .... in r,.
Therefore, if u, =;>0, we have (r,,,u,,)=,u, =D, ..., (.,u,;)=,0). If u, =0, the
distribution of R, is a given transition p(r,,

ru,) = p.,\r.u,)p,,.r.r,,u,) of the Markov chain (R,U) is defined by

r,,u, =0). Finally, the transition

p(rnﬂ > un+1

rn’un) = 5}‘” (rn+l) lf un > O s and p(rn

p(rn+| rn) lf un = 0 ; (9)

+1

rn+|7rn7un) = 51

7]

() i u, >0, and p(u

p(un+l rn+l) lf un = O ’ (10)

n+l

with J,(b) =1 for a=b,and J,(b) =0 otherwise.

Therefore we have four chains X, R, U, and Y and the problem is the same as in the first section :
calculate E[ X, [Y,"" =) from E[X,
the result in Theorem 1, with R replaced by (R,U).

Y" =y/). Roughly speaking, we will state a result similar to
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Theorem 2
Let us consider four chains X, R, U, and Y verifying following hypotheses:

(1) V' =(R,U) is a Markov chain verifying (9)-(10) (R is a semi-Markov chain);
vn 4 yn) 7

(2) (V,Y) is a Markov chain with computable transitions p(v,,;, ¥,
(3) the chains X and Y are independent conditionally on V' ;
(4) there exist W,, ..., W, ... independent random centered vectors in R’ such that

X,.,=F W)X, +W, foreach n=>1;

n+l

Then the optimal filter E[X

observations. In addition, the transitions and the marginal distributions of the Markov distribution

p(r,u
make possible the estimation of R = r .

Y =y is computable with linear complexity in number of

n+l

y) are also classically computable with linear complexity in number of observations, which

The proof is immediate, as the hypotheses (2)-(4) in the Theorem 2 are identical to the hypotheses (i)-
(ii1) in the Theorem 1.
Finally, we can say that the model specified in Theorem 2 is a particular case of the model specified in

Theorem 1.

)/

(h)

Figure 3: (g) new model with semi-Markov jumps and independent noise, (h) new model

with semi-Markov jumps and correlated noise.

Let us consider two examples of such a semi-Markov jumps models whose dependence graphs are
presented in Fig. 3. The model (g) is similar to the model (d) in Figure 2, except the fact that the jumps
chain is semi-Markovian instead of being Markovian. The model (h) extends the model (g) in that the

noise is correlated and p(y,,,|r,,7,,,) can depend on both » and r,, .
4 Conclusion

We considered in this paper the problem of filtering continuous multivariate data in the presence of
random jumps. When the jump process is assumed to be Markov in the classical linear systems, the
exact computation with linear complexity in number of observations is not possible and different
approximation techniques must be used. Using different general ideas inspired by different recent

works on triplet Markov chains, we proposed different general families of models in which the
718



filtering with linear complexity in number of observations is feasible.

Validation in real situations will be a natural perspective for further studies on the subject.
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