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1 Introduction

The Hidden Markov Chains (HMC), also called Hidden Markov Models, is a well known and widely
used model. Its applications covers numerous fields, including Acoustics, Biosciences, Climatology,
Ecology, Control, Communications, Econometrics and Finance, Handwriting and Text Recognition,
Image Processing and Computer Vision, Signal Processing, or others : hundreds of papers are written
on the subject each year. Rich bibliography can be found in recent books (Cappé and al. (2005), Koski
(2001)), or tutorial papers (Ephraim and Marhav (2002), Willsky (2002). The HMC is a couple of
stochastic processes Z =(X,Y) =(X,,Y,)), in which X is hidden and Y is observable. We will
consider in this paper that each X, takes its values in a finite set of classes Q ={d],..., &} and each
Y, takes its values in R . The distribution of Z is given by

p(z)= p(zl)U P(z,|2,-) (1)

with

p(z,|z,4) = p(x,|x,)p(y,|x,) - 2

It allows one to estimate a realization X = x from the observed data Y =y in different Bayesian
ways. Then HMC have been generalized to “Pairwise Markov Chains” (PMC) (Pieczynski (2003)) in
which p(zn|zn_1) are of any form, and it has been showed in (Derrode and Pieczynski (2004)) that
such an extension can significantly improve the efficiency of Bayesian segmentation. Subsequently,
PMC have been extended to “Triplet Markov Chains” (TMC) in which one adds a third chain U and
one assumes that the triplet 7=(X,U,Y) is a Markov chain. TMC form a very rich family of
particular models (Pieczynski and Desbouvries (2005)); in particular, TMC can be used to deal with
non stationary HMC (Lanchantin and Pieczynski (2004)). Otherwise, copulas are a simple and efficient
tool to model the dependence between two random variables (Nelsen (1998)), and their recent
introduction in PMC results in a very rich set of possibilities of modeling the noise (Brunel and
Pieczynski (2005)). Such models are of interest in the situations where the noise is correlated and is
Gaussian, as, for example, in radar image processing context (Delignon and Pieczynski (2002),

Nadarajah and Kotz (2008)).



The aim of this paper is simultaneously to use these two ideas and apply TMC with copulas to deal
with non stationary chains hidden by non necessarily Gaussian and correlated noise. We also propose a
parameter estimation method based on the general “Iterative Conditional Estimation” (ICE) principle,
which has already been successfully used in the context of PMC in (Derrode and Pieczynski (2004)).
Some experiments of unsupervised Bayesian segmentation of non stationary hidden random chains
with non Gaussian and correlated noise are also presented and discussed.

2 Hidden non stationary chains and triplet ones
Let Z =(X,Y)=(X,,Y,)", be achain as above, with ¥ observable and X hidden. Let us assume
that Z is not stationary in that the transitions p(z,

z,_,) depend on n. However, we assume that there
are only a finite number M of possible distributions for each p(z,

z,.,). Such a situation can be

N
n=12

modelled by a stationary “Triplet Markov Chain”: one introduces a third random chain U =(U,)
with each U, taking its values in a finite set A\ = {/ll yeees A M}, and one assumes that the triplet chain
T=(X,U,Y) is a Markov chain. As described in (Lanchantin and Pieczynski (2004)), it is then
possible to search simultaneously U and X from the observed Y .

Let us shortly recall how the Bayesian segmentation runs in the context of TMC.

The distribution of 7 =(X,U,Y) is thus given by p(¢) = p(t,)p(t, |tl)...p(tN |tN—l)' To simplify
notation, we introduce the process V =(V,), =(X,,U,)Y, . Therefore each V, takes its values in
QxA, and T =(V,Y) is a Markov chain. The chain (V,Y) being a PMC, we can introduce the
“Forward” quantities aw,)=pW,,V,n,), and the “Backward” quantities

IB(vn) = p(ylﬁ-l ""’yN
recursions (see (Pieczynski (2003) or (Derrode and Pieczynski (2004)):

v,), which are both calculated by the following forward and backward

a()=p,3); A0, = D A@IPGts Vot Vs ) 3)
v, DOXA
B =15 B = D BOIPOsYen[Vas Vi) 4)

Vm-IDQx/\

The marginal posterior distributions of the hidden state can be calculated by

rv,|») Oa,)Bv,) Q)

and the transitions of the posterior Markov distribution p(v| y) are calculated by

p(vn-H V" H yl ERAAe yN) D p(vn-H H yn+l vn H yn )ﬁ(vn-ﬂ ) (6)
Having calculated p(v, | y) , we can then compute
p(x») =2 pv,|»), (7)
u, ON

Therefore, one can easily calculate p(x, | ), which makes the use of Bayesian Maximum Posterior

y)-

Mode (MPM) segmentation method §,,.,, (¥,,...,Vy) = (X,,...,X, ) possible, with X, =argmax p(x,
x,0Q
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¥)= pO,

x,0Q

Otherwise, we can also calculate p(u, y) which thus makes also possible the use of

MPM to estimate the different stationarities.

3 Copulas

Let h(y,,y,) be a probability density on R*, H(y,,y,) the associated cumulative distribution
function (cdf), #,(y,) and h,(y,) the marginal densities, and H,(y,), H,(y,) the cdf associated
with them. Then there exists a function C defined on [0,1]°, called “copula” such that

H(y,,y,)=CH (y,),H,(y,)), ®)

see (Nelsen (1998)). Assuming C derivable, which will made in the following, taking the derivative

of (8) with respect to y,, »,, and introducing c(u,v) = % , we have
uov
h(y,,,)=h(y)hy (v,)e(H (y,), H,(,)) )

Otherwise, it is then possible to show that a copula is a pdf on [0,1]* such that the marginal
distributions are both uniform distributions on [0,1]. Conversely, having H,, H, and C pdf on
[0,1]> with marginal distributions uniform on [0,1], we can use (8) to define a pdf H . Therefore, a
given H cdf on R’ defines a copula C with (8), and this copula can also be used to define any
another H' from any another /', H,'.

According to (9), ¢ is defined from % with

HCH (). H () (10
h(H (5 ) (H (3)

c(y,»,) =

There are numerous possibilities of defining particular copulas (Nelsen (1998)). Let us specify two of
them, which will be used in experiments below.

(i) Gaussian copula

Let A(y,,y,) be the density of a Gaussian vector with correlation p and marginal distributions
having null means and variances equal to one. Applying (10) we find

1
Nl 1 ) t
ce (v, ,) =2 2 expl-={ (v, y)E" = 1d) { (y,,1,)]
2 (12)
1
with {(y,,y,)=(H," (y,),H,'(y,)) and T = (p 'i)j So, a bivariate Gaussian copula is defined by

just one parameter, which is the correlation o.

(i1) Student copula
Let us recall that the Student distribution “with V degrees of freedom” (also called “T law”) on R* is
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given by the density

I_(|/+2

—(v+2)

1+ 2q(yvl,y2)) 5 (13)

Ik

g,y = "
mr (5)

: | :
with, for y=(y,,5,), q(») = Ey'Z 'y, where y' is the transpose of the vector y. Let g,, g, be the

marginal distributions of (13) , and G,, G, the associated cdf functions. According to (10), the

associated copula, called “Student copula”, is given by:

—-(v+2)

o FEEAM) @+ ()T )
cs(V,p,) =2 2 5 o 5 mrot (14)
I—(V2+1)2 (1+G1 (yl)) (2 )(1+G2 (yZ)) (2 )
% 1%

1
with 2 = (,0 'fj the correlation matrix.

where Z(yl’yz):(GI_I(yl)’GZ_I(yZ))‘

These two copulas can be used to define different correlated distributions on R*. For example, we can
take two Gaussian marginal distributions g,, g, and the Student copula c¢,. Then we have two
correlated Gaussian real variables, but the couple is not a Gaussian vector. As we will see in the sixth
section, such distribution used in the context of triplet Markov chains can give different results than the
Gaussian vector. We can also make a converse choice by taking two marginal Student distributions and
the Gaussian copula. Of course, it is also possible to take one marginal Gaussian, the other Student,
and the copula Gaussian or Student.

4 Copulas in Triplet Markov Chains

Let T =(X,U,Y) be a TMC as above, and let 7 =(V,Y) be the associated PMC with V' =(X,U).
Let us assume that 7 =(},Y) is stationary and reversible, which means that p(¢, ¢, ) does not
depend on n, and p(t, =a,t,, =b)=p(t, =b,t,, =a) for every triplets a, b. Its distribution is

defined by

n+l

p(t,t,) = p(vi,1,v,,5,) :p(Vlavz)p(ylay2|V1’V2) (15)

Thus the distribution of the whole chain 7" =(X,U,Y) is defined by the discrete distribution p(v,,v,)
and a finite set of distributions p(y,, yz|vl ,v,) on R’. According to the previous section, each
distribution p(y,, y2|v1,v2) is defined by its marginal distribution and a copula. To simplify notations,
letusset p,(y,,,) = p(y,y, |v1 =1i,v, = ). Thus we have (KM)* marginal distributions p,(y,)
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(which are the same that the (KM )* marginal distributions p; (¥,) because of the reversibility of 7"),
and KM (KM —-1)/2 copulas.

Let us consider the following particular model which will be used in experiments presented in the
next section. The distribution of is given by

N-1
p(x7u7y) = p(ul)p(xl’ul)p(yl’xl)x |_I p(unﬂ un)p(xnﬂ xn ’un+l)p(yn+l xn’xn+1’yn) (16)

Then it is possible to show that U and (X,U) are Markov chains, but X is not necessarily a Markov
chain. Otherwise, the chains U and Y are independent conditionally on X . Recalling that
v,,v,)=(x,,u,,x,,u,) ,the particular transitions () imply

P = (3, 3,3 x,) (17)

5 Parameter estimation with Iterative Conditional Estimation (ICE)

The general principle of the “Iterative conditional estimation” (ICE) that we will use in
experiments below and which is an alternative method to the well known “expectation-
Maximization” (EM) method, is the following. Let us consider two random processes V', Y
whose distribution depends on a parameter 8 =(6,,...,6,) . The problem is to estimate & from Y .
The aim of the well known EM method is to iteratively maximize the likelihood p( y|9). The ICE
principle we propose to use is somewhat different from EM and is often easier to perform in complex
situations. To simplify, let @00 R. Let us assume that we have at our disposal some estimator é’(V,Y ),
which has a good efficiency measured by the mean square error E,[(6— é(V,Y ))*]. Let us notice that
9(V,Y ) is the Maximum Likelihood estimator or not. As V' is not available, the idea of ICE is to
approximate 9(V,Y ) by some function of Y . The best approximation, in the sense of mean square
error, is the conditional expectation §(Y )=FE g[é(V,Y )|Y ]. Of course, g is no longer an estimator
because it does depend on 8 ; however, the principle leads to an iterative method whose general run
resembles to the EM method.

More precisely, ICE is an iterative method based on the following principle. Let é(V,Y ) be an
estimator of @ from complete data and let us assume that we can sample realizations of ¥ according
to p(v| v,0). ICE runs as follows:

(i) take an initial value 8°;

(i) using ¥ =y and the current value of the parameter 8¢, compute 8'"' = E [é v,y )|Y =y,8") for
the components &, for which this computation is feasible;

(iii) for other components &, simulate v/, ..., v/ independent realizations of V' according to
p(v|y.6") and put 8" =[6(v{,y) +..+ 0. »)]/1.

Let us notice that in (iii) one simply approximates, using the large numbers law, the expectation by the
empirical mean. In principle, the greater is / the better is the approximation; however, in practice
taking small /, or even /=1, has little influence on the final estimation results. Otherwise, we will
see that in the problem we are concerned with (ii) is computable for the components &, defining the
distribution p(v), while it is not computable for the components &, defining p( y|v).

We see that ICE is applicable under two very slight hypotheses: existence of an estimator é(V,Y )
from the complete data, and the ability of simulating ' according to p(v| v,0). The first hypothesis is
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not really a constraint because if we are not able to estimate & from complete data (v, y), there is no
point in searching an estimator from incomplete ones y . The second hypothesis is always verified for
TMC we consider in this paper, as the distribution p(v| y) is a Markov one.

Finally, we can use ICE for estimating TMC with copulas once we have an estimator 9(V,Y ) from
the complete data. Such an estimator depends on the forms of the different copulas used in the model;

we will see one of them in the next section.

6 Experiments
Let us consider Q={a,w,} and N ={A,A,}. Thus we have two classes and two different

stationarities. All marginal distributions considered in this section will be Gaussian; then we will
consider two copulas : Gaussian copula and Student one.
According to the ICE principle, we have to specify estimators from the complete data (x,u,y). We

first  estimate  the  Gaussian  margins using the  very  classical  formulas
N N N N

m' =3 v, I(x, = @)Y 1(x, =w))] and (05")" =[D (v, —m""0) I(x, = @)D I(x, = @)].
n=1 n=1 n=l1 n=l1

Let F’" be the cdf of the Gaussian distribution with mean m?" and variance (g")’, ¢ be the cdf
of the Gaussian centered distribution on R*, and ¢, be the cdf of Student centered distribution on R*,
with the parameter V. If the copula defining p(y,,y,.|x

) is Gaussian (Student, respectively),

n+1

X,x,) 1s a

no n+1 n?

we consider z =@ ' o F/'(y.) (z,=@ oF(y,), respectlvely). Then p(z,,z
Gaussian (Student, respectively) distribution and it is sufficient to estimate the correlation p

Xy X4y 2

which is made classically from (z,,...,z,) and (x,,...,x, ).
Let us assume p(x, =@,u, =A,,x,, =W, u,,, =)= px, =w,u, =A,x,, =&,u,, =4,), and
Py VyulX, =1, = AL X0 =Wty = A) = P(Ys V|X, = W, =A%, = @su,, = 4,).

In the two series of experiments below we take the following values:

plu, =A,u,, =A)=p, =A,u, =A)=0.49995
p(u, =A,u,, =A)=pu, =A,u,, =A)=0.00005,
(x, =@, x,., =@, =)= p(x, =w,x . =A1)=0.495,
p(x,,:cq,x,,ﬂ=w2|u,M=A1):p(x =W, X, cqlum-A) 0.005,
P
p(x,

n+l

X, =W,X,, = a=A)=pkx, =w,x,, =W |u =A,)=045,
=w,x,, = u,, =A,)=0.05.

n+l

=A)=px, =w,x,,, =

Otherwise, we have p(y,,V,.

‘xn "xn+l) = p(yn |‘xn )p(yn+1 xn+1 )Cx” X4 (Fr” (yn )’ F‘c,,ﬂ (yn+l )) ’ Where
F. (y,) is cdf associated with p(y, and ¢, is the associated copula. Then

p(yn+1 ‘xn ’xn+1 ’yn) = p(yl1+1 ‘xn+1 )Cx”,)c”,,1 (Fj‘cm (yn )’ E‘c,m (yn+1 ))
x, =a)) is Gaussian, N(0,1), and p(y,|x, =w,) is Gaussian N(2,1). In the first
experiment the copula is Gaussian, and it is a Student copula in the second one. The parameter v =10

in the Student copula is assumed to be known.

The sampled realization (X,U,Y) =(x,u,y) and the Bayesian MPM segmentation results based on
the true model and the true parameters of the first series, in which we use the correlations
P = Paw =09 et O, =P, 4 =0, is presented in Figure 1. The values X=%and U=4d
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are optimal, and thus they are the reference ones. Then Y =y is segmented in unsupervised way using

the true Gaussian copula, and the wrong Student copula. The aim of this experiment is study whether

choosing the right copula is of importance or not. The results are presented in Figure 2 and we see that

using Student copula instead of the right Gaussian one significantly biases the debases of the

estimation of X =x (error ratio of 7 =38,4% instead of 7 =9,4% ), while it moderately debases the

quality of the estimation of U=u (error ratio of T~ 0,7% instead of 7 =0-5% ). We also notice,

according to the parameter estimations results presented in Tables 1 and 2, that the noise parameters

are much better estimated when the true Gaussian copula based model is used.

To visualize the results as being images, we convert the mono-dimensional sequence into a bi-

dimensional set of pixels via Hilbert-Peano scan, as specified in (Fjortoft ez al. (2003)).

X =% (TMOQ), 7 =5,49%

U =4 (TMQC), 7 =0,45%

Figure 1 : Simulated (X,U,Y)=(x,u,y) with Gaussian copula, and real model and real parameters

based MPM segmentation segmentation.

X=%2(G0), 1=94% | U=4 (GC), 1=0,5% | X =% (SC), 1 =38,4%

U= (S0), 1=0,7%

Figure 2 : Unsupervised segmentation of Y =y in Figure 1, GC: Gaussian copula, SC: Student

copula.
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GC SC

a"l a? a“l 6{"2
m -0.05 |2.04 |04l 1.75
o’ 0.91 096 | 1.63 1.04

0.89 -0.05 | 0.93 0.18
a, |-0.05 1092 |0.18 0.78

e

Table 1 : Parameter’s estimation of the observation distribution

GC SC
A A, A A,
= = A 0.4999 0.0001 0.4999 0.0001
p(un =AUy = 1)
A, 1 0.0001 0.4999 0.0001 0.4999

a‘l a‘2 a‘l a‘Z a‘l a‘Z a‘l a‘Z

u

p(x, =@, %, =W, U, =A) |« |049 001 |045 |0.05 | 049 |0.01 | 048 |0.02

a, |0.01 |049 |0.05 |045 |0.01 |0.49 |0.02 |048

Table 2 : Parameter’s estimation of the distribution p(x,u)

The sampled realization (X,U,Y) =(x,u,y) corresponding to the second experiment, where the TMC
distribution is based on Student copula, is presented in Figure 3. In the same figure are given the
Bayesian MPM segmentation results based on the true model and the true parameters, in which we
use the same correlations p, , =0, , =09 et p, , =p, , =0. The values X=%and U=4 are
optimal, and thus they are the reference ones. Then Y = y is segmented in unsupervised way using the
wrong Gaussian copula, and the right Student copula. As above, the aim of this experiment is study
whether choosing the right copula is of importance or not and the difference is that the copulas have
been inverted. The results are presented in Figure 4 and we see that using Gaussian copula instead of
the right Student one significantly debases the quality of the estimation of U =u (error ratio of
T =54,1% instead of 7 =0,8% ), while it weakly debases the quality of the estimation of X =x (error
ratio of 7 =26,0% instead of 7 =21,9% ). We also notice, according to the parameter estimations
results presented in Tables 3 and 4, that the noise parameters are much better estimated when the true

Gaussian copula based model is used.
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X =% (TMOQ), 7 =15,4%

U =14 (TMQ), 7 =0,7%

Figure 3 : Simulated (X,U,Y)=(x,u,y) with Student copula, and real model and real parameters

based MPM segmentation.

X =% (GC) 7=26,0%

U =14 (GO), 1=54,1%

X =% (S0), 1=21,9%

U=14 (SC), 1=08%

Figure 4 : Unsupervised segmentation, GC: Gaussian copula, SC: Student copula

GC SC
a"l a? a“l 6{"2
m 0.36 1.61 |-0.13 1.94
g’ 2.66 2.88 | 091 1.18
a | 092 -0.01 | 0.89 0.01
p a, |-0.01 094 |0.01 0.91

Table 3 : Parameter’s estimation of the observation distribution

GC SC
/]1 /12 /]1 /12
A | ~0.5 ~0 0.4999 0.0001
p(un = /1k 4 un+l = Al) /‘ 0 0
, |~ ~0.5 0.0001 0.4999
a‘l a‘2 a‘l a‘2 a‘l a‘2 a‘l a‘Z
P(X, =@, % =, |,y =A) «, |046 004 |- - 049 |0.01 | 045 |0.05
a, [0.04 046 |- - 0.01 | 0.49 | 0.05 |0.45

Table 4 : Parameter’s estimation of the distribution p(x,u)
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7 Conclusion

We dealt in this paper with the problem of statistical segmentation of non stationary data hidden with
correlated and non Gaussian noise. The first aspect of the problem was dealt with using the recent
triplet Markov chains (TMC), as proposed in (Lanchantin and Pieczynski (2004)) in the context of
Gaussian noise. The second aspect was dealt with using Copulas, as proposed in (Brunel and
Pieczynski (2005)) in the hidden Markov chains (HMC) with correlated noise context. Setting these
two ideas together, we arrive at a very rich model and some experiments show that they are workable,

even in the unsupervised context.
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