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Abstract. In Hidden Markov Fields (HMF) models there are two random fields : the hidden Markov field X and the
observed field Y. In Pairwise Markov Fields (PMF) models one directly assumes the Markovianity of the couple (X, Y).
PMF are more general than HMF; in fact, in PMF X is not necessarily Markovian. The aim of the paper is to provide
some necessary and sufficient conditions under which PMF are HMF. We introduce the notion of “uniformly” HMF
(UHMF) and we provide a general condition under which a PMF is an UHMF. Some interest of the presented results in
the frame of Triplet Markov Fields (TMF) models, in which a third auxiliary random field is added and one considers the
Markovianity of (X, U, Y), is also briefly discussed.
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INTRODUCTION

Let S be a finite set of pixels. Hidden Markov Field (HMF) model contains two stochastic processes
X =(X,)y and Y =(Y,),, in which X =x is unobservable - or hidden - and has to be recovered from the
observed Y = y. Therefore, ¥ = y can be seen as a noisy version of X =x. To simplify, let us temporarily assume
that each X takes its values in a finite set of classes Q = {a)l,...,a)k} , whereas each Y, takes its values in the set of
real numbers R . In the classical HMF widely used the field X is a Markov one, and the distribution of Y
conditional on X is given by

PO =[] PO x). (1)

sOs

so that the distribution of Z = (X,Y) is given by

p(x,») = pO[] PO, 2)

sOs

with p(x) a Gibbs distribution. Since the seminal papers [5, 7] such models have been widely used in image
processing and gave, in general, very satisfying results [8, 9, 15]. However, the property (1) is rather a strong
hypothesis and, in particular, textures are difficult to model in such context. To take off this hypothesis, a more
general model, called Pairwise Markov Fields (PMF), which consists of directly considering the Markovianity of the
couple Z =(X,Y), has been proposed in [10]. PMF are more general than HMF; in fact, a HMF is a PMF, when a
PMF is not necessarily a HMF. However, as in PMF the conditional distribution p(x| y) remains a Markov one,
which makes him as powerful as HMF in the classical Bayesian segmentation problems, Then the following
question naturally arises: in a PMF Z =(X,Y), what are the conditions under which X is a Markov field? Such
questions have been answered in the case of Pairwise Markov Chains [13] and Pairwise Markov Trees [6, 11];
however, the problem is more difficult in the case of PMF and to our knowledge there is no general results
comparable to the results in [1, 11, 13], until now.
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UNIFORMLY HIDDEN MARKOYV FIELDS

Let V' =(V,),, be a system of neighborhoods and let C be the set of associated cliques. In this paper we will

consider the neighborhoods containing the four nearest neighbors; then the cliques are either singletons, or couples
of pixels. To simplify, we will omit the singletons. We will say that Z = (X,Y) is a Pairwise Markov Field (PMF) if

its distribution is written

r(z) 0 J_l #(z,,z,)
5,1 (3)
with the product taken over the cliques.
For §'0S, let Y, =(Y,),, be the restriction of ¥ to S'. We will say that Z = (X,Y) is a “Uniformly” Hidden

Markov Field (UHMEF) if it is a PMF such that for each S'O S the field (X,Y,.) is a Markov one. We will say that
Z =(X,Y) is a Hidden Markov Field if it is a PMF such that X is a Markov field:

p(x)0 J_l¢(xs 2 X,) 4

Of course, an UHMF is a HMF, as X =(X,Y,,) with S'=0 .
Then we can see that the very classical HMF widely used, which is of the form

p(x.y) O[] G x)[] PO,

(t,s) K

X s) > (5)

is an UHMF. The aim of this paper is to show the converse property: we will see that under mild stationary
conditions an UHMF is a classical HMF given by (5).

Remark 1

Let us remark that Uniformly Hidden Markov Fields are very useful when there can be some missing
observations. Therefore we have a hidden realization X =x, and Y =y 1is observed in on S'0J S, but is not

observed on S —-S'. As X =(X,Y,.) is a Markov field, the distribution p(x| v,.) is Markovian, and thus X =x can
be searched from Y, = y,. . Therefore an UHMEF allows us to search X =x from Y, =y, forany S'00 S .

Let us consider the following Lemma
Lemma
Let /', g, h be three real functions on R such that j F2()h(x)dx = j g (x)h(x)dx = j F(x)g(x)h(x)dx . Then
f=g. R R R
The proof consists of noticing that ( f, g> = I f(x)g(x)h(x)dx is a scalar product and that the hypotheses imply
%
(/=g /=)= -4 =0.

Let Z =(X,Y) beaPMF. Foreach S'00.S we will set Y, the restriction of ¥ to S'. We can state the following
original result:
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Theorem

Let Z =(X,Y) be a stationary PMF locally with the distribution p(z) O |_l¢(zv,zt). The three following
(5,1)|

conditions

(1) Foreach S'O S the field (X,Y,,) is Markovian;

(ii) for each sUS', (X,Y,,) is Markovian;

(iii) ¢ is of the form @(x,y,x,»,) =@ *(x,x)AX,, v )AX,,».)

are equivalent.

Proof.

(i) obviously implies (ii).

(i1) implies (iii).

Let sUS andlet 7, ..., ¢, be the four neighbours of 5. Let C, be the set of cliques not containing . The field
(X,Ysy,) being Markovian its distribution is a product on cliques. On the other hand, its distribution is

#(z,,2,)Hy,. Thus we have _f[ |_L¢(2ua z)dy, = [ 9,200z, . x Wz, . x Wz, x W(z,,x,), which

R (u,nCC R (u,ntC (u,0)EC

gives

J'[¢(Zt, ’x53y5)¢(zt2 ’x53y5)¢(zt3’x57y5)¢(zt4’xSBys)

=1
G G G, o,y

(6)

¢(Zr| ’xa 7y¢ )¢(zr2 ’xs’ys) _ ¢(Z[3 ﬂx,v7y.v)¢(zt4 7xvﬂyv)
and g(x,,y,) =
Yz, x W(z,,x,) Yz, x W(z,.x,)
f and g we see that the first does not depend on (z, ,z

Let f(x,y)= . Applying the Lemma above to

), and the second one does not depend on (z

means that their product does nor depend on (z,,z,,z,,z, ). Thus % ={(x,,y,), which implies that
i=1 Z, X,
O(x,y.,x,y) =@(x,,x,y)Ax,,y,). As s and t can be inverted, we also  have

O(x,,y,,x,v)=W(x,,x,v)Ax,,»,), and thus ¢(x,x,,y)Ax,,y,)=¢(x,,x,y )@Ax,,»,) . The last equality means

$x,x,0) , which is equal to P, ,) , does not depend on y,, so that Py Y *(x,,x,). Finally
@Ax,»¥,) Ax,,.) Ax,,y,)

W(x,x,,)=@*(x,,x)@Ax,,p,),and thus @(x,y.x,.p,) =@ *(x,x)Ax,,»)@Ax,,y,), which gives (iii).

z, ). This

r,’r z’z

that

(iii) implies (i).
We have p(x,y,)0 Y*(x,x)@qx,y)Aqx,y)=[[l¢ *(x}v,xt)][” @*(x,,y,)]. Thus S'OS we have

(s,0)C (s,nc

p(x,ys) U l//A,(xA,X,)rJw*(X,,y,)ﬂ[j(ﬂ*(X,,y,)dy,]- Setting (0**(x,)=f¢*(x,,y,)dy,, we  have

(s,ndC

p(x,y,) 0 I_l W (x,,x,) J_l @**(x, )I_I @*(x,,y,) . This is a Markov distribution, which ends the proof.
(s,0)JC oS

tas
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TRIPLET MARKOYV FIELDS

PMF are linked with the Triplet Markov Fields (TMF). Introduced in [12] and developed in [3], TMF consist of
introducing a third random field U and of assuming that the triplet (X,U,Y) is a Markov field. Such a family of

models is a very rich one due to the wide possibilities of choosing the field U . Different TMF have been recently
applied in real situations and their interest has been showed, in particular, in non stationary image segmentation [2,
14], or in textured image segmentation [2, 4]. Let us also mention that there are links between the triplets Markov
models (chains or fields) and the “theory of evidence” [13, 14]. Of course, such a TMF (X,U,Y) can also be

considered as being three PMF: ((X,U),Y), (X,(U,Y)), (U,(X,Y)). Then the results of the previous section can

be used in larger context and different richer models can be proposed.
More precisely, we said in Remark 1 above that the Uniformly Hidden Markov Fields (X,Y) are very useful

when there can be some missing observations. At the same time, the theorem limits the distributions of UHMF
(X,Y) to the classical form (5), which is rather restrictive and can be easily critized. Using TMF allows us to get off

the limitative form (5) and to propose, in a non exhaustive manner, the following model. Let V' =(X,U) be a

Markov field with the distribution of the form (4), where X is the searched finite values field and U is an auxiliary
finite values field. Then we can consider an UHMF (V,Y), which allows us to search ' from Y in any missing

observations context and thus, as having V' implies having X , which allows us to search X from Y . However, the
Markovianity of (X,U) does not imply the Markovianity of X and thus distribution of (X,Y) is more general than

the classical distribution (5).
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