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ABSTRACT 
 
The iterative conditional estimation (ICE) is an iterative 
estimation method of the parameters in the case of 
incomplete data. Proposed since about fifteen years, ICE 
works under weak hypotheses and has been successfully 
applied in many unsupervised processing problems. In 
particular, it gave good results in unsupervised image 
segmentation based on complex models like hidden fuzzy 
Markov fields, hidden evidential Markov fields, or triplet 
Markov fields. However, there were no general theoretical 
results concerning its asymptotic behavior until now. The 
aim of this paper is to provide a general theorem, and to 
specify two applications: the mixture proportion estimation 
in a very general setting, and estimation of the components 
means in Gaussian mixture. The position of ICE with respect 
to the “Expectation-Maximization” (EM) method is also 
briefly discussed. 
 

Index Terms—Iterative conditional estimation, 
incomplete data, mixture estimation 
 

1. INTRODUCTION 
 
The iterative conditional estimation (ICE) is an iterative 
estimation method of parameters in the case of incomplete 
data. Its use asks for very weak hypotheses and it can be 
performed in relatively complex situations. Proposed in 
[13], ICE has been successfully applied in many problems of 
statistical signal or image segmentation; let us mention [3, 5, 
7, 8, 11, 15] among recent papers. Before, ICE also gave 
good results in different complex models, like hidden fuzzy 
(also said “mixed-states”) Markov fields [16], hidden 
evidential Markov fields [2], multi-sensor Markov chains 
[10], or triplet Markov fields [1]. However, there were no 
theoretical results concerning the asymptotic behaviour of 
ICE until now. The aim of this paper is to provide a general 
theorem, and to show that it is applicable to the mixture 
proportion estimation in a very general setting.  
 

2. CONVERGENCE OF ICE 
 
Let ),( YXZ =  be a couple of random variables whose 

distribution )( θzp  depends on a parameter 
m

m R∈= )...,,( 1 θθθ . The problem of estimating θ  from Y  

is a very important one for it can be requested as preliminary 

step in search of X  from Y . Let )(ˆ zθ  be an estimator of θ  

defined from the complete data ),( yxz = . ICE is an iterative 

method producing a sequence )( qθ  in the following way:  

 
(i) initialize 0θ ; 

(ii) compute )),(ˆ[)(
~ 1 yYYXEy i

q

i q ==+ θθ
θ

 for the 

components iθ  of the vector θ  for which this computation is 

workable; 
(iii) for other components iθ , use the classical 

approximation simulating qx1 , …, q

lx  according to 

),( qyxp θ  and setting lyxyxy q

l

qq

i /)],(ˆ...),(ˆ[)(
~

1

1 θθθ ++=+ . 

 
We see that ICE is applicable under very slight two 

hypotheses: existence of an estimator )(̂zθ  from the 

complete data ),( yxz = , and the ability of simulating X  

according to )( yxp . The first hypothesis is not really a 

constraint because if we are not able to estimate θ  from 
complete data ),( yxz = , there is no point in searching an 

estimator from incomplete ones y . The second hypothesis is 

often verified, because in many models )( yxp  has to be 

simple enough to allow one searching xX =  from yY = . 

We will state an ICE convergence result in the following 
context. Let Θ∈Τ× θθ ),Y,X( P  be a statistical model, with 

...X...XXX 21 ××××= n , ...Y...YYY 21 ××××= n , (the sets 

iX  are all equal and it is the same for the sets iY ), and 
mR⊂Θ . We will denote by )...,,,( 21 n

n XXXX =  and 
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)...,,,( 21 n

n YYYY =  the corresponding random variables, and 

we will assume the random variables ),( iii YXZ =  

independent and identically distributed (i.i.d.). Otherwise, 
),( ρθB  will designate the open ball of centre θ  and of 

radius ρ . 

We can state the following result: 
 
Theorem 
 

Let ),(̂ˆ
111 YXθθ =  be an unbiased estimator with finite 

variance defined from ),( 11 YX , and let == ),(̂ˆ nn

nn YXθθ  

nYXYX nn /)],(̂...),(̂[ 11 θθ ++=  be the corresponding 

unbiased estimator converging in 2L . For each ’θ , ’’θ  in 

Θ , we will set =)’’,’( θθϕ ]]ˆ[[ 11’’’ YEE θθθ .  

Let Θ∈0θ . Under the following hypotheses: 
 
(i) For every Θ∈θ , the deterministic sequence Nq

q

∈)(θ  

recursively defined by 0θ  and ),(1 qq θθϕθ =+  converges to 

θ , and the convergence is uniform with respect to θ  ; 
 
(ii) for every { }....,...,,2,1* nNq =∈ , the function 

)’,(’ θθϕθ →  is continue at qθ , and its continuity is uniform 

with respect to θ  ; 
 

(iii) there exists a matrix M  such that MYEVar ≤]]ˆ[[ 11’ θθθ  

for each θ , ’θ  in Θ , 
 
there exists a sequence of natural numbers Nnnq ∈))((  tending 

to infinity such that the ICE sequence Nn

nnq

n Y ∈)](
~

[ )(θ  defined 

with 0θ  converges in probability. 
 
Proof. Let Θ∈0,θθ  and let Nq

q

∈)(θ  be the deterministic 

sequence defined in (i). Let us show the following property 
(iv), which will allow us to find Nnnq ∈))((  such that 

Nn

nq

n ∈)
~

( )(θ  converges. 

 
(iv) For each natural number 1≥m  there exist two natural 
numbers )(mk  and )(mn  such that for )(mnn ≥ , 

mm
P mk

n

1
1]

1~
[ )( −≥≤−θθθ  for each Θ∈θ . 

 
Let 1≥m . According to (i), there exists Nmk ∈)( , which 

will be taken minimal, such that 
m

q

2

1<−θθ  for 

)(mkq ≥  and each Θ∈θ . This implies that if 

)
2

1
,(’ )(

m
B mkθθ ∈ , then 

m
d

1
)’,( ≤θθ . Let us consider the 

sequence of  balls ),( 1

1 ρθB , ),( 2

2 ρθB , …, ),( )(

)(

mk

mkB ρθ  

(depending on θ ) whose radius are defined - this is possible 

by virtue of (ii) – by backward recursions 
mmk 2

1
)( =ρ , 

1)( −mkρ  such that ),(’ 1)(
1)(

−
−∈ mk

mkB ρθθ  implies 

)
2

,()’,( )()( mkmkB
ρ

θθθϕ ∈  (for each Θ∈θ ), …, 1−qρ  such 

that ),(’ 1

1

−
−∈ q

qB ρθθ  implies )
2

,()’,( qqB
ρ

θθθϕ ∈  (for each 

Θ∈θ ), …, 1ρ  such that ),(’ 1

1 ρθθ B∈  implies 

)
2

,()’,( 22 ρθθθϕ B∈  (for each Θ∈θ ). It is then possible, 

by virtue of Bienaymé-Tchebychev inequality and (iii), to 
find 1n , 2n , …, )(mkn  such that for each 1=q , …, )(mk , 

when ),(’ 1

1

−
−∈ q

qB ρθθ  and when qq nn ≥’ , the probability 

that ]),(ˆ[ ’’’

’’
qqq

q

nnn

n YYXE θθ  is in ),( q

qB ρθ  is superior to 

12

1
1

+
−

qm
. Let us consider )(mn  the sup of 1n , 2n , … , 

)(mkn  and, for 1=q , … , )(mk , let )(

1

mnU , … , )(
)(

mn

mkU  be the 

random variables defined by 1)( =mn

qU  if 

),()(
~ )(

)( q

qmnq

mn BY ρθθ ∈ , and 0)( =mn

qU  otherwise. Then 

2

)(

1 2

1
1]1[

m
UP mn −≥=  and 

1

)(

1

)(

2

1
1]11[

+− −≥==
q

mn

q

mn

q m
UUP  

for 2=q , … , )(mk . The sequence )(

1

mnU , … , )(

)(

mn

mkU  being 

Markovian, this implies ≥=== ]1...,,1,1[ )(
)(

)(
2

)(
1

mn

mk

mnmn UUUP  

≥−−−
+

)
2

1
1(...)

2

1
1)(

2

1
1(

1)(2 mkmmm m

1
1− . Finally, 

m
UP mn

mk

1
1]1[ )(

)( −≥= , and it is still true replacing )(mn  by 

any )(mnn ≥ , which gives (iv). 

Let us consider the following sequence Nnnq ∈))(( of natural 

numbers. For 1=m , 2 , …  let )1(n , )2(n , …  and )1(k , 

)2(k , …  be two sequences existing by virtue of (iv). Then 

we set )1()( knq =  for )1(1 nn ≤≤ , )2()( knq =  for 

)2()1( nnn ≤< , … , )()( mknq =  for )1()( +≤< mnnmn , 

… .. and so on. Let us show that )(~ nq

nθ  converges in 

probability. Let 0>ε . By virtue of (iv), there exist )(εk  

and )(εn  such that for )(εnn ≥ , εεθθ ε −≥≤− 1]
~

[ )(k

nP  

(we take the smallest k  among all k  verifying ε<
k

1
). 

Knowing that 
’

1
1]

’

1~
[ )’(

mmmm
P mmk

n +
−≥

+
≤−+ θθ  for 
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each n  verifying )1’()’( ++≤<+ mmnnmmn , we can state 

that if )(εnn ≥  and )1’()’( ++≤<+ mmnnmmn , then 

’

1
1]

’

1~
[ )(

mmmm
P nq

n +
−≥

+
≤− θθ . This implies that for 

each )(εnn ≥  we have εεθθ −≥≤− 1]
~

[ )(nq

nP , which 

ends the proof. 
 
Let us remark that (ii) and (iii) are rather subsidiary 
hypotheses and are generally easy to verify. In particular, the 
uniformity with respect to θ  can be obtained assuming that 

mR⊂Θ  is compact, which can often be made in real 
situations. Therefore the main result is the relationship 
between the convergence of the deterministic sequence 

Nq

q

∈)(θ  defined in (i) and the convergence of the stochastic 

sequence Nn

nnq

n Y ∈)](
~

[ )(θ  defined by the ICE principle. We 

give in the two next sections two examples showing that the 
convergence of Nq

q

∈)(θ  can be established in two cases 

linked with the important problem of finite mixture 
identification.  
 

3. MIXTURE PROPORTION ESTIMATION 
 
Let { }211 ,X ωω= , mR=1Y , and )()( 1ω== iii xypyf , 

)()( 2ω== iii xypyg  two known probability densities with 

respect to some measure dy  on mR . We assume that 

)( 11 ωθ == xp  in unknown and the problem is to estimate it 

from )...,,,( 21 n

n YYYY = . In order to apply ICE, we use the 

classical efficient estimator from complete data 

nXYX
nXXnnnn /]1...1[)(̂),(̂ˆ

][][ 111 ωωθθθ == ++=== . Then we 

obtain for ICE iterations =+ )(
~ 1 nq

n yθ  

nyXpyXp nnqq /)](...)([ 1111 ωω
θθ

=++= . We can state 

 
Proposition 1 
 
The hypotheses of the theorem above are verified for each 

Θ∈0θ .  
 
Proof. The deterministic sequence )( qθ  is given by =+1qθ  

dy
gf

gff

mR

qq

q

∫ −+
−+

])1([

])1([

θθ
θθθ

. Setting )(
])1([

)( q

R

qq

q

hdy
gf

gff

m

θ
θθ

θ =
−+
−

∫ , 

this can be written )()(1 qqqq h θθθθθ −+=+ , which gives: 

 
))(1)((1 qqq h θθθθθ −−=−+  (1) 

 

Let us show that for each [5.0,0]∈ε , if ]1,[0 εεθ −∈ , then 

there exists [1,0]∈α  such that 11 )1( ++ −≤− qq αθθ . Let 

[5.0,0]∈ε . We verify that 0)1()0( == hh  and, otherwise, 

the second derivates of h  is dy
gttf

gffg
th

mR

∫ −+
−−=

3

2

])1([

)(2
)(’’ , 

which is negative on ]1,0[ . This shows that h  strictly 

positive on [1,0]  and thus, as h  is continuous, there exists 

[1,0]1 ∈α  such that 1)( α≥th  for [1,] εε −∈t . Otherwise, 

setting 
)()1()(

)(
)( 1,1 ygyf

yf
yp

qq

q

q θθ
θω

θ −+
= , =)( 1

)1( ω
θ qp  

dyyfyp
m

q

R

∫ )()( 1,1
ω

θ
, and dyygypp

m

qq

R

∫= )()()( 1,11

)2( ωω
θθ

, we see 

that )( 1

)1( ω
θ qp and )( 1

)2( ω
θ qp  are probabilities, and thus they are 

both in [1,0] . As )()()( 1

)2(

1

)1( ωωθ
θθ qq pph q −= , there exists 

[1,0]2 ∈α  such that 21)( α−≤th  for [1,] εε −∈t . Finally, 

we can state that there exists [1,0]),sup( 21 ∈= ααα  such that 

for each ]1,[ εεθ −∈q , we have αθα −≤≤ 1)( qh , which 

also means that αθα −≤−≤ 1)(1 qh . Given (1), we can say 

that if ]1,[0 εεθ −∈ , then 101 )1)(( ++ −−=− qq αθθθθ . Finally, 

given that 10 <−θθ , we have 11 )1( ++ −≤− qq αθθ , which 

implies the convergence, uniform with respect to θ , of the 

sequence )( 1+qθ  to θ .  

The hypothesis (ii) is verified coarsely, and hypothesis (iii) 
comes from the continuity of the function  

=→ ]]ˆ[[)',( 11’ YEVar θθθ θθ =
−+

]
)()’1()(’

)(’
[

11

1

YgYf

Yf
Var

θθ
θ

θ   

−−+
−+∫ dyYgYf

YgYf

Yf

mR

)]()1()([]
)()’1()(’

)(’
[ 11

2

11

1 θθ
θθ

θ
 

2

11

111 ]]
)()’1()(’

)]()1()()(’
[[ dy

YgYf

YgYfYf

mR

∫ −+
−+

θθ
θθθ

, defined on the compact 

set 2]1,0[ . 

 
4. COMPONENTS MEANS OF A MIXTURE 

ESTIMATION  
 
Let us consider the problem of estimating the means of the 
components in Gaussian mixture 
 

∑
=

=
k

i
ii yfyp

1

)()( α   (2) 

 
Thus we assume 1α , … , kα  known, and 1f , … , kf  

Gaussian with unknown means 1m , … , km  and known 

variances 2

1σ , … , 2

kσ . The problem is to estimate 
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)...,,( 1 kmmm =  from an i.i.d. sample )...,,( 1 n

n YYY = . Let 

us introduce the parameter )...,,()...,,( 111 kkk mm ααθθθ ==  

and let us consider the estimator from complete data 
 

n

yxyx
yyxx nnii

nni

)(...)(
)...,,,...,,(̂ 11

11

δδθ ++=  (3) 

 
where jδ  is the function defined on { }kωω ...,,1=Ω  by 

][1)(
jxj x ωδ == . Then we can classically show that ),(̂ nn YXθ  

is unbiased and converges in 2L . Applying the ICE principle 
to the estimator defined by (3), we obtain, for ki ...,,1= ; 

 

n

yxpyyxpy
y

q

nn

q

nq

i

),(...),(
)( 11111

θωθω
θ

=++=
=+  (4) 

 
Using the theorem above, we will show the following result : 
 
Proposition 2 
 
Let us consider the mixture model described above. Let us 

assume that πσ 26 33

iim <  for 1=i , … , ki = . Then for each 

Θ∈0θ , there exists a likelihood 0θ
V  of 0θ  such that for θ  

in 0θ
V  the deterministic sequence )( qθ  defined by 

==+ ]],),(̂[[ 1111

1 qq YYXEE θθθ θ ),( qθθϕ  converges to θ , 

and the convergence is uniform with respect to θ . 
 
Proof. Let Θ∈0θ . It is sufficient to show that there exists a 

constant 0>c  and a likelihood 0θ
V  of 0θ  such that 

θθθθ −≤−+ qq c1  for each θ  in 0θ
V ; in fact, the latter 

implies θθθθ −≤− ++ 011 qq c  which establishes the 

convergence uniform qith respect to θ . Using the classical 
continuity properties it is possible to show that the property 
above is be verified if ),( qθθϕ  admits continuous partial 

derivatives with respect to all components of qθ , and if all 

these partial derivatives are in [1,0[  at the point θθ =q . 

Thus let us consider the partial derivatives of ),( qθθϕ  with 

respect to q

iθ , with { }ki ...,,1∈ . We can take, as an example, 

1=i . Thus we consider θ  and qθ , in which all components 
are equal except the first one. Recalling that  

]2/)(exp[
2

1
)( 2

1

2

1

1

2

1

11 σ
α
θ

πσ
θ −−= yyf , we have  

 

)()(
1)(

11

1

1

1

2

11

11 θ
α
θ

ασθ
θ

yfy
yf

−=
∂

∂
  (5) 

 

Otherwise, to simplify the notations let us put 

∑
≤≤

=
ki

iii yfyf
1

)()( θαθ  and ∑
≤≤

=
ki

iii yfyg
2

)()( θαθ . Knowing 

that 
)(

)(
),( 111

1 q

q

q

yf

yf
yxp

θ
θα

θω == , ]],ˆ[[ 11

1

1

qq YEE θθθθ θ ==+  

is given by 
 

dyyf
ygyf

yf
y

R
qq

q

q )(
)()(

)(

11

1111

1 θ
θθ

θα
θ ∫ +

=+  (6) 

 
Thus we have to derive (6) with respect to q

1θ , and take the 

value of the derivative at 1θ . Recalling that )( θyg does not 

depend on 1θ  and taking (4) into account we have 

=
∂

∂
),(

),(

1

θθ
θ

θθϕ
q

q

dyyf
ygyf

ygyfy

y
R

)(
)]()([

)()()(
1

2

111

11

1

1

1

2

1

1

θ
θθα

θθ
α
θ

ασ
α

∫ +

−
 

∫∫ +
−

≤
+

−
=

1

0 111

11

2
1111

11

2
1 )()(

)()()(1

)()(

)()()(1
m

R

dy
ygyf

ygyfymy
dy

ygyf

ygyfymy

m θθα
θθ

σθθα
θθ

σ
the last inequality being due to the fact that )( 1 ymy −  is 

positive on ],0[ 1m  and negative outside. 

Otherwise, as 
)(

1

)()(

1

111 θθθα ygygyf
≤

+
, the last integral is 

inferior to ∫ −
1

0

112

1

)()(
1 m

dyyfymy θ
σ

. Finally, as 
2
1

11

2

1
)(

πσ
θ ≤yf , 

we have ≤
∂

∂
q

q

1

),(

θ
θθϕ

πσ 2

1
3
1

∫ −
1

0

1 )(
m

dyymy
πσ 26 3

1

3

1m= , which 

ends the proof. 
 
Let us notice that on the contrary to the example in the 
previous section, the theorem is used “ locally”  in the sense 
that the true parameter θ  is assumed to be close enough to 

the qθ . Of course, as θ  is not known, such kind of 
hypotheses is difficult to verify in real situations.  
 

5. ICE AND EM  
 
The ICE method resembles to the well known iterative EM 
method [12, 17, 18], whose principle is  
 

]),(([maxarg)(
~ 1 yYYXpLogEy q

q ==+
θθθ

θ   (7) 

 
and whose wide use is justified by the good asymptotic 
behaviour of the Maximum Likelihood estimator. The main 

result is that in the EM sequence Nq

q y ∈))(
~

(θ  the likelihood 

)(yp qθ
 increases; however, the convergence of Nq

q y ∈))(
~

(θ  



IEEE Statistical Signal Processing Workshop (SSP 2007), Madison, Wisconsin, USA, 26-29 August, 2007. 

to )]([maxarg ypθ
θ

 is not guaranteed [4, 12], and the main 

theoretical result consists on the convergence of the 
sequence Nqyp q ∈))((

θ
 [18]. The EM and ICE obtained 

sequences are different in general, and, as ICE does not use 
any “ likelihood maximization” , it is in general easier to 
implement. In fact, the “ maximization”  step in EM can pose 
calculation problems, especially in complex models. When 
its exact computation is impossible, one can consider 
different approximation techniques, often of stochastic 
nature. However, these different approximation methods are, 
in general, difficult to study from the theoretical viewpoint 
and it is difficult to show that the good asymptotic properties 
of the Maximum Likelihood estimator are saved [4, 12, 17, 
18].  
Let us mention that some relationships between EM and ICE 
have been studied in the frame of exponential models in [6], 
and it has been showed that in some situation ICE can give 
the same sequence as EM. In particular, when the principle 
of the EM leads to explicit calculations in the mixture 
proportion estimation above, the obtained formulas are 
strictly the same as the formulas obtained with ICE. 
Therefore, in this case ICE can be seen as a generalisation of 
EM. Otherwise, the ICE iterations in the example in section 
4 are strictly the same that those obtained with EM; thus this 
example can also be seen as an original way of studying the 
EM convergence. 
 

6. CONCLUSION  
 
We considered the problem of the Iterative Conditional 
Estimation (ICE) convergence in the case of independent 
and identically distributed data. A general theorem has been 
established and its interest has been validated through two 
classical examples concerning mixture estimation. Some 
advantages of ICE over EM have also been briefly 
mentioned.  
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