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ABSTRACT

The iterative conditional estimation (ICE) is an iterative
estimation method of the parameters in the case of
incomplete data. Proposed since about fifteen years, ICE
works under weak hypotheses and has been successfully
applied in many unsupervised processing problems. In
particular, it gave good results in unsupervised image
segmentation based on complex models like hidden fuzzy
Markov fields, hidden evidential Markov fields, or triplet
Markov fields. However, there were no general theoretical
results concerning its asymptotic behavior until now. The
aim of this paper is to provide a general theorem, and to
specify two applications: the mixture proportion estimation
in a very general setting, and estimation of the components
means in Gaussian mixture. The position of |CE with respect
to the “Expectation-Maximization” (EM) method is also
briefly discussed.

Index Terms—Iterative  conditional
incomplete data, mixture estimation

estimation,

1. INTRODUCTION

The iterative conditional estimation (ICE) is an iterative
estimation method of parameters in the case of incomplete
data. Its use asks for very weak hypotheses and it can be
performed in relatively complex situations. Proposed in
[13], ICE has been successfully applied in many problems of
statistical signal or image segmentation; let us mention [3, 5,
7, 8, 11, 15] among recent papers. Before, ICE also gave
good results in different complex models, like hidden fuzzy
(also said “mixed-states”) Markov fields [16], hidden
evidential Markov fields [2], multi-sensor Markov chains
[10], or triplet Markov fields [1]. However, there were no
theoretical results concerning the asymptotic behaviour of
ICE until now. The aim of this paper is to provide a general
theorem, and to show that it is applicable to the mixture
proportion estimation in a very general setting.

2. CONVERGENCE OF ICE

Let Z=(X,Y) be a couple of random variables whose
P(Z6)
6=(6,...,0,)OR". The problem of estimating & from Y
is a very important one for it can be requested as preliminary
step in search of X from Y. Let é(z) be an estimator of 6
defined from the complete data z=(x, y) . ICE isan iterative

distribution depends on a  parameter

method producing a sequence (%) in the following way:

(i) initidize 8°;
(i) compute 8 (y)=E,[4(X.Y))¥=y) for the
components 6, of the vector 6 for which this computation is

workable;

(iii) for other components €, use the classica
approximation simulating x', ..., X/

P(y.68%) and setting 6" (y) =[6(X, y) +...+B(x", y)]/1 .

according to

We see that ICE is applicable under very dlight two
hypotheses. existence of an estimator é(z) from the
complete data z=(x,y), and the ability of simulating X
according to p(x|y). The first hypothesis is not realy a
constraint because if we are not able to estimate & from
complete data z=(x,y), there is no point in searching an
estimator from incomplete ones y . The second hypothesisis
often verified, because in many models p(x]y) has to be
simple enough to allow one searching X =x from Y =y.

We will state an ICE convergence result in the following
context. Let (XxY,T,R,),, be a statistical model, with

X=X XX, x.xX %.., Y=Y xY,x.xY x.., (the sets
X, are al equal and it is the same for the sets Y,), and
OOR". We will denote by X" =(X,,X,,..,X,) and
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Y"=(Y,Y,,..,Y,) the corresponding random variables, and
we will assume the random variables Z =(XY))

independent and identically distributed (i.i.d.). Otherwise,
B(6, ) will designate the open ball of centre 6 and of

radius p .
We can state the following resullt:

Theorem

Let 6, =6(X,Y) be an unbiased estimator with finite
variance defined from (X,,Y,), and let én :én(X”,Y") =
=[6(X,,Y) +..+6(X_,Y)/n be the
unbiased estimator converging in L*. For each €', 6 in
O, wewill st ¢(6,6”) = E,[E,[6,V,]].

Let 8° 0O . Under the following hypotheses:

corresponding

(i) For every 600, the deterministic sequence (69),,,

recursively defined by 6° and 8°* = ¢(8,0%) converges to
6, and the convergence is uniform with respect to 6 ;

(i) for every qDN*:{LZ,...,n,....}, the function
6> ¢(6,6") iscontinueat 8%, and its continuity is uniform
with respectto 6 ;

(iii) there exists amatrix M such that Var,[E,[8, Y]] M
foreach 6, 6’ in ©,

there exists a sequence of natural numbers (q(n)),.,, tending

nON

to infinity such that the ICE sequence [6%" (Y")],.,, defined
with 8° convergesin probability.

Proof. Let 6,6°00 and let (8°),, be the deterministic

sequence defined in (i). Let us show the following property
(iv), which will alow us to find (q(n)) such that

(§q(n>)

nON

converges.

nON

(iv) For each natural number m=1 there exist two natural
numbers k(m) and n(m) such that for n=n(m),

Rl

§nk<m) _g"S%]zl—% foreach 600O.

Let m=1. According to (i), there exists k(m) 0N, which
will be taken minima, such that [6°-6]< L for
2m

gzk(m) and each €600O. This implies that if

1

e0B(6™,—), then d(9,9’)si. Let us consider the
2m m

sequence of balls B(6",p,), B(6°,p,), ..., B(0“™,0,)
(depending on 6) whose radius are defined - this is possible
1
% 1
implies

by virtue of (i) — by backward recursions p,., =

Prma such  that G0BE“ ™™, Pym)

¢(9,9')DB(ek<m>,%) (for each 60@), ..., p,, such

that 80B(6"", p,,) implies ¢(0,H’)DB(9“,%) (for each

€00©), .., p, such that @'0B(8,p,) implies

(6,60 B(Hz,%) (for each 6 0®). It is then possible,

by virtue of Bienaymé-Tchebychev inequality and (iii), to
find n, n,, ..., n,, such that for each q=1, ..., k(m),

k(m)

when @0 B(G‘“,pq_l) and when n,>n_, the probability
that ES,[énq,(X"C",Y”“')|Y”“'] isin B(8°,p,) is superior to

1 .
l_W' Let us consider n(m) the sup of n, n,, ...,

N, and, for q=1, ..., k(m), let U™, ..., Uy be the

k(m)

random  variables  defined by usm=1 if

g5, (Y ™)OB(8%,p,), ad U™ =0 otherwise. Then
n(m, n(m, n(m, 1

PUM™ =1 >1- o and P[U;™ :quqfl) =1] Zl_W

for =2, ..., k(m). The sequence U™, ..., U™ being

k(m)

Markovian, this implies HU™ =1U" =1.. U =1]>
1 1 1 1 )
1-—)(1- (1= >1-—. Finally,
( mz)( m22) ( m2""“)*1) m y

PlU :1]21—%, and it is ill true replacing n(m) by
any n=n(m), which gives(iv).
Let us consider the following sequence (q(n)),., of natural
numbers. For m=1, 2, ... let n(}), n(2), ... and k(D),
k(2), ... be two sequences existing by virtue of (iv). Then
we st g(n)=k@® for 1<n<n(@), q(n)=k(2) for
n<n<n(?), ..., gin)=k(m) for n(m)<n<n(m+1),
. and s0 on. Let us show that 6°" converges in
probability. Let ¢ >0. By virtue of (iv), there exist k(¢)

and n(e) such that for n>n(e), P[|§nk(‘)—6'||sg]21—£

(we take the smallest k among all k verifying %q).

1 1

121- - for
m+m m+m

Knowing that P[|

é;k(w—m') _ 9" <
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each n verifying n(m+m’) <n<n(m+m+1) , we can state
that if n= n(s) and n(m+m)<n<n(m+m+l), then

21 J21-—

m+m - m+m
each n=n(¢) we have P[|§nq‘”)—¢9||se]21—g, which

6" -8 . This implies that for

ends the proof.

Let us remark that (ii) and (iii) are rather subsidiary
hypotheses and are generally easy to verify. In particular, the
uniformity with respect to & can be obtained assuming that
O©0OR™ is compact, which can often be made in rea
situations. Therefore the main result is the relationship
between the convergence of the deterministic sequence
(8", defined in (i) and the convergence of the stochastic

sequence [67;*‘”) (Y], defined by the ICE principle. We

give in the two next sections two examples showing that the
convergence of (6%),, can be established in two cases

linked with the important problem of finite mixture
identification.

qUN

3. MIXTURE PROPORTION ESTIMATION

Let X,={a,a}, Y,=R", ad f(y)=p(y|x =a),
a(y,) = p(y,[x =a,) two known probability densities with
respect to some measure dy on R". We assume that
6 = p(x = «,) inunknown and the problemis to estimate it

from Y" =(Y,Y,,...,Y,). In order to apply ICE, we use the

classical efficient estimator from complete data
0,=0(X,,Y,) =0(X,) =L, .\ +--+Lx y]/N. Then we
obtain for ICE iterations 67nq”(y”) =
[P, (X, = @]y, ¥

Proposition 1

The hypotheses of the theorem above are verified for each
°UO.

Proof. The deterministic sequence (8%) is given by 6=
q -
(OHE 000y, g [ 0119
w0 +(1-6")] w0 +(1-6)g]
this can be written 8 =" +(6-6°)h(8%) , which gives:

y=h(6"),

6™ -6=(6" - 6)(1-h(6")) @

Let us show that for each ¢ [1]0,0.5 , if 8°0[¢,1-¢], then
there exists @[]0, such that [6™ -f<(l-a)™. Let
£ 0)0,0.5 . We verify that h(0) =h(1) =0 and, otherwise,

the second derivates of h is h'(t)= I_[tfzig((lf t)g; dy.
g

which is negative on [0,1]. This shows that h strictly
positive on 10,4 and thus, as h is continuous, there exists
a*)0,1] such that h(t)=a*' for tO)e,1-¢£[. Otherwise,

6°f(y) ’ (1> @) =
gt (y) +(1-6")a(y) ;
j P, (@]y)f(y)dy, and pZ(«) = j P, (@|y)g(y)dy , we see

setting

Py (@]Y) =

that py) () and pg(w) are probabilities, and thus they are
both in 10,. As h(6") = pf(w) - p2’ (@) , there exists
a® 00,1 such that h(t)<1-a? for tD]s,l—e[. Finaly,
we can state that there exists a = sup(a*,a?) []0,1 such that
for each 8° O[e,1-¢], we have a <h(8°) <1-a, which
also meansthat a <1-h(6%) <1-a . Given (1), we can say
that if 8°0[e,1-¢], then 8™ -8=(6° -6)(L-a)*". Finally,
given that |6°-6 <1, we have |6 -6 <(1-a)™, which
implies the convergence, uniform with respect to €, of the
sequence (6°*) to €.

The hypothesis (ii) is verified coarsely, and hypothesis (iii)
comes from the continuity of the function

. . gi(Y)
(6.6) — Var B, 16\ = Varl o o )
gi(Y)

[larca-gany! 109+ AoKy-

gfa (M) +A-9gMl, ;.-
[I[ g f(Y)+1-6)a(Y) I
set [0,1]2.

]:

defined on the compact

4. COMPONENTSMEANS OF A MIXTURE
ESTIMATION

Let us consider the problem of estimating the means of the
components in Gaussian mixture

p(y) = Z" £ (y) @

Thus we assume a,, ..., a, known, and f, ..., f
Gaussian with unknown means m,,

k
..., m_and known

variances o?, ..., oZ.

The problem is to estimate
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m=(m,...m,) from ani.i.d. sample Y" =(Y,,...,Y,). Let
us introduce the parameter ¢ =(6,,...,6,) =(a,m,...,am)
and let us consider the estimator from compl ete data

¢ ()Y, *. 6 (X)), 3)
n

6 (Xpseos Xy Yireons V) =

where ¢, is the function defined on Q={a,,..,&,} by
¢,(x) =1,.,, - Then we can classically show that §(X",Y")

is unbiased and convergesin L. Applying the ICE principle
to the estimator defined by (3), we obtain, for i =1,...,k;;

Y,p(x = a@ly,6%) +..+ y,p(x, = w|y,6%)
n

g (y") = (4)

Using the theorem above, we will show the following result :
Proposition 2

Let us consider the mixture model described above. Let us
assumethat nf <60°y2rr for i =1, ..., i =k . Thenfor each
6° 00, there exists a likelihood Vv, of 6° such that for 6
in V, the deterministic sequence (6°) defined by
6" = ES[E[él(Xl,Yl)|Y1,0“]] = ¢(6,0") converges to 6,
and the convergenceis uniform with respect to 6 .

Proof. Let 8°00O. It is sufficient to show that there exists a
congant ¢>0 and a likelihood V, of 6° such that

|6+ - 6| < c|e* -6 for each € in vV, ; in fact, the latter
implies  |6°* ~6]|<c™|6° -6 which establishes the

convergence uniform qith respect to €. Using the classical
continuity properties it is possible to show that the property
above is be verified if ¢(6,6°) admits continuous partial

derivatives with respect to all components of 87, and if all
these partial derivatives are in [0, at the point 8°=6.
Thus let us consider the partial derivatives of ¢(6,8%) with
respect to 67, with i O{L,...,k}. We can take, as an example,

i =1. Thuswe consider 6 and &°, in which all components
are equal except the first one. Recalling that

exp[—(y - %)2 1207] , we have

1
f.(Y6) = ——=
4/ 27'[0'12 1
6,

of(ve) 1 6
6—91_0120'1(671 y) fl()’|91) ©)

Otherwise, to simplify the notations let us put

f(yl8)= 3 1,(8) and 9(y{6)= 3'ar,(48) . Knowing

<I<|

that p(x=ay aq):w " =E,[E[6|Y,,60=6]
' f(y|9q) L 0 1|1
isgiven by
a,f,(y|6)

et = f(y|6)d 6
e aen V0 ©

Thus we have to derive (6) with respect to &7, and take the
value of the derivative at 6, . Recalling that g(y|9) does not
depend on 6, and taking (4) into account we have
- a (2 -YL8)a)
e [a.,(v|8) +a(y|O)T
_ 1 Ym-NLO9ye) | 17ym - hyeaye)
L atomravl VS ator a0
the last inequality being due to the fact that y(m -vy) is
positive on [0,m] and negative outside.
1 < 1
a,f(y6)+9(y|f)  9(y|o)

a,

(6.6) =‘[y f(yle)dy

Otherwise, as

, the last integral is

. . " . 1
inferior to E‘!’y(nq—y)flMQdy. Findly, as fl(w@)s\lﬁ,

09(6,6") 1 " m .
we have < -y)dy =———, which
oq  ogWom !’y(nl e 60221
ends the proof.

Let us notice that on the contrary to the example in the
previous section, the theorem is used “locally” in the sense
that the true parameter 6 is assumed to be close enough to

the #°. Of course, as 6 is not known, such kind of
hypotheses is difficult to verify in real situations.

5.1CE AND EM

The ICE method resembles to the well known iterative EM
method [12, 17, 18], whose principleis

§(y) =agmaxE, [Log(p,(X. V)V =¥] ()

and whose wide use is justified by the good asymptotic
behaviour of the Maximum Likelihood estimator. The main

result is that in the EM sequence (§q(y)) the likelihood

qON

pgq(y) increases; however, the convergence of (@?'“(y))qjN
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to argmax[ p,(y)] is not guaranteed [4, 12], and the main

theoretical result consists on the convergence of the
sequence (P,,(Y))qy [18]. The EM and ICE obtained

sequences are different in general, and, as ICE does not use
any “likelihood maximization”, it is in general easier to
implement. In fact, the “maximization” step in EM can pose
calculation problems, especially in complex models. When
its exact computation is impossible, one can consider
different approximation techniques, often of stochastic
nature. However, these different approximation methods are,
in general, difficult to study from the theoretical viewpoint
and it is difficult to show that the good asymptotic properties
of the Maximum Likelihood estimator are saved [4, 12, 17,
18].

Let us mention that some relationships between EM and ICE
have been studied in the frame of exponential modelsin [6],
and it has been showed that in some situation ICE can give
the same sequence as EM. In particular, when the principle
of the EM leads to explicit calculations in the mixture
proportion estimation above, the obtained formulas are
strictly the same as the formulas obtained with ICE.
Therefore, in this case ICE can be seen as a generalisation of
EM. Otherwise, the ICE iterations in the example in section
4 are dtrictly the same that those obtained with EM; thus this
example can also be seen as an origina way of studying the
EM convergence.

6. CONCLUSION

We considered the problem of the Iterative Conditional
Estimation (ICE) convergence in the case of independent
and identically distributed data. A general theorem has been
established and its interest has been validated through two
classical examples concerning mixture estimation. Some
advantages of ICE over EM have aso been briefly
mentioned.
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