FUZZY STATISTICAL UNSUPERVISED IMAGE SEGMENTATION

H. Caillol

W. Pieczynski

Groupe Image
Département Systémes et Réseaux
Institut National des Télécommunications
9, rue Charles Fourier 91011 Evry Cedex France

ABSTRACT

This paper deals with fuzzy Bayesian unsupervised image
segmentation. At first, we introduce a new model and a method
for its simulation.The images obtained that way are corrupted
with Gaussian, white or correlated, noise. A blind Bayesian
segmentation is performed using parameters estimated by the
SEM algorithm adapted to our model. Finally this segmentation
is compared with a classical method without taking into account
the fuzzy class.

INTRODUCTION

In order to represent an image, to each pixel will be
associated a numerical value or a label, which belongs to a finite
set of classes. Those values are considered as a realization of a
random field. The image is generally assumed to be
homogeneous in each pixel, which is not always the case in
reality. The "observed", or "noised" image is represented by
another random field and the problem of segmentation is the
problem of estimation of the "class" field from the "observed"
field. Finally the image is modeled by two random fields:
E=(5,),c s (S is a set of pixels), representing the unobservable
real image, and X=(X)),.g the observed image. Since this
inexactitude is an intrinsic propriety of the image, we propose a
model including the possibility of "mixed" pixels using a fuzzy

class in the case of binary images.
We consider the two "pure” classes @, o,. A

classical model assumes that each C' takes its value in {©,, @,}.
Our approach supposes the existence of a third class, in addition
to the two "pure” classes, the "fuzzy class" f12 assimilated to
J0,1[ . Thus each C’ takes its value in {o)l, mz,]o,l[}. In the case
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of satellite data, if @ represents “forest” and @, " urban area” the
fuzzy class designates pixels where houses and trees are
simultaneously present. In this case the value of {_ is in ]0,1[
and can bee seen as the proportion of the class ®,.We propose a
simulation of this model based on the Gibbs sampler.

The images obtained that way are corrupted by white and
correlated Gaussian noises. The random field X takes its values
in R and we assume to know the conditional density of X given {

We propose to use the blind Bayesian unsupervised
segmentation method. The parameters required are estimated by
the SEM algorithm adapted to our model. The results are
compared with a classical equivalent method ( without taking into
account the fuzzy class).

THE FUZZY MODEL AND ITS SIMULATION

We express the law of each §s as follow:
Pr = n8 + MBS H(1- (mpmy) ) .
where 7, =P[{ =] n,=P[{~w,]
5, and 8, are the Dirac's weighed
distributions
f is the density on 10,1[
Ju is the Lebesgue measure

A The sampling of the random field {
This is performed in two steps:

1) Simulation of a three class random field using a Gibbs

sampler ([3D)
2) Simulation of the values on the fuzzy class
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1) During the first step , the fuzzy class is considered as a
real class: the random field { takes its values in
(a)l,mz,]o,l[}.'Ihc Markov assumption permits its simulation by
a Gibbs sampler.

The potential function is defined only on the clique-pairs.
The fuzzy class does not have the same behavior towards
interactions as the two pure classes; therefore we need three
differents parameters to define the potentiel function:

b if Cpl)=(0,,0,) or(@,,0,)

bif (€.8)=(0,,0,) or (©,,0,)
O(s,t)=

dif CL)=(0y.f,) or (@,.f19)

gif € L)=(f,2f,p)

b defines the size of the two pure classes .

d manages the attraction between the fuzzy class and
the other classes.

g acts on the proportion of the fuzzy class.

2) We define the density f conditionally to the four nearest
neighbors and use an iterative procedure to obtain the
realizations of the fuzzy class.

The visual appearence of the fuzzy class guides our choice of f.

In some situations it models heterogeneous boundaries such a

way that it appears between two pure zones and the proportion of

the class @, (respectively @,) increases near a pure zone of

o, (respectively ®,). Therefore we propose a density as follows:
f(x)=aSx+b

* a is a parameter. When a increases f becomes a

discrete distribution on {0,1}(which can be assimilated to
{0,0,))

where

*Se[—-1,1] and is an affine function of the sum of the
values taken by { on the neighbourhood. S=-1 (resp. $=1) when
the four neighbours of s take the value o, (resp. 0)2)

* b is a normalizing constant

In each iteration the fuzzy pixels get values in ]0,1[ according to

the law defined by the density £. Our goal is to simulate visually
satisfactory images.

B Corrupted images

The images obtained above are corrupted by different
Gaussian noises.
The distribution of X, conditional to L is defined by:

N(m,.0,) if { =0,
Py = N(m,+(m,-m,)€,0,+(0;-0)€) if {=e€10,1[
N(m,,0,) if { =,
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Correlated noises are simulated by taking the mobile
averages computed in each pixel from the values in the
neighborhood of a white noise . We propose two differents types
of neighborhood: 8 or 24 neighbours.The pure classes are
distinguished by (m,,0,) and (m,0,) with possible

combinations.

FUZZY UNSUPERVISED STATISTICAL
SEGMENTATION

We adopt an unsupervised Bayesian blind
segmentation. It consists of estimating the unobservable
realization of { from the data X=x by {* which maximizes the
conditional distribution of { given X=x (the a posteriori
distribution).This distribution can be expressed from the
distribution PCsOf € and the conditional distribution Px€ of X
given (.

‘We suppose in this part that a=0, so f is taken uniform on
10,1[. Our classification runs in two steps:

a) We first apply a classical Bayesian classification to the three
class random field (each { taking its values in {@,, 0,.f,1)

b) Pixels classified "fuzzy" are then re-classified according to the
maximum of the posterior likelihood.

a) The first step comprises two differents parts:

(i) Estimation of the required parameters:
-of the distribution PCsOf Gt =, =P[{ =@, ] and 7,=P[{ =w,]
-of the conditionnal distribution Py€ of X given { :
(ml,olz) and (mz,czz)
We use the SEM algorithm ([1],[41,[5]) in the case of the:
blind segmentation adapted to our model. It runs as follows:

*Giving initial values of the parameters

«In each iteration, for each observation X

*calculation of the conditional densities
2

g = e TPy
'/71?01 201;
k2
f;(xi) =-—v:-1——k-exp[.fii122)__]
2r0y 2012:
2
Fiox) =f01f2—ul D expl (x;:(i:)z) Tk

where m(x)=m ¢-(m rmyx and cz(x) =021+(022-021)x



*calculation of the  posteriori probabilities

k k
P1xd = o WL

. kk k k
' Fi(x) + ;p (X)) + 7y F Ax)

k kK k
where X ) 5=1-(% (+%9)

k k
1|:2 fz(Xj)

k
piXi) =
VAR

Then we draw an element in the set {®,, @,.f,,} according
to the law defined by the above probabilitics. We obtain a

partition of the sample X X {Qlf. Qg. Qlle
n

*Estimation of the parameters using the above

partition

k k+1 xk
mtﬂ= EXi'i m2+ =,£_l'lk-

cadQy) Qg

k k 2 k k 2
6x+12 Txjmp) °k+12 T(xj,1-m2)
1 T 2 T
k+1 wdQ:) k+l cﬂﬂ(Q§
®p = 2 T

‘When those values are steadying we obtain the estimators
(m,,0,% , (m,0,%) , X,and 7T, .

(ii) Segmentation based on the above estimated parameters:

For each pixel s we estimate the realization of by
the element of {@,, ,f,} which maximises the a posteriori
distribution computed from the estimated parameters.

®yx) = e 1
%1 £1(x) + mafox) + ﬂlzf fox,u) du
0
o) = %7 fo(x)

1
xyfi) +xpfa) +x lzf £12(x,u) du
0

b) In the second step the pixels classified "fuzzy" are re-classified
by taking the value € in 10,1[ which maximises the a posteriori
density defined by:

2
i (xrm(g))
£12(€,%) =1y (€)——— expl~———1]
Y2 2
B 20
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RESULTS

Apart from the above fuzzy classification we perform a blind
bayesian classification to the two class random field using the
SEM algorithm and the maximization of the posterior likelihood
.We compare the estimated parameters and the error rates, which
are computed as follows:

=Lt 3le £

card(S).e S

Simulated image (fig. a)
b=1 d=0,8 g=0,95 a=1,4

20 iterations of the Gibbs sampler
200 iterations for the simulation of the fuzzy class

White noise

M m=1 m;=3 o’=0,=1
"Fuzzy SEM" |} "Binary SEM"
m; 0,97 0,93
m, 3,03 2,72
o 1,00 0,93
o, 0,97 1,08
, 0,35
m,> 0,33
T 21,52 23,5
(2) m;=m,=1 o’=4 022= 1
"Fuzzy SEM" } "Binary SEM"
m 0,98 0,98
m, 1,00 1,00
o, 4,19 4,1
o, 0,99 1,3
LN 0,30
EX 033
T 36,5 38,73

Correlated noise

(3) 8 neighbors m;=1 m,=3 o= o,2=1 (fig. b)



“Fuzzy SEM" [ "Binary SEM"

m, 0,93 0,89
m, 2,94 2,55
o, 1,00 1,05
o’ 1,05 1,09
) 0,31

., 0,33

T 21,43 25,6

(fig. cl) (fig. c2)

(4) 24 neighbours  m,=1 m,=3 o %=1 0= 4

"Fuzzy SEM" | "Binary SEM"

m, 0,95 1,06
m, 3,06 2,85
o 0,96 1,09
0, 4,03 3,75
n 0,32

T, 031

T 26 274

In each case the fuzzy classification improves the error rates.
Comparing case (1) and the case (2) the fuzzy classification
seems to be less sensitive to spatial correlation. But, in the case
of different deviations (cases (2) and (4) ) its contribution is less
significant, Particularly in the cases of correlated noises ( (3) and
(4) ) the estimation of the parameters by the "fuzzy” SEM
algorithm is more reliable.

CONCLUSION

Numerous simulations show that our modelling includes
many possibilities which can appear in reality. It remains valid
for more than two pure classes and seems to be an alternative to
Kent and Mardia's modelling ([4]) with the following important
difference: for each pixel the prior probability distribution is
concentrated in the set of configurations where no more than two
classes are present. The model] proposed in ([4]) assumes that
this distribution is concentrated on the set of configurations
where all clagses are simultancously present.

Insofar as our "fuzzy classification” is completely
unsupervised and blind, the results are encouraging and could be
certainly improved using contextual classification.
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