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Abstract. The hidden Markov chain (HMC) model is a couple of random sequences 

),( YX , in which X  is an unobservable Markov chain, and Y  is its observable noisy 

version. Classically, HMC enables one to use different Bayesian restoration techniques. 
HMC model, which is powerful in hidden data restoration and widely used, has recently 
been extended to “triplet Markov chain” (TMC) model, which is obtained by adding a 
third chain U  and considering the Markovianity of the triplet ),,( YUXT = . When U  

is not too complex, X  can still be recovered from Y . The aim of the paper is to propose 
a new particular TMC model, which is not more complex that the classical HMC one, 
and which can be more efficient in unsupervised segmentation. 
Keywords: hidden Markov chains, triplet Markov chains, unsupervised segmentation, 
image segmentation, iterative conditional estimation. 
 
1 Introduction  
 
Let iiiXX ≤≤= 1)(  and iiinYY ≤≤= 1)(  two stochastic processes, where X  is 

hidden and Y  is observable. In the whole paper, each iX  takes its values in a 

finite set of classes },,{ 1 Kωω �=Ω  and each iY  takes its values in R . The 

problem of estimating X  from Y , which occurs in numerous applications, can 
be solved with Bayesian methods once one has chosen some accurate 
distribution ),( yxp  for ),( YXZ = . The hidden Markov chain (HMC) model is 

the simplest and most well known model. Its applications covers numerous 
fields, see [Koski, 2001], [Ephraim and Merhav, 2002], [Cappé et al., 2005]. 
The HMC has been extended to triplet Markov chains model (TMC [Pieczynski 
et al., 2002]), which is obtained by adding a third chain U  and considering the 
Markovianity of the triplet ),,( YUXT = . TMC are strictly more general than 

HMC [Pieczynski 2007] and present a very rich family of models ([Ait-el-Fquih 
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and Desbouvries, 2006], [Lanchantin and Pieczynski, 2004], [Pieczynski and 
Desbouvries, 2005], among others).  
The aim of this paper is to present an original triplet Markov chain and to show 
that this new model can be of interest, with respect to the classical HMC, in 
unsupervised segmentation of hidden discrete signal. Its main originality, which 
opens new perspectives, is to take the auxiliary chain U  continuous on the one 
hand, and to consider that the hidden states distributions are independent 
conditionally on U , on the other hand. The latter hypothesis, which has never 
been considered until now at our knowledge, makes possible Bayesian 
segmentation without any model approximations.  

2   Classical hidden Markov chain and new triplet one  

Let NnnXX ≤≤= 1)(  and NnnYY ≤≤= 1)(  be two stochastic processes. X  is hidden 

and each nX  takes its values in a finite set of classes { }Kωω ...,,1=Ω , while Y  

is observed and each nY  takes its values in the set of real numbers R . The 

problem is to estimate xX =  from yY = . As we will use the following 

Bayesian Maximum Posterior Mode (MPM) segmentation method 
)ˆ...,,ˆ()...,,(ˆ

11 nnMPM xxyys = , with )(maxargˆ yxpx n
x

n
n Ω∈

= , in the whole paper, let 

us concentrate on the fact that the posterior marginal distributions )( yxp n  can 

be calculated. In the classical hidden Markov chain (HMC) the distribution of 
),( YX  is given by )(...)()()()(),( 2212111 nn xypxypxxpxypxpyxp = ; then the 

classical “Forward” probabilities )...,,,()( 1 nnn yyxpx =α , and the “Backward” 

ones )...,,()( 1 nNnn xyypx +=β , can be calculated recursively by 

),()( 111 yxpx =α ; ),,()()( 111 nnnn
x

nn yxyxpxx
n

++
Ω∈

+ ∑= αα  and 1)( =Nxβ ; 

),,()()( 111

1

nnnn
x

nn yxyxpxx
n

++
Ω∈

+∑
+

= ββ . The marginal posterior distributions of the 

hidden state are given by )()()( nnn xxyxp βα∝ , and the transition of the 

posterior Markov distribution )( yxp  are calculated by 

)...,,,( 11 Nnn yyxxp + )(),,( 111 +++∝ nnnnn xyxyxp β . 
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Considering a triplet Markov chain (TMC) consists of introducing a third 
stochastic process niiUU ≤≤= 1)(  and assuming that ),,( YUXT =  is a Markov 

chain. As stated in Introduction, when each iU  takes its values in a finite set 

{ }mλλ ...,,1=Λ , different TMC T , with discrete U , have been successfully 

applied in different situations [Pieczynski and Desbouvries, 2005]. Here we 
propose a different model, in which each iU  takes its values in R . Therefore 

each ),,( iiii YUXT =  takes its values in 2R×Ω  and its distribution is defined by 

)( 1tp  and the transitions )( 1 ii ttp + . In the model we propose, called “ New”  TMC 

(NTMC) in the following, these probability distributions are: 
 

)()()(),,( 11111111 uypuxpupyuxp = , 

)()()(),,,,( 11111111 ++++++++ = iiiiiiiiiiii uypuxpuupyuxyuxp   (1) 

 
Equivalently, we can say that ),,( YUXT =  is a NTMC if it verifies: (i) U  is a 

Markov chain, and (ii) ∏
=

=
n

i
iiii uypuxpuyxp

1

)()(),( . 

We notice that in NTMC iX  and iY  are independent conditionally on iU . 

The difference between the classical HMC-IN and the NTMC is also seen from 
their dependence graphs, presented in Fig. 1. 

 

1y         2y        3y       4y                  1y         2y        3y       4y        
 
 
 
 
 
 
                                                       1x        2x        3x        4x     
 

Fig. 1. Dependence graphs for HMC (left) and NTMC (right). 
 
The problem is the same as above: estimate xX =  from yY = . We need 

)( yxp i  and thus we are going to show that these posterior marginal 

distributions are calculable in NTMC. We can state the following result: 

         
         

 1x  
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Proposition  
 
Let ),,( YUXT =  be a NTMC verifying (1). If niii YUYU ≤≤= 1),(),(  is Gaussian, 

then: 
(i) the Gaussian distribution )( yup i  is computable with the number of 

operations linear in n ;  

(ii) ∫=
R

iiiii duyupuxpyxp )()()( . 

Proof. As ( )
niii YUYU ≤≤=

1
),(),(  is a classical Gaussian hidden Markov chain, the 

fact that the Gaussian distribution )( yup i  is computable with the number of 

operations linear in n  is classical result ([Rauch, Tung and Striebel, 1965], 

[Ephraim and Merhav, 2002]. To show ∫=
R

iiiii duyupuxpyxp )()()( , we use 

the fact that Y  and X  are independent conditionally on U , which means that 

)()(),( yupuxpyuxp = . The last equality implies that 

)()(),( yupuxpyuxp iiiii = , which leads to (ii) and ends the proof. 

 
Let us remark that in spite of its simplicity, the NTMC is very different from the 
classical HMC. In fact, it is possible to show, using the results presented in 
[Pieczynski, 2007], that in NTMC neither X , nor even ),( YX , is necessarily a 

Markov chain.  
 
3. Learning the NTMC 
 
Let us consider a stationary NTMC ),,( YUXT = , which means that ),( 1+ii ttp  

does not depend on 1=i , …, 1−n . We learn such a NTMC with the general 
“ Iterative Conditional Estimation”  (ICE) method [Fjørtoft et al., 2003]. ICE is 
based on the following principle. Let )...,,( 1 mθθθ =  be the vector of all real 

parameters defining )(tp  and let )(̂tθ  an estimator of θ  defined from the 

complete data ),,( yuxt = . ICE is an iterative method consisting on: 

(i) initialize 0θ ; 
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(ii) compute ),),,(̂[1 q

i

q

i yYYUXE θθθ ==+  for the components iθ  for which 

this computation is workable; 
(iii) for other components iθ , simulate ),( 11

qq ux , …, ),( q

l

q

l ux  according to 

),,( qyuxp θ  and put 
j

yuxyux q

l

q

l

qq
q

i

),,(̂...),,(̂ 1111 θθθ ++=+ . 

We see that ICE is applicable under very slight two hypotheses: existence of an 

estimator )(̂tθ  from the complete data, and the ability of simulating ),( UX  

according to ),( yuxp . The first hypothesis is not really a constraint because if 

we are not able to estimate θ  from complete data ),,( yux , there is no point in 

searching an estimator from incomplete ones y . The second hypothesis is also 

verified in the NTMC; in fact, we have )()(),( yupuxpyuxp =  and both 

)( yup , )( uxp  can be sampled. 

 
4. Experiments  
 
Let us consider the following NTMC ),,( YUXT = . Each iX  takes its values in 

{ }21,ωω=Ω , and each iU  and iY  are in R . The distribution of ),,( YUXT =  is 

then defined by )()(),,,(),( 2211212121 uxpuxpyyuupttp = , where 

),,,( 2121 yyuup  is a Gaussian distribution on 4R  verifying =),,,( 2121 yyuup  

)()(),( 221121 uypuypuup= .  

In experiments below we will take ),( 21 uup  Gaussian with both means equal to 

zero, and correlation equal to r . Then )( 11 uyp  (which is equal to )( 22 uyp ) is 

defined by its mean m , its variance 2σ , and the correlation c  between 1U  and 

1Y . Otherwise, we will assume that the proportions of two classes are equal, and 

we will take 
]exp[1

]exp[
)(

1

1
111 u

u
uxp

+
== ω , 

]exp[1

1
)(

1

121 u
uxp

+
== ω . Thus we 

have four parameters ),,,( 2σθ mcr= . We see how NTMC is different from the 

classical stationary HMC, in which )()(),(),,,( 2211212121 xypxypxxpyyxxp =  

is defined by ),( 21 xxp , which is a probability on { }2

21

2 ,ωω=Ω , and two 
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Gaussian densities )( 111 ω=xyp , )( 211 ω=xyp  on R . Thus in HMC we have 

one real parameter for ),( 21 xxp  (given that the proportions of the two classes 

are equal) and four parameters (two means and two variances) for )( 11 xyp . 

Finally, we have four parameters for the NTMC considered and five parameters 
for the HMC one. 
We present below three series of experiments. In all of them, realizations of X  
and Y  are represented as images, classically obtained by the Hilbert-Peano 
transformation of a mono dimensional set of indices to a bi-dimensional set of 
pixels [Fjørtoft et al., 2003]. 
In the first series, we simulate a stationary HMC, where === ),( 1211 ωω xxp  

49.0),( 2221 ==== ωω xxp , )( 111 ω=xyp  is Gaussian )1,0(N , and 

)( 211 ω=xyp  is Gaussian )1,1(N . NTMC based segmentation gives the error 

ratio of 3.80%, while the HMC based segmentation gives the error ratio of 
3.07%. This experiment, and other similar ones we performed, indicates that the 
NTMC is robust with respect to HMC data. The realizations xX = , y= , and 

the NTMC based segmentation results are presented in Fig. 1.  
 

           
                xX =                                       yY =                      NTMC based )(ˆ yMPMx =  

Fig. 1. Class image xX = , observed image yY = , and NTMC based segmentation 
(error ratio 3.80%). HMC based segmentation provides the error ratio of 3.07% 

In the second experiment, we consider the same Markov chain realization 
xX = , which is now corrupted with correlated noise. The noise is obtained by 

the following spatial moving average: taking )( nU  independent and Gaussian 

)1,0(N , we consider ∑
∈

+=
)(nAj

jnn UUV βα , where )(nA  is neighbourhood of 

pixel n . For a given form of neighbourhood, α  and β  are chosen in such a 
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way that the marginal distributions )( 111 ω=xyp , )( 211 ω=xyp  are the same 

as above: )1,0(N  and )1,1(N , respectively. According to the results presented 

in Fig. 2, we see that NTMC is more robust with respect of the noise correlation. 
 

        
                     yY =                                NTMC (8.95%)              HMC (19.09%) 

Fig. 2. NTC and HMC unsupervised segmentation s with error rates Correlated noise 

obtained with 85.0=α , 18.0=β  (correlation of 0.45) 

 
Finally, in the third experiment we consider a hand-written image corrupted by 
the same correlated noise. Therefore the data are neither HMC not NTMC ones 
and we see, according to Fig. 3, that NTMC works better than the classical 
HMC. 
 

          
           xX =                    yY =                  NTMC (14.49%)      HMC (20.12%) 

Fig. 3. NTC and HMC unsupervised segmentation s with error rates. 
 
 
5. Conclusion 
 
We proposed in this paper a new triplet Markov chain (NTMC) allowing one to 
deal with the unsupervised statistical data segmentation. Although not more 
complex, the new model is very different from the classical hidden Markov 
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chain ),( YX . Iin fact, in NTMC neither the searched X  nor the observable Y  

is, in general, a Markov chain. The number of parameters to be estimated and 
the computer time needed are similar in both HMC and NTMC, while the latter 
better resist to the correlation of the noise. 
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