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Abstract. The hidden Markov chain (HMC) model is a couple of random sequences 
),( YX , in which X  is an unobservable Markov chain, and Y  is its observable noisy 

version. Classically, the distribution )( xyp  is simple enough to ensure the 

Markovianity of )( yxp , that enables one to use different Bayesian restoration 

techniques. HMC model has recently been extended to “triplet Markov chain” (TMC) 
model, which is obtained by adding a third chain U  and considering the Markovianity 
of the triplet ),,( YUXT = . When U  is not too complex, X  can still be recovered 

from Y . In particular, a semi-Markov hidden chain is a particular TMC. Otherwise, the 
recent triplet partially Markov chain (TPMC) is a triplet ),,( YUXT =  such that 

),( yuxp  is a Markov distribution, which still allows one to recover X  from Y . 

The aim of this paper is to introduce, using a particular TPMC, semi-Markov chains 
hidden with long dependence noise. The general iterative conditional estimation (ICE) 
method is then used to estimate the model parameters, and the interest of the new model 
in unsupervised data segmentation is validated through experiments. 
Keywords: hidden Markov chains, triplet Markov chains, unsupervised segmentation, 
image segmentation, iterative conditional estimation. 

 
1. Introduction 
 
Let NnnXX ≤≤= 1)(  and NnnYY ≤≤= 1)(  two stochastic processes, where X  is 

hidden and Y  is observable. In the whole paper, each nX  takes its values in a 

finite set of classes },,{ 1 Kωω �=Ω  and each nY  takes its values in R . The 

problem of estimating X  from Y , which occurs in numerous applications, can 
be solved with Bayesian methods once one has chosen some accurate 
distribution ),( yxp  for ),( YXZ = . The hidden Markov chain (HMC) model 
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is the simplest and most well known model. Its applications cover numerous 
fields, and can be seen in recent books or general papers [Koski, 2001], [Cappé 
et al., 2005]. [Ephraim and Merhav, 2002]. However, it is insufficient in some 
situations and thus it has been extended to “hidden semi-Markov chains” 
models [Faisan et al., 2005], [Guédon, 2003], [Moore and Savic, 2004], [Yu 
and Kobayashi, 2003]. Otherwise, a long dependence noise does exist in some 
situations [Doukhan et al., 2003], but can not be taken into account in the 
classical HMC. The aim of this paper is to propose a new model in which the 
hidden chain is a Markov one, and in which the noise is a long dependence 
one. On the one hand, we exploit the fact, already mentioned in [Pieczynski 
and Desbouvries, 2005] that an HSMC is a particular “triplet Markov chain” 
(TMC, [Pieczynski et al., 2002], [Ait-el-Fquih and Desbouvries, 2006]). On the 
other hand, we exploit the ideas proposed in [Pieczynski, 2004]. We also 
propose a parameter estimation method of “iterative conditional estimation” 
(ICE) kind [Fjortoft et al., 2003], and show that the new model can be of non 
negligible interest in unsupervised data segmentation. 
 
2. Triplet Markov chains and hidden semi-Markov chains   
 
Let NnnXX ≤≤= 1)(  and NnnYY ≤≤= 1)(  be two stochastic processes mentioned 

above. The problem of estimating xX =  from yY =  can be solved once the 

marginal posterior distributions )( yxp n  are calculable. Let us consider an 

auxiliary process U  taking its values in a finite state space { }L,...,1=Λ  and 

such that ),( UX  is a Markov chain whose distribution, given by 

∏
−

=
+++=

1

1
111111 ),,(),()()(),(

N

n
nnnnnnn xuxupuxxpxupxpuxp , verifies 

 
)(),( 11 ++ = nxnnn xuxxp

n
δ  if 1>nu , and )( 1 nn xxp + if 1=nu ; 

)(),,( 1111 +−++ = nunnnn uuxxup
n

δ if 1>nu , and )( 11 ++ nn xup if  1=nu  (1) 

 
The chain X  is then called “semi-Markov chain”. If we consider 

∏
=

=
N

n
nn xypxyp

1

)()( , the triplet ),,( YUX  is the classical “hidden semi-

Markov chain” (HSMC). In this paper, we consider a more sophisticated noise 
distribution )( xyp , which is a “long dependence” one. To introduce it, let us 

consider stationary Gaussian process ),...,( 1 NYYY = . It will be called “long-

dependence” if its covariance function ))(()()( knnknn YYEYYEk −− −=γ  is such 

that there exist ]1,0]∈α  and C  for which αγ −Ckk ~)(  when ∞>−k .  
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The new model ),,,( 21 YUUXT =  we propose is the following. ),( 1UX  is a 

semi-Markov chain defined by (1), with { }1

1 ,...,1 L=Λ . The chain 2U  is such 

that each 2

nU  takes its values in { }2

2 ,...,1 L=Λ  and, at each 1=n , …, N , the 

variable 2

nU  designates the number 2Lk ≤  of previous indices 1−n , …, 

kn −  such that knnn xxx −− === ...1 , and 1−−≠ knn xx . Therefore we can say that 
2

nU  is the exact past sojourn time in nx , while 1

nU  is, according to (1), a 

minimal future time sojourn in nx  (in our model, 11 =nu  does not imply that 

0)( 1 ==+ nnn xxxp ). We can note that when nn xx =+1 , 111

1 −=+ nn uu  (if 

11

1 >+nu ) and 122

1 +=+ nn uu . Otherwise, as the noise is a long dependence one, 

the distribution )( xyp  is not a Markov one. In the model we propose, the 

distribution of 1+nY  conditional on 11 ++ = nn xX , kU n =+
2

1 , and 11 yY = , …, 

nn yY = , depends on 11 ++ = nn xX  and knkn yY −− = , …, nn yY = . Therefore, for 

each class nx , the distribution ),...,,(
122 nnunun

xyyyp
nn +−−

 is Gaussian with the 

mean vector ),....,(

  times1

)1(

2

2

���
	

+

+ =

n

nn

n

n

u

xx

u

x MMM  and the variance-covariance matrix )1( 2 +Γ n

n

u

x  

such that nx

n

n

n
jixji

u

x

ασ −+ +−=Γ )1()( 2
,

)1( 2

. 

Finally, the distribution of the new model ),,,( 21 YUUXT =  we propose is 

defined by  

×= )()()()(),,,( 111

2

11

1

11
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where: 

)(),( 1

1

1 ++ = nxnnn xuxxp
n

δ  if 11 >nu , and )( 1 nn xxp + if 11 =nu ; 

)(),( 1
11

1
1

1
1 1 +−++ = nunnn uuxup

n
δ if 11 >nu , and  )( 1

1

1 ++ nn xup if  11 =nu ; 

)(),,( 2
11

2
1
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n
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2 Lun < , and )( 2
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2
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1
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Moreover, in the last relation the Gaussian vector 

),...,,( 1121 2
1

2
1

+++−+− ++
nnunun

xyyyp
nn

 verifies long memory condition above. 

It is then possible to show that for observed yY = , the distribution 

),,( 21 yuuxp  is a Markov distribution and, as ),,( 21 UUX  is finite, the 

classical “ Backward”  and “ Forward”  calculations give ),,( 21 yuuxp nnn , which 

gives ∑=
21 ,

21 ),,()(
nn uu

nnnn yuuxpyxp  used in Bayesian MPM segmentation. 

 
3. Parameter estimation with ICE 
 
The “ Iterative Conditional Estimation”  (ICE) method we use in this paper is 
based on the following principle [Fjørtoft et al., 2003]. Let )...,,( 1 mθθθ =  be 

the vector of all real parameters defining the distribution )(tp  of a TMC 

),,( YUXT = , and let )(ˆ tθ  be an estimator of θ  defined from the complete 

data ),,( yuxt = . ICE is an iterative method consisting on: 

(i) initialize 0θ ; 

(ii) compute ),),,(ˆ[1 q

i

q

i yYYUXE θθθ ==+  for the components iθ  for which 

this computation is workable; 
(iii) for other components iθ , simulate ),( 11

qq ux , … , ),( q

l

q

l ux  according to 

),,( qyuxp θ  and put 
j

yuxyux q

l

q

l

qq
q

i

),,(ˆ...),,(ˆ 1111 θθθ ++=+ . 

We see that ICE is applicable under very slight two hypotheses: existence of an 

estimator )(̂tθ  from the complete data, and the ability of simulating ),( UX  

according to ),( yuxp . The first hypothesis is not really a constraint because if 

we are not able to estimate θ  from complete data ),,( yux , there is no point in 

searching an estimator from incomplete ones y . The second hypothesis is 

always verified for any TMC ),,( YUXT = ; in fact, ),( yuxp  is a Markov 

chain distribution. 
In order to detail how ICE is working let us specify the different parameters 
and the possibility of their estimation from the complete data 

),,,( 21 YUUXT = . First, the distribution ),( 1

11 uxp  and the transitions of the 

Markov chain ),( 1UX  are defined by ),,,( 1

22

1

11 uxuxp  which we propose to 

estimate from ),,,( 21 YUUXT =  by the classical counting estimator (the 

function I  is defined by 1)( == baI  if ba = , and 0  otherwise) 
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Second, the “ noise parameters”  are the means 

nxM , the variances nx
2σ , and the 

long dependence parameters 
nxα , which we propose to estimate from 

),,,( 21 YUUXT =  by  
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Concerning (2), then the computation of (ii) in ICE is possible and gives: 
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where ),,,,( 1

2

1

121

1

1

1

1 qnnnn yuuxxuuxxp θ==== ++  are computed using the 

forward-backward algorithm. Concerning the noise parameters, the conditional 
expectation is not computable and we have to use (iii). In experiments below 
the initialization is obtained from  the segmentation by the classical k-means 
method, and we take 1=l . 
 
4. Experiments 
 
The new “ hidden semi-Markov chains with long dependence noise”  (HSMC-
LDN) model generalizes, on the one hand, the classical “ hidden semi-Markov 
chains”  (HSMC) and, on the other hand, the “ hidden Markov chains with long 
dependence noise”  (HMC-LDN), which are a particular case of HSMC-LDN 
such that X  is a Markov chain. The aim of this section is to test the interest of 
these two generalizations in unsupervised data segmentation framework. 
To illustrate the results we will use images of size 128128 ×=N . Such a bi-
dimensional set of pixels is transformed into a mono-dimensional set using a 
Hilbert-Peano scan [Fjortoft et al., 2003], which gives a mono-dimensional 
chain. Such a representation is quite pleasant because it allows one to 
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appreciate visually the degree of the noise, and also the quality difference 
between two segmentation results. 
We present three series of results. In the first series, the data suit SHMC and 
the question is whether using the new more complex HSMC-LDN does not 
degrade the results. The second series is devoted to the converse problem: 
when data suit HSMC-LDN, how do SHMC and HMC-LDN work? Finally, in 
the third series we use data produced by non one of the three models. 
Let ),,( 1 YUX be a classical SHMC, with 101 =L , means equal respectively to 

1 and 2, and variances equal to 20. The distribution of )1,( 11 =++ nnn uxup  is 

uniform on 1Λ , and 4995.0)1,( 1 ==+ nnn uxxp  for 1+= nn xx , 

0005.0)1,( 1 ==+ nnn uxxp  for 1+≠ nn xx . The obtained realisation yY = , 

presented in Fig.1, is then segmented by three methods. The first one is the 
MPM method based on true parameters; thus the result is the reference one. 
The second method is the MPM unsupervised method based on the classical 
HSMC and ICE, while the third method is the MPM unsupervised method 
based on the new HSMC-LDN model, with 502 =L , and the related ICE. The 

aims of this experiment are, on the one hand, to show the robustness of the 
HSMC-LDN model and on the other hand, to see how the new model manages 
the independent noise. 
According to the results presented in Fig.1, we see that the new model gives 
comparable results. This is due to the good behaviour of the parameter 
estimation method; in fact, The estimates of means are 1.01, 2.04 for HSMC 
and 0.98, 1.97 for HSMC-LDN. The estimates of variances are 19.81, 20.71 for 
HSMC and 19.84, 20.46 for HSMC-LDN. Finally, the estimates of α  are, for 
HSMC-LDN, 15.28 and 5.95.  
 

     
xX =  yY =  MPM  

3.74% 
HSMC  
4.55% 

HSMC-LDN 
4.57% 

 
Fig. 1 Segmentation of the HSMC model according to three methods. 
 
Let us now describe the second series of experiments. Here, we aim to segment 
a HSMC-LDN which is neither a particular SHMC nor a particular HMC- 
LDN. The the semi-Markov chain ),( 1UX  is the same as above. For the noise, 

the means are respectively equal to 1 and 2, the variance is equal to 1 and 
5.0=α . 
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According to Fig. 2 we see that neither HSMC nor HMC-LDN can compete 
with HSMC-LDN when data suit the latter. The difference in error ratios is 
very large, which means that HSMC-LDN is a really significative extension of 
both HMC-LDN and HSMC. 
 

     

xX =  yY =  HSMC  
31.15%                          

HMC-LDN  
21.53% 

HSMC-LDN 
3.16% 

 
Fig. 2. Three unsupervised segmentations of data simulated according to 
HSMC-LDN 
 
In this second example, the estimates of means are 0.97, 2.44 for HSMC, 1.08, 
2.22 for HMC-LDN, and 0.98, 1.97 for HSMC-LDN. The estimates of 
variances are 0.59, 0.56 for HSMC,  0.83, 0.78 for HMC-LDN, and 0.96, 0.93 
for HSMC-LDN. Finally, the estimates of α  are  0.69, 0.72 for HMC-LDN 
and 0.62, 0.61 for HSMC-LDN.  
 
Finally, we consider a hand-written image xX =  presented in Fig. 3. The 
means of the noise are respectively equal to 1  and 2 , whereas the common 
variance is equal to 1 . As above, we are segmenting yY =  by using the three 

methods SHMC, HMC-LM and SHMC-LM. As above, we consider that 
101 =L  for the semi-markovianity and 502 =L . 

 

     
xX =  yY =  HSMC  

24.70%                          
HMC-LDN  
18.27 % 

HSMC-LDN 
6.31 % 

 
Fig. 3. Three unsupervised segmentations of hand written xX =  noisy with a 
long dependence noise. 
 
The estimates of means are 0.75, 2.26 for HSMC, 0.91, 2.04 for HMC-LDN, 
and 0.99, 1.99 for HSMC-LDN. The estimates of variances are 0.69, 0.66 for 
HSMC, 0.92, 0.93 for HMC-LDN, and 1.01, 1.02 for HSMC-LDN. Finally, the 
estimates of α  are 1.07, 1.07 for HMC-LDN and 0.93, 0.92 for HSMC-LDN. 
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5. Conclusion 
 
As a general conclusion we can say, accordingly to different experiments 
results, that the new semi-Markov chain hidden with long dependence noise 
model proposed in this paper turns out to be of interest, when unsupervised 
segmentation is concerned, with respect to classical simpler models.  
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