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Abstract— This paper shows how to obtain a binary change
map from similarity measures of the local statistics of images
before and after a disaster. The decision process is achieved
by the use of a ¥-SVM in which a stochastic kernel has been
defined. Stochastic kernel includes two similarity measures, based
on the local statistics, to detect changes from the images: 1) A
distance between maginal probability density functions (pdfs)
and 2) the mutual information between the two observations.
Distance between marginal pdfs is evaluated by using a series
expansion of the Kullbak-Leibler distance. It is achieved by
estimating cumulants up to order 4 from a sliding window of
fixed size. Mutual information is estimated through a parametric
model that is issued from the copulas theory. It is based on
rank statistics and yields an analytic expression, that depends on
the parameter of the copula only, to be evaluated to obtain the
mutual information. Preliminary results are shown on a pair of
Radarsat images acquire before and after a lava flow. A ground
truth allows to show the accuracy of the stochastic kernels and
the SVM decision.

I. INTRODUCTION

Abrupt change detection in operational use requires, from
the techniques that have been proposed in the literature, to
be able to process data within a limited time of computation,
while the conditions of aquisition may be different. Several
papers have shown that the use of local statistics appears to be
relevant for radar image and multi-sensor data processing [1—
5]

From local statistics, change indicators have to be defined in
order to detect or, at least, to give contrasted output on abrupt
changes while remaining robust to normal changes between
the two acquisitions. Normal changes may be induced by the
normal evolution of landscape as well as by the different
modalities of acquisition of the two observations. Moreover,
no model may be applied for a parametric detection of those
changes.

Two images I; and I, acquired before and after a disaster,
are considered. Our goal is to detect anormal changes be-
tween the two observations while remaining robust to normal
changes. Local similarity measures are used as change indica-
tor. Through a sliding window of fixed size, the neighbourhood
of the current pixel is associated to a random variable (RV):
namely X; (resp. Xs) for pixels of I; (resp. I2).

In this study, two measures have been investigated and
used together: 1) distance between local pdfs that give better
performaces than the log ratio detector, as it is not limited to
changes of the first order statistics only. The distance between
distributions is evaluated by using cumulant expansion of
the Kullbak-Leibler divergence. It avoids local histograms
estimation, which is computationaly demanding and subject
to variability when using small window size. 2) The distance
between independence is used for its better point of view than
the correlation measure, since no linear relationship may be
found between multi-modal (possibly mutli-sensor) images.
In that case, a parametric model of dependency has been
applied to yield a parametric expression of the local mutual
information. Such a parametric model, which is based on the
copulas theory [6], prevents from the use of large window size
for parameter estimation.

A decision process has to be applied to yield a binary change
map. Nevertheless, the change aera may not be statistically
representative in comparison to the no change class. That is
why a Support Vector Machines (v-SVM) [7] is applied here.
The similarity measures have been included into the kernel,
so-called stochastic kernels, to yield a change detection map.

II. SIMILARITY MEASURE FOR CHANGE DETECTION
A. Comparison between X1 and X,

Most of relevant change detection techniques are based on
the difference operator or, the mean log ratio when using
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radar images [5, 8]. Nevertheless, on the case of multimodal
change detection, some changes may appear through a shade
of texture while the mean reflectivity remains similar. Instead
of comparing the local means only, a gaussian model may
be used to compare the local pdf. The comparison between
two gaussians may be expressed easily by considering the
Bhattacharyya distance [9]. The first two moments of X;
and X, are required only for such a distance which make
its estimation fast enough for operational use.

The results of [10] have shown that the Kullbak-Leibler dis-
tance gave better results by considering the detection (Pg)
vs. false alarm (Pg,) response. The Kullbak-Leibler divergence
from X, to X is given by:

f X1( )

(X)) = / log 2

fx, (resp. fx,) being the pdf of X; (resp. X2). A symetric
version of eq. (1), as referred to a distance, can be stated by
writing:

[x, (z)dx ey

K(X1, X2)

In the general case, i.e. non gaussian, eq. (1) requires the
estimation of fx, and fx,. But histogram estimation remains
a difficult task at local scale, whereas it is time consuming at
larger scale. A cumulant-based approximation, up to order 4,
is used instead, as stated in [10].

:K(XlHXQ)-F/C(XQHAXl). 2)

B. Dependence between X1 and Xo

Correlation is often used to characterise relationships be-
tween two RVs. But in the case of radar images, as stated
in [4], no linear dependency may be found; hence the cor-
relation is being useless. Mutual information (i.e. distance to
independence) is defined with the Kullbak-Leibler divergence
between joint distrinution and the two marginal pdfs:

Xl, XZ) //log fX17X2 (£17 1'2) le,XQ (l‘l, Ig)dxld.fQ,
fxi (1) fx, (22)

3)
and is an interesting alternative for dependence characterisa-
tion [3]. Unfortunately, eq. (3) is even more difficult to be
estimated. 2D histogram estimation requires window of larger
size than in 1D. Cumulant-based approximations of eq. (3)
exist (often used, for instance, for Independent Component
Analysis [11]) but are limited to order 4 for symetric distri-
butions, not too far from the gaussian.

A parametric model of dependency is proposed to estimate
eq. (3) through windows of limited size. This parametric model
uses the copula theory.

A bivariate copula is any cumulative density function on the
unit square with uniform marginal functions [6]:

C(ui,u2) =Pr(U; <

Such functions have the capability of giving an exhaustive
description of the dependence between two RVs. Sklar has
shown that the link between any continuous joint law F'x, x,
and its marginal laws F'x,, Flx, is achieved with a copula:

Fx, x,(x1,22) = C(Fxl (z1), Fx, (1'2))

’LL1,U2 Ug).

Then copulas, also named dependence functions, act as a
parameteric model of the dependence between observations,
whatever the marginal distributions [12]. By derivation, the
density of the copula may be written as: c(ui,u2) =

e} : .
Furou; (W1, u2), it comes:

fxi,x: (w1, 22) = C((Fl (z1), 1[72@132))]‘1)(1 (1) fx,(z2). D

Using eq. (3) and (4) together, it comes the interesting property
that 7 is the entropy of the copula itself whatever the marginal
pdfs:

I(Xl,Xg)z//[ | c(uy, uz) log c(uy, ug)duidus.  (5)
0,1]2

As well as many parametric 1D pdfs exist: gaussian, gamma,
K distribution, also the Pearson of Fisher system of dis-
tributions, many parametric copulas exist: namely Normal,
Student’s ¢, Frank’s, Clayton’s, Plackett’s, Raftery’s, Farlie-
Gumbel-Morgenstern’s, Fréchet’s, Marchal-Olkin’s [6]. The
latter is used since it fits the best the empirical copula that
characterized the non-parametric dependency between images
before and after, comparatively to the others.

The Marchal-Olkin’s copula is defined here with one pa-
rameter only by:

C(u1,u2) = min (U%_GUQ, uyuy?), €[0,1] (6

with is derivable on [0, 1]? but for u; = uy:

s, ug) = {(1 — O)uy

if ug < uq,
if uy < us.

(1= 0)uy”

As it is the case for many copulas, Marchal-Olkin’s 6 pa-
rameter depends on the Kendall’s T which is a concodrance-
discordance rank statistics:

sz(ua—Xgug—Xg>0)
_Pr ((X1 X)) (Xe — X)) < o) ,

where (X, X) is a pair of RV of the same law but indepen-
dent to (X7, X2). An empirical estimator of 7 is:

Z E] i+1 L1,ijL2,ij

Tempirical = (N)
2

)

with T1,45 = 1if T1; < 1,5 Or —1, and T2ij = 1if T2 <
x9,; or —1 elsewhere. When using copula, the Kendall’s 7
becomes:

T = 4/ C( Ul,UQ)dC(Ul,Ug) — 1 and then ®)

20’

for the Marchal-Olkin’s copula.
By using the Marchal-Olkin parametric model, eq. (5)
becomes parametric also [13]:

6 6
2-0 " (2-6)%

(X1, X5) = 22— log (1-0) -

5 g ®
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This parameterization is much more accurate than the correla-
tion parameter, while keeping the same level of computational
complexity for small windows. Thanks to the copula theory,
the estimation of the mutual information requires one param-
eter only which depends on the copula chosen.

III. STOCHASTIC KERNELS FOR CHANGE DETECTION

SVM have proved to be a relevant alternative for supervized
clustering technique [14]. Kernels have to be defined in order
to integrate the measures described previously (Distance be-
tween distribution through the Kullback-Leibler distance and
Distance to independence estimated with a copula).

Kernels give an orthogonality point of view between two
observations  and y projected into the feature space.  and
y € 2 since they are two observations at two different posi-
tions of the images before and after. In our case, the feature
space is defined through the distance between distributions and
the distance to independence.

A. A kernel for the marginal pdf

This kernel is an contrast mearure between two Kullbak-
Leibler distances. The kernel is simply defined as an RBF
kernel, as:

(@, y) = e~ TVEXL X2)K(V1LY2) - (g

It is not a Kullbak-Leibler kernel by itself [15] since it achieves
comparison between two Kullbak-Leibler distances. It is easy
to show that eq. (10) satisfy Mercer’s eligibility conditions.

B. A kernel for the dependency

The comparison of dependency could be defined the same
way as eq. (10) but it is more relevant to define a stochastic
kernel that makes the comparison of the two copulas. It
requires the assumption that the margins are identical, but if
not, eq. (10), would informs the SVM optimization. By using
the Bhattacharyya distance and the Marchal-Olkin model of
eq. (6), it yelds the simple expression:

B(le-,Xzale,Yz)
N // 2 \/fXI’XQ (21, 22) v, v, (21, 22)d21do

B //[ 12 \/Cxl’X2 (u1, u2)eyy v, (w1, uz)duy dus
0,1

= \/(]_ — 9X1,X2)<1 - 9Y1,Yz)

<1_1@+2_1@_(1—@)1(2—@)>’

with © = (6, x, + 0y, ,v,)- Since this distance is bounded
by 0 and 1, it can be easily integrated into a kernel, such as:

Y

The use of the Bhattacharyya distance between two copulas
in eq. (11) justify a posteriori to use of the square root on
eq. (10). This analogy gives also the best decision level, as a
trade-off between Py versus Py,.

ke(z,y) = e_’yB(thXz ) thYz).

C. Integration into v-SVM

SVM classification has been fully describe in previous study
for remote sensing image classification [16, 17]. But never for
change detection from remote sensing data. The description
remains the same but the kernel used, here, a mixture of the
two previous kernels obtained by linear combination:

k(z,y) = pkn(z,y) + (1 — pk(z,y), wpel0,1]. (12)

It is simply reminded here that the optimal separation
between change and no change classes is performed by using
the v-SVM classifier [7]. Considering a set of training samples
{xe}ocecr in 2, associated to their labels {y¢}o<e<r of
value +1, the problem is:

L
min Z AiNjyiyik (i, z5)
ig=1

Ve e [1, L],

L
Z)\z 2 v
(=1

The decision function becomes:

L
f(x) = sgn (Z Aeyek (e, T) + b) ;

(=1

13)

subject to 0< A\ <1/L

L
and Zyg/\g =0.
{=1

but we will also evaluate the compete accuracy by considering
the distance to the hyperplane as a new measure for change
detection.

IV. APPLICATION

We show an example of application of this algorithm to
a real case. A pair of F5 and F2 Radarsat images, acquired
before and after the eruption of the Nyiragongo volcano (D.R.
of Congo) which occurred in January 2002, have been used.
Fig. 1 shows the two images to be compared with the Region
of Interest (ROI) defined to train the support vectors. The
images have a ground resolution of 10 m and cover an area
of 4 x 8 km.

Results of the detection have to be seen on fig. 2. The
ground truth has been superposed to the distance to hyperplan
image for comparison. The area at the bottom right corner
of the ground truth mask corresponds to an area where a
severe mis-registration exists due to the lack of a proper digital
terrain model. By using the distance to hyperplan, it is possible
to apply serveral thresholds and to evaluate the compromise
between good detection and false alarms (P4 versus Pg,), since
the ground truth is known. Such a result is presented on fig. 3.

V. CONCLUSION

This paper has proposed the use of stochastic kernel for
smart decision by SVM of similarity measures to detect
changes between two images. This stochastic kernel integrates
the distance between local pdf, estimated with an Edgeworth
expansion of the Kullbak-Leibler distance, and also the dis-
tance copulas as a contrast measure of the mutual information.
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before after

Fig. 1. Before image on the left: Radarsat F5 mode data. After image on
the right: Radarsat F2 data. Superposed on red: the training samples to define
no change class shown on the image before (2623 samples), and the training
samples of change class shown on the after image (1258 samples).

First results has shown the availability of the methods since it
yields a relevant binary change map. Other experiments show
its ability for multisensor change detection.
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