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ABSTRACT

The hidden Markov field (HMF) model has been used in
many model-based solutions for image segmentation, and
generaly gives satisfying results. However, when the class
image is non stationary, the unsupervised segmentation
results provided by HMF can be poor. In this paper, we
propose a new model based on triplet Markov fields (TMF)
and Pearson system which enables one to deal with non
stationary hidden fields and correlated, possibly non
Gaussian noise. Moreover, the nature of margina
distributions of the noise can vary with the class. We specify
a new general parameter estimation method and apply it to
unsupervised Bayesian image segmentation.

1. INTRODUCTION

Hidden Markov fields (HMF) and Bayesian segmentation
based on them, can be of outstanding efficiency when
dealing with the important problem of unsupervised image
segmentation. In such models, we have the hidden Markov
field X =(X,). and the observed one Y =(Y,)_, and the

problem is to estimate X =x from Y =y. The simplest

models, in which X is a Markov field and the random
variables (Y,) are independent conditionally on X, can
give good results in many situations; however, they turn out
to be too simple when considering complex images (non
stationary, textured, strongly noisy, ... ). A pairwise Markov
field (PMF) model has then been proposed, which consists
in directly considering that the pair Z = (X,Y) is a Markov
field [11]. This implies that both conditional distributions
p(y|x) and p(x|y) are Markov : the former fact allows one
to better model complex noises, and the latter one still
allows one to apply Bayesian segmentation. Afterwards,
triplet Markov fields (TMF) have been proposed, in which
one introduces a third random field U = (U )., and assumes

the Markovianity of the triplet T =(X,U,Y) [10]. TMF can

then be applied in numerous situations, with different
interpretations for the third field U . In particular, one
possible meaning for U =(U ), is to assume that U =u

defines different homogeneities of (X,Y). This means that
the Markov field distribution p(x, y|u) is a non-stationary

one [2] (let us also notice a recent Markov tree based model
allowing one to deal with non stationary images [9]).

Otherwise, an important problem is to manage non Gaussian
and correlated noise. In fact, such noises occur in many
situations, like those related to sonar images or to radar ones
([6], [7], among others). This has not been solved, to our
knowledge, in the hidden Markov fields context and we thus
propose here a new model which extends the model
proposed in [2]. Moreover, we propose a “generalized
mixture” estimation method, which means that the very

nature of the conditional marginal distributions p(y.|x.) are

not know exactly and can vary with the class x_. Such

methods have already been proposed in the case of classical
HMF [4], hidden Markov chains[5], and hidden Markov
trees[8]. Therefore, here we extend the methods in [4] to the
TMF considered.

Finally, the paper contains the following contributions :

(i) the triplet Markov fields used in non stationary images
presented in [2] are extended to the general case where the
noise can be correlated and its marginal distributions

p(y.|x.) can be of any form and can vary with the class x_;

(i) a new model identification method, which is a
“generalized mixture” estimation method based on the
Pearson system is proposed, and validated via experiments.
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2. MODELLING NON STATIONARY IMAGESWITH
TRIPLET MARKOV FIELDS

2.1. Gaussian noise

Let us shortly recall the model proposed in [2]. First, let us
consider the very classica Markov field X =(X,)., with

whose distribution is defined by the energy

W)= 3 a,0-206cx )+ 5 a,0-26(x,x)) @1)

where C, is the set of couples of pixels horizontally
neighbors, C, is the set of couples of pixels verticaly
neighbors, and ¢(x_,x ) verifies ¢(x_,x )=1 for x_ =x,
and ¢é(x.,x)=0 for x_# x . Furthermore, let us consider
classically that the random variables (Y,) . areindependent
conditionally on X =(X_).. The distribution of the
classical HMF (X,Y) isthen written

p(x, y) = yexp[-W (x)+ > Log(p(y. (22)

x.))]

Such HMF have been generalized in [2] by considering a
Markov field (X,U), with two stationarities /\:{a,b},
whose distribution is defined by the energy

a;, (- 25(x,.x )
(2,07 U, v, @)+, 6% (u,.u, b)a-o(x. )

+ 5 ai-20s.x)-

(@207 . u.a)+ ag, 0% (u,u,b))a- 6k, x ).

W(x,u):(

(2.3)

with ¢*(u,,u,,a)=1 for u,=u, =a, and ¢*(u,,u,a)=0
otherwise and ¢(u,,u,b)=1 for u,=u =b, and
¢*(u,,u,b)=0 otherwise. We can easily verify that for
x=u the energy (2.3) is reduced to the energy (2.1);
therefore the model (2.3) is a generalization of the classical

model (2.1).
Finally, the distribution of (X,U,Y) is defined by

(2.4

p(x, U, y) = yexp[-W(x,u)+ 3 Log(P(y. X))

Both models HMF given by (2.2) and TMF given by (2.4)
allows one to estimate p(><|y). In HMF this is classically
done from (2.2) using the Gibbs sampler, and in TMF thisis
done in two steps : (i) estimate p(x,,u.|y) by the Gibbs

sampler; (ii) calculate p(x,

y) = Z p(x.,u.|y) . Therefore,

the Bayesian Maximum Posterior Mode (MPM) can be used
in both HMF and TMF given by (2.2) and (2.4),
respectively.

2.2. Non Gaussian noise

In the Gaussian case above, let us consider a set of
independent Gaussian variables (Y,")_., with E[Y]1=0,
Var[Y,'] =1 for each sOS, and such that Y'=(Y,"), is
independent from X =(X,),, and U =U,) .. Then we
can say that Y =(Y,),, is obtained from Y'=(Y."). by
Y, =0, Y, +m,

The first idea of this paper is to use the same set of
independent variables Y'=(Y.") . to obtain any other kind

of distribution. In fact, putting F the cumulative function of
the Gaussian distribution N(0,1), and putting G the
cumulative function of the desired distribution, we know that
Y, =G o F(Y,") hasthe desired distribution G .

The second idea is to consider a Markov Gaussian field
Y'=(Y."), instead of the set of independent variables

above.
Finally, the new model we propose is the following. Let
(X,U) beaMarkov field, and let Y'=(Y,")_ . be aMarkov

Gaussian field independent from (X,U) and such that
E[Y.]=0, and Var[Y,]=1. For each class «, in
Q={a,...a}, let G be the cumulative function of the
desired distribution p(y.[x,=w), and let F be the
cumulative function of the Gaussian distribution N(0,1).
Then the TMF we propose is T =(X,U,Y), with
Y, =G, oF(Y,)).

Therefore we obtain a model such that the random variables
(Y.) are correlated conditionally on X (the noise is
correlated), and such that the marginal distributions
p(y.|x, =) are not necessarily Gaussian (their shape can

even vary with the class). For example, assuming that
(X,U) isaMarkov field defined by the energy (2.3), and

assuming that the distribution of the Gaussian Markov field
Y'=(Y,) s iSgiven by the energy ¢(y'): Z #.(y."), then

the distribution of (X,U,Y) isgiven by

p(x,u, y) =y exp[-W/(x,u)- >9.(F =G, (v) (25

where F* oG, (y,)=(F" =G, (v,))

s0s *
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3. MODEL IDENTIFICATION

In the first sub-section we assume that the shapes of
p(y.[x, =w) are known (they can vary with the class), and

we describe how the parameter estimation method proposed
in the Gaussian case in [1] can be extended to such a model.
In the second sub-section we specify how the Pearson
system can be used to search, in addition, a good shape of

p(y.[x, =w) for each class «,. This second case is an
extension to the new model (non stationary hidden field and

correlated noise) of the method presented in the case of
classical HMF in [4].

3.1. Parameter estimation

Let us distinguish three kinds of parameters. We will
designate by a the parameters defining the Markov

distribution of (X,U), by B' the parameters defining the
Markov Gaussian digtribution of Y', and by pB? the
parameters defining the k cumulative functions G, ..., G, .
Thus B%=(B?,...B°), and each B defines G, . We will
assume that we dispose of k estimators Bf, [3’5 such that
each 3 estimates 3% from samples produced by G, .

Thus the problem is to estimate & =(a,S*,3%) from

Y =y. The method we propose is an iterative one and

extends to the proposed model the “Iterative Conditional
Estimation” (ICE) based method described in[1].

Let 8° aninitial value of 6. The next value 8°* is defined
from 8% and Y =y inthefollowing way :

(i) smulate x* =(x")
Gibbs sampler;

(i) estimate a*** from x“ asexplainedin[2];

(i) for each i =1,...k, let S7* ={s0§x? = }. For each

according to p(xy,6°) by

sOs

i=1..k, use the redtriction of y to S and B’ to
determinate (37)%*, which gives G™;

(iv) define y'=(y,") . by y.'=F*G%*(y,),and use y’
to egtimate (B*)** by the method in [2] (recdl that
Y'=(Y.") s isaGaussian Markov field).

3.2. Generalized mixture estimation with the Pearson
system

Let us briefly recall what the Pearson system is and how the
first four moments define a probability distribution init.
The Pearson system is the set of probability densities f

verifying

df (x) _ xX+a
dx c, +CX+C, X

f(X) (3.1)

where a, ¢,, ¢,, and c, arerea parameters. When varying,
these parameters define eight different shapes of f , called

shape of “kind 17, “kind 11", and so on. Important is that
these shapes can be found from the first four moments

w=EY], o, =EY-EYD], s =E(Y-E[Y])’],
U, = E[(Y —E[Y])*] . Calculating the “kurtosis™ y, = E%;a
H,
and the ““skewness™ y, = (ﬂ 4, one considers
H,
2
= AV (32)
44y, —3y,)(2y, —3y,)(2y, —3y, —6)

and then the eight different shapes are given by :
type | : c<1;typell : ),=0 and ),<3; type Il :

2),—3),—-6=0; type IV : O0<c<1;typeV : c=1; type
VI:c>1;typeVIl: ), =0and ), >3;typeVIll: ), =0
and ), =3. Otherwise, it can be shown that the type |
corresponds to the beta distributions of the first kind, type
Il are gamma distributions, and type VIII are Gaussian
distributions (the shapes of other types can be seenin [4]).
Therefore, knowing the first four moments we know what
shape we are faced with and, in addition, these moments
give the parameters of the corresponding distribution.

The Pearson system can then be used to estimate the
following “generalized mixture” : let us assume that for each
i =1...,k the distribution G, is in the Pearson system, but
we do not know what the shape of this distribution is. Such
situations can occur in radar images. In fact, the shape of
class distributions can vary with the class and, for a given
class, it can even very with time [4]. Faced with such a
situation, we can use in the method above the following
estimators /32, ..., 37 : each estimator 3> estimates the first
four moments of G,, which gives its shape and the
parameters.

4. EXPERIMENTS

Let us consider the following example. Each X_ takes its
values in the set of two classes Q ={«,,,}, and each U,
takes its values in the set of three classes A ={a,b,c} (there
are three different homogeneities in the classimage X = x).
A redlization (x,u) of the Markov field (X,U) is then
simulated by Gibbs sampler and presented in (a), (c) in
Figure 1 below. The class image is then noised according to
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p(y.|x, =w,), which is a gamma distribution (type Il in
the Pearson system), and p(y.|X, =w,), which is a beta of

the first kind distribution (type | in the Pearson system),
More precisely, the parameters considered are

ply|x, =w)=r@2), ad  p(y.|x =w,)=B(21).

Concerning the Gaussian Markov field Y', we have taken
the following energy ¢(y’)= 1 é (y.,)?2+ ‘Z’ -0.2y.’y, S
2 - 0

The noisy image Y =y is presented in (b), Figure 1, the
estimated u, using the new model, is in (d). Finaly,
unsupervised segmentation results based on the new model
and on the classical HMF are presented in (€) and (f).

== T ||l
(a) classimage x

—

’

: ] T =
(f) MPM + classicadl HMF
cerror=19.14 %

= : ﬂ L“ RN =
(e) MPM+TMF : error =
8.81%

Figure 1. Class image x (@), its noisy version (b), u
corresponding to x (c), estimated u (d), new method
unsupervised segmentation result (), and classical method
one (f).

5. CONCLUSION

We have presented in this paper a new model and a new
parameter estimation method. The model is a particular
Triplet Markov field (TMF) alowing one to dea with
hidden non stationary random field, with correlated and non
Gaussian noise. We also proposed a parameter estimation
method adapted to the new model and presented an example
of an unsupervised image segmentation.
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