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ABSTRACT

Hidden Markov chains, enabling one to recover the hidden
process even for very large size, are widely used in various
problems. On the one hand, it has been recently
established that when the hidden chain is not stationary,
the use of the theory of evidence is equivalent to consider
a triplet Markov chain and can improve the eff iciency of
unsupervised segmentation. On the other hand, hidden
semi-Markov chains can also be considered as particular
triplet Markov chains. The aim of this paper is to use these
two points simultaneously. Considering a non stationary
hidden semi-Markov chain, we show that it is possible to
consider two auxili ary random chains in such a way that
unsupervised segmentation of non stationary hidden semi-
Markov chains is workable.

1. INTRODUCTION

Let ),( YXZ = , with )...,,( 1 nXXX = , )...,,( 1 nYYY =  be

two random chains, where each iX  takes its values in

{ }kωω ...,,1=Ω  and each iY  takes its values in R . We

will say that ),( YXZ =  is a classical hidden Markov

chain with independent noise (HMC-IN) if its distribution
reads )(...)()(...)()()( 111121 nnnn xypxypxxpxxpxpzp −= .

Then the hidden chain X  is a Markov one, and we add
“ independent noise” because the random variables 1Y , …,

nY  are independent conditionally on X . This condition

can be relaxed and there exist hidden Markov models in
which X  is Markovian and the random variables 1Y , …,

nY  are not independent conditionally on X ; such a model

will be called hidden Markov chains (HMC).
HMC-IN are widely used because unknown realisations of
X  can be estimated from observed realisations of Y  by
different Bayesian methods, even for very large values of
n . Furthermore, different model parameters estimation
methods, like the “expectation-maximization” (EM)
algorithm or the “ iterative conditional estimation” (ICE)

one, are available, which enables unsupervised estimation
of X  from Y .
Classically, HMC-IN have been extended in two
directions:
(i) In HMC-IN the hidden chain X  is a Markov one, and
thus the sojourn duration distribution in each state is
exponential. In hidden semi-Markov chains with
independent noise (HSMC-IN), which form an extension
of HMC-IN, this distribution is of any kind. HSMC-IN are
useful in many situations, as images sequence analysis [5],
speech processing [6], or still t racking problems [15],
among others;
(ii ) more recently, HMC-IN have been extended to
“pairwise Markov chains” (PMC [9]), in which one
directly assumes the Markovianity of ),( YXZ =  and in

which X  is no longer necessarily a Markov chain, and to
“ triplet Markov chains” (TMC [10, 13]), in which one
introduces a third auxili ary random chain )...,,( 1 nUUU =
and assumes the Markovianity of the triplet

),,( YUXT = . When the random variables nUU ...,,1  take

their values in a discrete finite space, both PMC and TMC
still enable to estimate X  from Y  by Bayesian methods.
Let us mention that TMC can be also used when the three
chains X , U , and Y  are continuous; in this case
Bayesian segmentation methods are replaced by Kalman,
or particle, filtering techniques [1, 4].
Otherwise, we have two following recent results:
(iii ) let us return to classical HMC-IN, with unknown
parameters and with a non stationary process X . It is
possible to estimate the model parameters by EM or ICE;
however, such estimation methods assume the stationarity
of X  and would thus necessarily give wrong results,
which in turn can imply poor restoration results of xX = .
It then has been shown that replacing the non stationary
priors by “evidential” stationary ones (“evidential” refers
to the theory of evidence [2, 14]) enables to improve the
final segmentation results [7, 8]. Moreover, introducing
such “evidential” priors is identical, from the mathematical
viewpoint, to consider a particular TMC [7, 8];
(iv) very recently it has been showed that HSMC-IN can
be seen as particular TMC [11, 13].
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The aim of this paper is to use points (iii ) and (iv) above
simultaneously. Considering a non stationary hidden semi-
Markov chain, we introduce a TMC in which the auxili ary
chain has two components. The first one models the
HSMC-IN, as in [11], and the second one enables us to
take into account, via evidential priors, its non stationarity,
as in [7, 8]. We detail the use of such a model in
Byayesian segmentation and briefly describe both EM and
ICE parameter estimation methods.

2. HIDDEN SEMI MARKOV CHAIN AS A TRIPLET
MARKOV CAHINNTRODUCTION

Since [11] is under submission and the problem is just
mentioned in [13], let us briefly specify, via an example,
why each HSMC-IN is a particular TMC. Let ),( YX  be

an HSMC-IN with the distribution given by :

(a) the distribution of 1X  on Ω , denoted by )( 1xp ;

(b) the transitions 21 ))(( ≥− iii xxp  verifying 0)( 1 =−ii xxp

for 1−= ii xx ;

(c) q  a probabilit y distribution on the set of natural

numbers N , and

(d) distributions )( ii xyp  on R .

Otherwise, let us consider a general TMC ),,( YUXT = ,

with each iU  taking its values in { }0* −= NN . The

general form if its distribution is then defined by
),,()( 1111 yuxptp =  and the transitions

),,,,()( 1111 nnnnnnnn yuxyuxpttp ++++ = . These transitions can

be detailed in different ways; in the following, we will
consider them as being written

=+++ ),,,,( 111 nnnnnn yuxyuxp

×+ ),,( 1 nnnn yuxxp (1)

×++ ),,,( 11 nnnnn xyuxup

),,,,( 111 +++ nnnnnn uxyuxyp

Then HSMC-IN defined by (a)-(d) can be seen as a TMC
defined by ),,()( 1111 yuxptp =  and (1), where ( d  is the

Dirac’s mass):

)(),(),,( 11 nnnnnnnn xduxxpyuxxp == ++  if 1>nu , and

)( 1 nn xxp +  if 1=nu ; (2);

)1(),(),,,( 111 −== +++ nnnnnnnnn udxuupyuxxup  if 1>nu ,

and )( 1+nuq  if 1=nu ; (3);

)(),,,,( 11111 +++++ = nnnnnnnn xypxuyuxyp . (4)

Finally, we have a particular TMC where (1) reduces to

=+++ ),,,,( 111 nnnnnn yuxyuxp

),( 1 nnn uxxp + ),( 1 nnn uxup + )( 11 ++ nn xyp (5)

with ),( 1 nnn uxxp + , ),( 1 nnn uxup + , and )( 11 ++ nn xyp  given

by (2), (3), and (4), respectively. Then the “backward”
probabiliti es ),...,(),( 1 iiniiii uxyypux +=β , needed to

different useful computations, are recursively calculated
by

1),( =nnn uxβ , and =),( iii uxβ
)(),(),(),( 1111

,
111

11

+++++++∑
++

iiiiiiii
xu

iii xypuxupuxxpux
ii

β (6)

for 11 −≤≤ ni

Of course, the sum in (6) is particular because of (2) and
(3).
In order to simpli fy notations, let us put ),( UXV = . Thus

),( iii uxv =  for each ni ≤≤1 . In particular, (6) is written

1)( =nn vβ , and

=)( ii vβ )()()( 11111

1

+++++∑
+

iiii
v

ii vypvvpv
i

β (7)

for 11 −≤≤ ni

(7) Looks like the formulas of a very classical hidden
Markov chain ),( YV ; however, let us remark that the

distributions ),()( 11111 +++++ = iiiii uxypvyp  verify

)(),( 11111 +++++ = iiiii xypuxyp (8)

which means that a same noise distribution can remain
valid for different classes 1+iv , which is not usual in

classical models.
However, once it has been noticed that ),( YV  is a hidden

Markov chain, the “forward” probabiliti es
)...,,,()( 1 iiii yyvpv =α  can be computed recursively by

),()( 111 yvpvi =α , and

=++ )(1 ii va )()()( 111 +++∑ iiii
v

ii vypvvpv
i

α (9)

for ni ≤≤+11 .

Finally, backward and forward probabiliti es can be
classically used to calculate:
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)(

)(
),( 11

1

ii

ii
ii v

v
yvvp

β
β ++

+ = (10)

∑
=

iv
iiii

iiii
i vv

vv
yvp

'

)'()'(

)()(
)(

βα
βα

(11)

∑
+

+++++

+++++
+ =

1','
11111

11111

1 )()()()(

)()()()(
),(

ii vv
iiiiiiii

iiiiiiii

ii vvypvvpv

vvypvvpv
yvvp

βα
βα

(12)

Therefore we have a first TMC ),,( YUXT =  which

models the fact that ),( YX  is an HSMC-IN.

Remark 1

Let us briefly mention that, as described in [11], each
equation among (2)-(4) can be extended and thus the
present viewpoint representing HSMC-IN as particular
TMC enables one to propose numerous generalizations of
HSMC-IN. For example, let us replace in equation (4)

)( 11 ++ nn xyp  by ),( 11 ++ nnn xuyp . Such an extension means

that the distribution of the noise at 1+n  also depends on
the residual sojourn duration nu . This can be understood

intuitively; in fact, when this duration is large we are far
away from the boundary among two different classes, and
when 1=nu , we know that the class has just changed

( nn xx ≠+1 ). Thus replacing )( 11 ++ nn xyp  by ),( 11 ++ nnn xuyp

enables one to model the fact that on boundaries the
distribution of the noise can be different from its
distribution “inside” of a given class. Then the modelling
of the non stationarity of X  proposed in this paper can
still be extended to these different generalizations of the
HSMC-IN model.

3. HIDDEN EVIDENTIAL MARKOV CHAIN

Let us consider the HMC-IN ),( YVT =  above and let us

consider that this HMC-IN is not stationary. In other
words, the distribution ),,,( 11 ++ iiii yvyvp  depends on

11 −≤≤ ni . Furthermore, let us assume that this non
stationarity is due to the non-stationarity of V , which

means that )( ii vyp  does not depend on ni ≤≤1 . Such a

situation has been studied in [8] by the use of Dempster-
Shafer theory of evidence. By replacing the non stationary
prior distribution of V  by evidential priors as explained in
[7, 8], we necessarily replace the non stationary
distribution of ),( UXV =  by some particular evidential

priors. As we are going to specify, such a replacement

amounts to introducing in the HMC-IN ),( YV  a third

random chain )'...,,'(' 1 nVVV = , where each iV '  takes its

values in a finite set { }mλλ ...,,' 1=∆ , and leads to the

consideration of the TMC ),',( YVV . Finally a non-

stationary HMC-IN ),( YV  will be replaced by a

stationary TMC ),',( YVV .

Let us specify with some more details the use of the theory
of evidence. Each iV  taking its values in { }rδδ ...,1=∆ ,

let us denote by )]([ ∆Ρ  the power set of ∆ . We will

consider the so-called “evidential Markov chain” (EMC),
denoted by m , which verifies:

 (i) m  is defined on n)]([ ∆Ρ  and takes its values in ]1,0[ ;

(ii) 1)(
)]([

=∑
∆Ρ∈ nA

Am  and 0)...( 1 =×× nAAm  if one at least

among 1A , …, nA  is ∅ ;

(iii) m  is of the “Markovian” form : =),...,,( 21 nAAAm

)(...)()( 1121 −nn AAmAAmAm .

We see how an EMC extends a Markov chain; in fact,
when 0)...( 1 =×× nAAm  if one at least among 1A , …, nA

is not a singleton, m  is a Markov chain on n∆ .

The approach proposed in [8] is based on the two
following points:

1. The posterior distribution )( yvp  of an HMC-IN, which

is needed to Bayesian restoration, can be seen as the DS
fusion of the prior Markov distribution

)(...)()()( 1121 −= nn vvpvvpvpvp  of V  with the

probability )(...)()...,,( 111 nnn

y vypvypvvq ∝  (where

“ ∝ ” means “proportional to”) defined on n∆  by yY = ;

2. When the distribution )(vp  of the Markov chain V  is

incompletely known, it can be replaced by an EMC
obtained from )(vp , whose aim is to model the lack of

precise knowledge of )(vp . It can be fused with yq  using

DS fusion. The result of the latter fusion is a probability
distribution on n∆  and, although it is not necessarily a
Markov distribution, it can be used to perform Bayesian
restorations. Indeed, the latter feasibility is due to the fact
that the fused distribution is a triplet Markov chain [8]. To
be more precise, )(vp  is replaced by an EMC m  such

that 0)...( 1 ≠×× nAAm  only on )...( 1 nAA ××  such that

each iA  is in { } { }{ }∆=∆ ,...,' 1 rδδ . Thus a homogeneous

Markov chain on n∆  is defined by 2r  parameters, and a
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homogeneous EMC on { } { }{ }∆,...,1 rδδ  is defined by
2)1( +r  parameters, which means that EMC considered

here is not so much more complex than the corresponding
Markov chain.

Finally, let us specify how the DS fusion (DS fusion)
allows one to calculate different quantities of interest.

Let us consider the DS fusion of the probability
)(...)()...,,( 111 nnn

y vypvypvvq ∝  with )...( 1 nAAm ××
defined above. We have:

∝⊕ )...,,)(( 1 n

y vvmq

(13)

∑
∈ )'...,,'()...,,(

11

11

)'...,,'()...,,(
nn vvvv

nn

y vvmvvq ,

where each iv  is in { }rδδ ...,1=∆ , each iv'  is in

{ } { }{ }∆=∆ ,...,' 1 rδδ , and )'...,,'()...,,( 11 nn vvvv ∈  means

that 11 'vv ∈ , …, 'vvn ∈ . Let us insist on the fact that in

(13) )...,,( 1 nvv  and the sum is taken over )'...,,'( 1 nvv  such

that )'...,,'()...,,( 11 nn vvvv ∈ .

Important is then to notice that )'...,,'()...,,( 11 nn vvmvv  in

(13) defines a Markov chain, and the DS fusion is the
calculation of some marginal distribution of this Markov
chain.
To be more precise, let us consider 1−n  functions 21 ,

2

yyf ,
3

3

yf ,…, ny

nf  defined on 22 )'(∆×∆  by:

)','()()(1

)',',,(

212211]','[

2121

,

2

2211

21

vvmvypvyp

vvvvf

vvvv

yy

∈∈

=
(14)

and

)''()(1

)',',,(

111]','[

1111

11

1

iiiivvvv

iiiii

y

i

vvmvyp

yvvvvf

iiii

i

+++∈∈

++++

++

+ =
(15)

for 12 −≤≤ ni .

On the one hand, the product ×)',',,( 2121

,

2
21 vvvvf yy

)',',,(...)',',,( 1132323
33

nnnn

y

n

y vvvvfvvvvf −−××  defines (for

fixed y ) a Markov chain on nn )'(∆×∆  with calculable

),',',( 11 yvvvvp iiii ++ , )',,',( 11 yvvvvp iiii ++  and )',( yvvp ii

(see Lemma below). On the other hand, we see that this
product is proportional to )'...,,'()...,,( 11 nn

y vvmvvq  in

(13). These two results show that the result of the DS
fusion )...,,)(( 1 n

y vvmq ⊕  in (13) is the marginal

distribution (the distribution of )...,,( 1 nVV ) of the

distribution of the Markov chain ))',(...,),',(( 11 nn VVVV

defined by the functions 21 ,

2

yyf , 3

3

yf ,…, ny

nf .

Finally, we can state the following result:

Proposition 1

Let ),...,,,(),( 11 nn YVYVYV =  be a classical HMC-IN, each

iV  taking its values in { }rδδ ...,1=∆  and each iY  taking

its values in R . Therefore,
)(...)()()( 1121 −= nn vvpvvpvpvp , and

)(...)()( 11 nn vypvypvyp = .

Let ∝)...,,( 1 n

y vvq )(...)( 11 nn vypvyp  be the probability

defined on n∆  by yY = , and let m  be an EMC on

{ } { }{ }∆=∆ ,...,' 1 rδδ  extending the prior distribution

)(...)()()( 1121 −= nn vvpvvpvpvp .

Then the probability mq y ⊕  given by (13), which extends

the posterior probability )( yvp  and which is not

necessarily of Markovian form, is a marginal probability
of a finite Markov chain. As a consequence, mq y ⊕  can

be used to perform different restorations like MPM.

This result has been successfully applied to the case of
non-stationary hidden )...,,( 1 nVVV = , see [8].

4. HIDDEN EVIDENTIAL SEMI-MARKOV CHAIN

Let us return to the situation of the previous section, with
the hidden semi-Markov chain )...,,( 1 nXXX = ,

)...,,( 1 nYYY = , where each iX  takes its values in

{ }kωω ...,,1=Ω  and each iY  takes its values in R . As

specified above, the HSMC-IN ),( YX  can also be seen as

a TMC ),,( YUX , which also is an HMC-IN ),( YV , with

),( UXV = . Let us consider the case of non-stationary

semi-Markov chain )...,,( 1 nXXX = , which means that

),( UXV =  also is non stationary. Thus this non-

stationarity of ),( UXV =  can be managed as specified in

Proposition 1. Knowing that )( yvp  is workable as being

marginal distribution of the Markov chain )',( yvvp , we

see that )( yxp  is workable as being a marginal

distribution of ),()( yuxpyvp = , and thus a marginal

distribution of the Markov chain )',,( yvuxp . As an

example, let us detail how the posterior marginal
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distributions )( yxp i , enabling one to perform the MPM

segmentation, are computable.

Proposition 2

Let X  be a non-stationary semi-Markov chain, ),( YX  a

non-stationary HSMC-IN, ),,( YUX  the corresponding

non-stationary TMC, and ),',,( YVUX  a stationary

Markov chain obtained from ),(),,( YVYUX =  as

specified above.
Then )( yxp i  is computable in two steps:

(i) ∑==
iv

iiiiii yvvpyvvpyuxp
'

)',()',(),( , and

(ii ) ∑=
iu

iii yuxpyxp ),()( .

Finally, we arrived at a TMC ),,(),',,( YWXYVUX = ,

where the third random process )',( VUW =  model the

fact that X  is semi-Markov on the one hand, and the fact
that X  is non-stationary, on the other hand.

Remark 2

We pointed out in Remark 1 above how the model
),',,( YVUXT =  can be extended by considering different

extensions offered by (2)-(5). However, all over the paper
we kept the notations “HMC-IN” and HSMC-IN” to
clearly specify that in all models considered the random
variables 1Y , …, nY  remain independent conditionally on

X , which means that the “noise” is of a quite simple –
and undoubtedly too simple in numerous situations - form.
However, extending this simple case to correlated noise is
quite straightforward in the Gaussian noise case. When the
noise is correlated and not necessarily Gaussian, it is then
possible to use the theory of Copulas, as proposed in the
simple HMC-IN case in [3].

Lemma

Let )...,,( 1 nHHH =  be a random chain, each iH  taking

its values in a finite set.
Then H  is a Markov chain if and only if there exist
positive functions 1s , …, 1−ns  such that

),(...),()...,,( 112111 nnnn hhshhshhp −−∝ .

If H  is a Markov chain, the transitions and the marginal
distributions are given by

)(/)(),()( 11111 iiiiiiiii hhhhqhhp ββ +++++ = ,

∑=
'

)'()'(/)()()(
ih

iiiiiiiii hhhhhp βαβα ,

with

1)( 11 =hα , ∑
+

++++ =
1

)(),()( 1111

ih
iiiiiii hhhqh αα , and

1)( =nn hβ , ∑
+

++++=
1

)(),()( 1111

ih
iiiiiii hhhqh ββ .

5. PARAMETER ESTIMATION

Let us briefly mention how the parameter estimation can
be performed by two general methods “Expectation-
Maximization” (EM), and “Iterative Conditional
Estimation” (ICE). To simpli fy things, let us assume that
the variables iU  take their values in a finite set. Moreover,

we assume that the TMC ),',( YVVT =  is “Gaussian” in

that )',( vvyp  are Gaussian. Assuming T  stationary in

that neither )',,',( 11 ++ iiii vvvvp  nor )()',( iiiii xypvvyp =
depend on i , we have to estimate the finite distribution

)',,',( 11 ++ iiii vvvvp  on 22 )'(∆×∆ , and, for k  classes, k

means and k  variances of the k  Gaussian distributions

)( ii xyp  on R . Let us put { }M...,,1)'( 22 =∆×∆ ,

])',,',[( 11 jvvvvp iiiij == ++τ  and )...,,( 1 Mτττ = .

Otherwise, let )...,,( 1 kµµµ =  be the means and

)...,,( 22
1

2
kσσσ =  the variances. Then the parameters to be

estimated are ),,( 2σµτθ = . Both EM and ICE methods

are iterative: taking an initial value 0θ , the problem is to

compute 1+mθ  from the observation )...,,( 1 nyyyY ==
and mθ .
EM method runs as follows:
(i) use mθ  to calculate ],)',,',[( 11

, m

iiii

mi

j yjvvvvp θτ == ++

(using the Lemma) and ],[, m

qi

mi

q yxpp θω==  (deduced

from mi

j

,τ );

(ii ) put 
1

.. ,1,1

1

−
+

=
−

+

n

mn

j

m

jm

j

ττ
τ  for Mj ≤≤1 ,

mn

q

m

q

mn

qn

m

qm

q pp

pypy
,,1

,,1
11

...

...

++
++

=+µ , and

mn

q

m

q

mn

q

m

qn

m

q

m

qm

q pp

pypy
,,1

,21,121

11,2

...

)(...)(

++
−++−

=
++

+ µµ
σ  for kq ≤≤1 ,

which gives 1+mθ .

In ICE 1+m

jτ  is obtained as in EM and, to obtain 1+m

qµ  and
1,2 +m

qσ , one simulates a  realisations )...,,( 11
1

1
nxxx = , …,

)...,,( 1
a

n

aa xxx =  of )...,,( 1 nXXX =  according to

),( myxp θ  (recall that the distribution of

)',,()',( VUXVV =  conditional on Y  is a Markov
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distribution with computable transitions
),,',',( 11

m

iiii yvvvvp θ++ , and thus simulating

)',,()',( VUXVV =  gives xX = ). For al ≤≤1  and

kq ≤≤1 , let )...,,( ,
'

,
1

, ql

n

qlql xxx =  be the sub-sample of

)...,,( 1
l

n

ll xxx =  such that q

qlx ω=,

1 , …, q

ql

nx ω=,

' . This

sub-sample is then used to estimate, by the classical
estimators, the mean lm

q

,1+µ , and the variance lm

q

,1,2 +σ . Then

a

am

q

m

qm

q

,11,1

1
... ++

+ ++
=

µµ
µ , and 

a

am

q

m

qm

q

,1,21,1,2

1,2 ... ++
+ +

=
σσ

σ . In

practice, one often takes 1=a .

6. CONCLUSION AND PERSPECTIVES

We dealt in this paper with unsupervised segmentation of
the hidden non stationary semi-Markov chains. The main
tool used was the triplet Markov chain model, which has
been obtained by introduction of two auxili ary chains. The
first auxili ary chain modelled the semi-Markovianity, and
the second one modelled the non stationarity.
As perspectives, we can mention different possibiliti es of
further extensions. In particular, more complex noises can
be introduced via the Copula theory, as described in the
simple hidden Markov chains case in [3]. Otherwise, the
mono sensor case considered in this paper (observations in
R ) can be extended to the multisensor one [12].
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