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ABSTRACT

Hidden Markov chains, enabling one to recover the hidden
processeven for very large size, are widely used in various
problems. On the one hand, it has been recetly
established that when the hidden chain is not stationary,
the use of the theory of evidenceis equivalent to consider
atriplet Markov chain and can improve the dficiency of
unsupervised segmentation. On the other hand, hidden
semi-Markov chains can also be mnsidered as particular
triplet Markov chains. The dm of this paper is to use these
two pdnts smultaneously. Considering a non stationary
hidden semi-Markov chain, we show that it is possble to
consider two auxiliary random chains in such a way that
unsupervised segmentation of non stationary hidden semi-
Markov chainsisworkable.

1. INTRODUCTION

Let Z =(X,Y), with X =(X,,....X,), Y =(Y,....,Y.) be
two random chains, where eat X, takes its values in
Q ={w1,...,wk} and each Y, takes its values in R. We
will say that Z =(X,Y) is a classical hidden Markov
chain with independent noise (HMC-IN) if its distribution
reads  p(2) = p(x) POG|X)..- PO %) Y] X)-- POV, X,) -
Then the hidden chain X is a Markov one, and we ald
“independent noise” because the random variables Y,, ...,
Y, are independent conditionally on X . This condition
can be relaxed and there eist hidden Markov models in
which X is Markovian and the random variables Y,, ...,
Y, are not independent conditionally on X ; such a model

will be cdled hidden Markov chains (HMC).

HMC-IN are widely used becaise unknown redi sations of
X can be etimated from observed redisations of Y by
different Bayesian methods, even for very large values of
n. Furthermore, different model parameters estimation
methods, like the “expedation-maximizaion” (EM)
algorithm or the “iterative conditional estimation” (ICE)

one, are available, which enables unsupervised estimation
of X fromY.

Clasgcdly, HMC-IN have been extended in two
diredions:

(i) In HMC-IN the hidden chain X isaMarkov one, and
thus the sojourn duration distribution in ead state is
exponential. In hidden semi-Markov chains with
independent noise (HSMC-IN), which form an extension
of HMC-IN, this distribution is of any kind. HSMC-IN are
useful in many situations, as images sguence anaysis[5],
speed processng [6], or still tradking problems [15],
among others;

(i) more recetly, HMC-IN have been extended to
“pairwise Markov chains’ (PMC [9]), in which one
diredly asaumes the Markovianity of Z =(X,Y) and in

which X isno longer necessarily a Markov chain, and to
“triplet Markov chains’ (TMC [10, 13]), in which one
introduces a third auxili ary random chain U =(U,,...,U )

and asumes the Markovianity of the triplet
T =(X,U,Y). When the random variables U,,...,U, take

their values in a discrete finite space both PMC and TMC
till enable to estimate X from Y by Bayesian methods.
Let us mention that TMC can be dso used when the three
chains X, U, and Y are ontinuous, in this case
Bayesian segmentation methods are replaced by Kalman,
or particle, filteringtechniques[1, 4].

Otherwise, we have two foll owing recent results:

(iii) let us return to classcd HMC-IN, with unkrown
parameters and with a non stationary process X. It is
posdble to estimate the model parameters by EM or ICE;
however, such estimation methods asaume the stationarity
of X and would thus necessrily give wrong results,
which in turn can imply poar restoration results of X = x.
It then has been shown that repladng the non stationary
priors by “evidential” stationary ones (“evidentia” refers
to the theory of evidence [2, 14]) enables to improve the
final segmentation results [7, 8]. Moreover, introducing
such “evidential” priorsisidenticd, from the mathematicd
viewpoint, to consider aparticular TMC [7, 8];

(iv) very recantly it has been showed that HSMC-IN can
be seen as particular TMC[11, 13].
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The dm of this paper is to use points (iii) and (iv) above
simultaneously. Considering a non stationary hidden semi-
Markov chain, we introduce aTMC in which the auxili ary
chain has two components. The first one models the
HSMC-IN, as in [1]], and the second one enables us to
take into acount, via evidentia priors, its non stationarity,
as in [7, 8]. We detall the use of such a model in
Byayesian segmentation and briefly describe both EM and
| CE parameter estimation methods.

2.HIDDEN SEMI MARKOV CHAIN ASA TRIPLET
MARKOV CAHINNTRODUCTION

Since [11] is under submisdon and the problem is just
mentioned in [13], let us briefly spedfy, via ax example,
why eatch HSMC-IN is a particular TMC. Let (X,Y) be

an HSMC-IN with the distribution given by :

(a) thedistribution of X, on Q , denoted by p(x,) ;

(b) the transitions (p(x |x_,))., verifying p(x|x_)=0
for x =x_,;

(c) g a probability distribution on the set of natural
numbers N , and

(d) distributions p(y,|x) on R.

Otherwise, let us consider a general TMC T = (X,U,Y),
with eah U, taking its values in N*=N-{0}. The
general form if its distribution is then defined by
pt) = p(x,u,y,) and the transitions

p(tn+l tn) = p(xn+1’ un+1’ yn+1 Xn ! un’ yn) . Th% tranSti OnS Cm

be detailed in different ways; in the following, we will
consider them as being written

XUy, ¥,) =
P(Xaf X1 Uy ¥) X (@
P(Upa[ X1 Uns Vs X0 X
P(Yrsa| X0 Uns Yo Xz Une)

p(Xn+1' l"In+1' yn+1

Then HSMC-IN defined by (a)-(d) can be seen asa TMC
defined by p(t,) = p(x,u,,y,) and (1), where (d is the
Diracsmass:

p(XrH-l Xn’un’ yn) = p(Xn+1 Xn’un) = d(Xn) If un > 1’ and
p(Xn+1 Xn) If l"ln :1' (2)1
p(un+1 Xn+1’Xr| ’un’ yn) = p(un+1 un’Xn) = d(un _1) If l"ln > 1’

and q(u,,,) if u, =1; 3

p(yn+1 Xn 1 un ' yn’ un+1’ Xn+1) = p(yn+1 Xn+1) " (4)

Finaly, we have aparticular TMC where (1) reducesto

p(xn+1’ un+1' yn+1 Xn’un' yn) =
p(Xn+1 Xn ' un) p(un+1 Xn ' un) p(yrH-l

Xyo1) (5)

with p(X,.1[X,,U,) s P(U,.4]X,,U,), and p(Y,,|X,..) given
by (2), (3), and (4), respedively. Then the “backward”
probabilities B (x,u) = p(Y..,--.Y,|%,U), needed to
different useful computations, are reaursively cdculated
by

B.(x,u,)=1,and B (x,u)=
z lBi+1()§+1’ l"li+1) p()§+1 )ﬂ ' l%) p(ui+l

Ui1: X4

for 1<i<n-1

X UWP(YiaX.0) ()

Of course, the sum in (6) is particular because of (2) and
©)
In order to simplify notations, let usput V = (X,U). Thus

v, =(x,,u;) foread 1<i<n.Inparticular, (6) iswritten

B.(v,) =1, and
BM) =Y BaM.)pW.,

for 1<i<n-1

V) P(Yia|Via) (7)

(7) Looks like the formulas of a very classcd hidden
Markov chain (V,Y); however, let us remark that the

distributions p(Y,,,[Vi..) = P(Y,.o|X.1, U.,) Verify

p(yi+1 )ﬂm ui+1) = p(yiﬂ )gﬂ) (8)

which means that a same noise distribution can remain
valid for different clases v, which is not usua in

i+11
classcd models.
However, onceit has been noticed that (V,Y) isa hidden

Markov chain, the “forward” probabiliti es
a,(v) = p(v,Y,,....y,) canbe computed reaursively by

a,(v,) = p(v, ;) , and
a,4(v.) = Y a()p(v.,

for 1+1<i<n.

V) P(Y,alVia) 9)

Finadly, badkward and forward probabilities can be
clasgcdly used to cdculate:
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BV, Y) = % (10)
__a(BM™)
D(W|Y)—m (11)
ai (V|) p(vi+l Vl) p(yi+l Vi+1)ﬁi+1(vi+1)
L ValY) = 12
PN =S o PP B D

ViVie

Therefore we have a first TMC T =(X,U,Y) which
models the fact that (X,Y) isan HSMC-IN.

Remark 1

Let us briefly mention that, as described in [11], each
equation among (2)-(4) can be extended and thus the
present viewpoint representing HSMC-IN as particular
TMC enables one to propose humerous generalizations of
HSMC-IN. For example, let us replace in eguation (4)
P(Y,iXn) BY P(Y,.lU,, X.,,) . Such an extension means

that the distribution of the noise at n+1 also depends on
the residual sojourn duration u,. This can be understood

intuitively; in fact, when this duration is large we are far
away from the boundary among two different classes, and
when u, =1, we know that the class has just changed

(X1 2 X,). Thus replacing p(Y,.,[X,.) by B(Y,|Un X,.0)
enables one to model the fact that on boundaries the
distribution of the noise can be different from its
distribution ‘inside” of a given class. Then the modelling
of the non stationarity of X proposed in this paper can
still be extended to these different generalizations of the
HSMC-IN model.

3. HIDDEN EVIDENTIAL MARKOQOV CHAIN

Let us consider the HMC-IN T = (V,Y) above and let us
consider that this HMC-IN is not stationary. In other
words, the distribution p(v,,Vy,,v.,,,Y..,) depends on
1<i<n-1. Furthermore, let us assume that this non
stationarity is due to the non-stationarity of V , which
means that p(y, |vi) does not depend on 1<i<n. Sucha
situation has been studied in [8] by the use of Dempster-
Shafer theory of evidence. By replacing the non stationary
prior distribution of V by evidential priors as explained in
[7, 8], we necessarily replace the non stationary
distribution of V =(X,U) by some particular evidential
priors. As we are going to specify, such a replacement

amounts to introducing in the HMC-IN (V,Y) a third
random chain V'=(V',,...,V',), where each V', tekes its
values in a finite set A'={)\1,...,Am}, and leads to the
consideration of the TMC (V,V'Y). Finaly a non-
stationary HMC-IN  (V,Y) will be replaced by a
stationary TMC (V,V',Y) .

Let us specify with some more details the use of the theory
of evidence. Each V, taking its values in A:{él...,ér},

let us denote by [P(A)] the power set of A. We will

consider the so-called “evidential Markov chain” (EMC),
denoted by m, which verifies:

(i) m isdefined on [P(A)]" and takesitsvaluesin [0,]] ;
(i) Zm(A):l and m(A x..xA ) =0 if one at least

ATP(A)"

among A, .., A isO;
(iii) m isof the“Markovian”form: m(A,, A,,..., A)) =

m(A)M(A,|A)...m(A |A) .

We see how an EMC extends a Markov chain; in fact,
when m(A x..xA ) =0 ifoneatleastamong A, .., A,

isnot asingleton, m isaMarkov chainon A".

The approach proposed in [8] is based on the two
following points:
1. The posterior distribution p(v|y) of an HMC-IN, which

is needed to Bayesian restoration, can be seen as the DS
fusion of the  prior Markov distribution

p(V) = p(v,) p(V,|v,) ... p(v,|v,,) of V  with the
probability  g”(v,,...,v,) O p(y,|V,) .. p(Y,
“ 0" means “proportiona to”) definedon A" by Y =vy;

v.) (where

2. When the distribution p(v) of the Markov chain V is
incompletely known, it can be replaced by an EMC
obtained from p(v), whose aim is to model the lack of
precise knowledge of p(v) . It can be fused with g* using
DS fusion. The result of the latter fusion is a probability
distribution on A" and, athough it is not necessarily a
Markov distribution, it can be used to perform Bayesian
restorations. Indeed, the latter feasibility is due to the fact
that the fused distribution is a triplet Markov chain [8]. To
be more precise, p(v) is replaced by an EMC m such
that m(A x..xA)#0 only on (A x..xA ) such that
esch A isin A‘:{{él}...,{ér}, A}. Thus a homogeneous
Markov chain on A" is defined by r? parameters, and a
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homogeneous EMC on {{3,}....{,},A} is defined by
(r +1)? parameters, which means that EMC considered

here is not so much more complex than the corresponding
Markov chain.

Finaly, let us specify how the DS fusion (DS fusion)
allows one to calculate different quantities of interest.

Let us consider the DS fusion of the probability
qy(vl""’vn) D p(y1|vl) p(yn Vn) Wlth m(AlxxAn)
defined above. We have:

(9” O m)(v,,...,v,) O
(13)
g’ (v,,...,v,)m\V', ...,V ),

(V14 V)OOV 4 s V')

where each v, is in A:{dl...,dr}, each V', is in
N={s}..{5.}.4}, and (v,..,v,)O(V,,...V,) means
that v, OV, .., v,0OV'. Let usinsist on the fact that in
(23) (v,,...,v,) and the sum istaken over (v',...,V',) such
that (v,,...,v,)O(V,,...v,).

Important is then to notice that (v,,...,v,)m(v,,...,V' ) in

(13) defines a Markov chain, and the DS fusion is the
calculation of some marginal distribution of this Markov
chain.

To be more precise, let us consider n-1 functions f)*”,
f% ..., f’ definedon &’ x(A")? by:

nylyyz (Vl’VZ’V'l ’V|2 ) =

o (14)
Loty PO POY, V)MV, V)
and
fa V"Vi+1’v‘i ’V'i+1 i) =
i+l ( i y ) (15)

Vi +1) m(vli +1

Tuovisso o P(Yon Vi)

for 2<i<n-1.

On the one hand, the product f**(v,v,,V,,V,)Xx
£ (v, v, v, V) XL x £ e (v, V') defines (for
fixed y) a Markov chain on A"x(A")" with calculable
PVis Vi VLV Y) 0 POV, WV Vi |Y) and p(y,, v fy)
(see Lemma below). On the other hand, we see that this
product is proportional to q’(v,...,v,)m(V,,..,v\) in
(13). These two results show that the result of the DS
fuson (g’ 0 m)(v,..,v,) in (13) is the margina
distribution (the distribution of (V,,..,V,)) of the

v,V

n-1?

distribution of the Markov chain ((V,,V'),...(V.,V'.))
defined by the functions f,**, f* fr.

3 1t

Finaly, we can state the following result:
Proposition 1

Let (V,Y)=(\V,Y,,...V.,Y,) beaclassical HMC-IN, each
V, taking its values in A={3,...,8,} and each Y, taking
its values in R. Therefore,
P(v) = P(V,) P(V,|V,) .. PV, V) and
PYV) =P(Y V) - P(Y, V) -

Let ' (\v,....V,) O P(Y;|V.)-.. p(Y,|v,) be the probability
defined on A" by Y=y, and let m be an EMC on
N={{5.}...{6.}.8} extending the prior distribution
P(V) = P(V) POV, V,) s P(V, Vi) -

Then the probability g” O m given by (13), which extends

the posterior probability p(v|y) and which is not

necessarily of Markovian form, is a marginal probability
of afinite Markov chain. As a consequence, g O m can
be used to perform different restorations like MPM.

This result has been successfully applied to the case of
non-stationary hidden V =(V,,...,V.) , see[8].

4. HIDDEN EVIDENTIAL SEMI-MARKQOV CHAIN

Let us return to the situation of the previous section, with
the hidden semi-Markov chain X =(X,,..., X,),

Y =(Y,...Y,), where each X, takes its values in
Q:{wl,...,wk} and each Y, takes its values in R. As
specified above, the HSMC-IN (X,Y) can also be seen as
aTMC (X,U,Y), whichasoisan HMC-IN (V,Y), with
V =(X,U). Let us consider the case of non-stationary
semi-Markov chain X =(X,,..., X,), which means that
V=(X,U) aso is non dationary. Thus this non-
stationarity of V =(X,U) can be managed as specified in
Proposition 1. Knowing that p(v|y) is workable as being
marginal distribution of the Markov chain p(v,v‘|y), we
see that p(xjy) is workable as being a margina
distribution of p(vy) = p(x,uly), and thus a marginal
distribution of the Markov chain p(x,u,v]y). As an
example, let us detail how the posterior margina
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distributions p(>§|y), enabling one to perform the MPM
segmentation, are computable.

Proposition 2

Let X be anon-stationary semi-Markov chain, (X,Y) a
non-stationary HSMC-IN, (X,U,Y) the orresponding
non-stationary TMC, and (X,U,V'Y) a dsationary
Markov chain obtained from (X,U,Y)=(V,Y) as
spedfied above.

Then p(>q|y) is computable in two steps:

() P4, y) = PV, [y) = p(4.V]y) . and
(i) px|y) = p(x.uly) .

Finadly, we arived at a TMC (X,U,V'Y)=(X,W,Y),
where the third random process W =(U,V') model the

fad that X issemi-Markov on the one hand, and the fad
that X isnon-stationary, on the other hand.

Remark 2

We pointed out in Remark 1 above how the model
T =(X,U,V"Y) can be extended by considering different
extensions offered by (2)-(5). However, all over the paper
we kept the notations “HMC-IN" and HSMC-IN" to

clealy spedfy that in al models considered the random
variables Y, .., Y, remain independent conditionally on
X, which means that the “noise” is of a quite smple —

and undoubtedly too simple in numerous stuations - form.
However, extending this smple cae to correlated noise is
quite straightforward in the Gaussan noise cae. When the
noise is correlated and not necessarily Gaussan, it is then
possble to use the theory of Copulas, as proposed in the
simple HMC-IN casein [3].

Lemma

Let H=(H,,...,H,) be arandom chain, ead H, taking
itsvaluesin afinite set.

Then H is a Markov chain if and only if there exist
positive  functions s, .., S,, such that
p(h,....n) Os(h,h,)..s . (hh,).

If H isaMarkov chain, the transitions and the marginal
distributions are given by

p(h.h) =a.(h.h)B.(h) /B (R),
p(h)=a;(h)B(h)/ Zai (h)Bi(h?),

with
a,(h)=1, a,.,(h,) = qu(h h.)o;(h), and
B.(h,) =1, B(h)= qu(hi ) Ba(h)

5.PARAMETER ESTIMATION

Let us briefly mention how the parameter estimation can
be performed by two general methods “Expedation-
Maximization” (EM), and “Iterative Conditional
Estimation” (ICE). To simplify things, let us assume that
the variables U, taketheir valuesin afinite set. Moreover,

we @ame that the TMC T =(V,V',Y) is “Gausdan” in
that p(y\v,v) are Gaussan. Asuming T stationary in
that neither p(v,,V',V,,,V;,) nor p(y|v,,Vv,)=p(y|x)
depend on i, we have to estimate the finite distribution
p(V,, V', ,V,.,V',,,) on A*x(A")?, and, for k classs, k
means and k variances of the k Gausdan distributions

p(y[x) on R. Let us put A*x(A)?={i..,M},
T, =PV, 0V Vi) = and T=(T,Ty)-
Otherwise, let u=(y,...,u,) be the means and

0% =(0},...,07%) the variances. Then the parameters to be
estimated are 6 =(1,u,0%) . Both EM and ICE methods

are iterative: taking an initial value 6°, the problem is to
compute 6™ from the observation Y =vy=(y,,...,Y,)
and 6.

EM method runs as foll ows:

(i) use 6" to cdculate 7™ = p[(V,,V' ,V,.,,V'.,) = j|Y,0"]

(using the Lemma) and p;'m = p[x =w,|y,0"] (deduced

imy.
from 7;™);
1m n-1,m
i pu =l
n-1
1m n,m
m+l - ylpq +"'+ yn pq
q 1,m n,m
p" ..ty

S O/ Ll el O A A
q pl]]_m +."+ p:m

for l<jsM,

,and

g

for 1<q<k,

which gives 6™,

InICE 1™ isobtained asin EM and, to oltain p;™ and
2,m+l
q L

o™, one simulates a redisations x' = (x.,....X}), ..,
X' =(x,..x%) of X=(X,...X,) acwording to
p(x|y,6m) (recdl that the distribution  of

V,V)=(X,UV') conditional on Y is a Markov
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distribution with computable transitions
P(Viy Via ViV, Y, 07) and thus smulating
V,V)=(X,UuV") gives X=x). For 1<l<a and
1<qg<k, let x"“*=(x",..,x;%) be the sub-sample of

S =(Xla---,XL) such that x* =w,,
sub-sample is then used to estimate, by the dasdcd

estimators, the mean p;™*', and the variance g.™"'. Then

m+la

+ot

. X'=w,. This

m+L,1

ma _ M
Pyt ==

pradice one often takes a=1.

2,mH,1
g,

2,m+l q
,and o;™ =

2,m+l,a

+..0
2 .In
a

6. CONCLUSION AND PERSPECTIVES

We dedt in this paper with ursupervised segmentation of
the hidden non stationary semi-Markov chains. The main
tool used was the triplet Markov chain model, which has
been obtained by introduction of two auxili ary chains. The
first auxiliary chain modelled the semi-Markovianity, and
the second one modell ed the non stationarity.

As perspedives, we can mention different posshiliti es of
further extensions. In particular, more complex noises can
be introduced via the Copula theory, as described in the
simple hidden Markov chains case in [3]. Otherwise, the
mono sensor case nsidered in this paper (observationsin
R) can be extended to the multi sensor one [12].
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