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ABSTRACT 
 
Our paper deals with multivariate hidden Markov chains 
(MHMC) with a view towards segmentation. We propose 
a new model in which temporal dependencies are 
modelled using copulas and sensor dependencies are 
represented by Spherically Invariant Random Vector 
(SIRV). Copulas are very useful and flexible tools, which 
have been little applied in signal processing problems 
until now. In particular, for some desirable marginal 
distributions it is possible to obtain different kind of 
dependencies. Using some recent results on Triplet 
Markov chains, the new model extends the case of 
MHMC when the observations are SIRV and independent 
conditionally on the states. We propose algorithms for 
computing efficiently the posterior probabilities of the 
involved Triplet Markov Chain, in order to propose rapid 
segmentation and estimation procedures. 

 

1. INTRODUCTION 
 
Spherically Invariant Random Vectors are important in 
different radar signal or image modeling and processing. 
In fact, such a model enables one to deal with non 
Gaussian and correlated multivariate distributions, which 
are very useful in numerous situations [9,19].  
Let 1( ,..., )MY Y Y=  be a random vector taking its values 

in MR . The vector Y  is called Spherically Invariant 
Random Vector (SIRV) if there exists a random Gaussian 
vector 1( ,..., )MV V V=  called “speckle”, and a positive 

real random variable τ  called “texture”, such that 

Y Vτ= . This representation enables also to introduce 
various statistical laws for modeling intensities in radar 
images as in [7]. We will use the following “inverse” 
representation (already used in [8]) which is better fitted 
for computational purpose: putting 1U τ −= , we have 

1/ 2Y U V−= . We will call the distributions of 1Y , …, MY  
“marginal distributions” of Y , or simply “margins” of Y . 
For some distributions of U , the margins are calculable; 

for example, if U  has a gamma distribution, the margins 
are Student laws, and when U  has an inverse gamma 
distribution, the margins are K laws. In SIRV, the margins 
define the whole distribution of Y , which is somewhat 
restricting. One possible way to remedy this restriction is 
to use copulas in which it is possible to consider different 
joint distributions with fixed marginal distributions [14].  
More precisely, let 1Z , …, MZ  be M  real random 

variables, with 1F ,…, MF  their respective cumulative 

distribution functions (cdf), and F  the cdf of the law of 

1( ,..., )MZ Z Z= . If 1F , …, MF  are continuous, which will 

be assumed in this paper, then according to Sklar’s 
theorem there exists an unique function 

[0 1] [0 1]MC : , → , , called “copula”, such that 

1 1 1( ,..., ) ( ( ),..., ( ))M M MF z z C F z F z=  for every 

1( ,..., ) M
Mz z R∈ . An important property is that for a 

random vector 1( ,..., )MZ Z Z=  the associated copula 

models the dependence of its components 1Z ,…, MZ  in an 

intrinsic way, independently of the margins. More 
precisely, let * * *

1( ,..., )MZ Z Z=  be another random vector 

defined from 1( ,..., )MZ Z Z=  by * * ( ), 1..i i iZ Z i Mϕ= =  

where the *

iϕ ’s are non-decreasing functions from R  to 

R . Then Z  and *Z  have the same copula, while the 
margins vary according to *1ϕ ,…, *

Mϕ . In particular, let Z  

be a random vector, C  the associated copula, and let us 
consider M  distributions on R  given by the cdf 

*

1F ,…, *

MF . Then considering * *

1 1 1( )Z Zϕ= ,…, 
* * ( )M M MZ Zϕ=  with * * 1( ) ( ) ( ), 1..i i i i iz F F z i Mϕ −= =� , we 

obtain * * *

1( ,..., )MZ Z Z=  such that the associated copula is 

C  and the margins are *1F ,…, *

MF . Thus we see that for a 

given copula we can obtain any desired distribution for 
the components of *Z . Another important property, 
especially for simulation, is that C  is the cdf of the 
standardized vector 1 1( ( ),..., ( ))M MF Z F Z . The cross-
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derivative function 1

1

( , , )
M

M

M

c C u u
u u

∂=
∂ ∂

⋯
⋯

 is then 

called the density of the copula.  
Let us assume that there is a sequence of SIRV 

1

1 1 1( ,..., )MY Y Y= ,…, 1( ,..., )M

N N NY Y Y= , such as the 

distribution of each 1( ,..., )M

n n nY Y Y=  depends on a hidden 

state n nX x=  in { }1,..., Kω ωΩ = . Multivariate Hidden 

Markov Chain (MHMC) is then a classical model 
enabling one to deal with such situations. In the classical 
MHMC the sequence 1( ,..., )MX X X=  is a Markov chain, 

and the random variables 1Y , …, NY  are independent 

conditionally on X , and such as ( ) ( )n n np y x p y x=  (the 

conditional density of nY  on X  is equal to its conditional 

distribution on nX ) for each 1,...,n N= . Such a model 

can then be used in different problems; in this paper, we 
will focus on estimation of the hidden states 

1( ,..., )NX X X=  from the observed multivariate sequence 

1( ,..., )NY Y Y= , that is the classical problem in image and 

signal processing of the Bayesian segmentation. Our aim 

is to specify a conditional process 1 1( )N

n nY X ≥  with SIRV 

margins which is not necessarily a sequence of 
independent variables. 
Very recently, copulas have been introduced in hidden 
Markov chains in two kinds of situations:  
(i) for 1M = , one can use copulas to introduce temporal 
dependencies of 1Y , …, NY  conditionally on 

1( ,..., )NX X X=  [3], which can be made either in the 

classical context of HMC, or in the more general context 
of “Pairwise” Markov chains [18]; 
(ii) for any M , one can use copulas to model the 
dependence among sensors, in the classical context of 
independence of 1Y , …, NY  conditionally on X  as in the 

previous paragraph [2].  
We will simultaneously consider (i) and (ii) by adding 
dependencies in the texture chain 1( ,..., )NU U U=  so that 

the three chains , ,X U Y  can be modeled as a “Triplet 
Markov chain” (TMC [12,17]). In the next section, we 
will describe in detail the TMC model proposed, and we 
will emphasize some interesting properties. Then, we deal 
with the essential problem of the computation of the 
posterior probabilities and we propose a Sequential Monte 
Carlo algorithm for filtering and smoothing. Finally, we 
address the problem of estimation of the TMC, in order to 
perform unsupervised segmentation. 
 

2. MODEL AND SOME PROPERTIES 
 
Let us consider the SIRV model in the classical MHMC 
context above. Thus we have two sequences 

1( ,..., )MX X X=  and 1( ,..., )MY Y Y= ; according to the 

very definition of SIRV there is also a third chain 

1( ,..., )MU U U=  such as the density can be written  

0

( ) ( , ) ( )n n n n n n n np y x p y x u p u x du
+∞

= ∫   (2.1) 

Therefore, we can say that there are three random 
processes 1( ,..., )NX X X= , 1( ,..., )NU U U= , and 

1( ,..., )NY Y Y=  verifying: 

(i)   X  is a Markov chain 
(ii) 1 1( , )U Y , …, ( , )N NU Y  are independent conditionally 

on X  and such that ( , ) ( , )n n n n np u y x p u y x=  for each 

1,...,n N= .  

We see that the triplet ( , , )T X U Y=  is a Markov chain, 

and thus the model can be seen as a particular “triplet” 
Markov chain. Our aim is to extend this model to a more 
general one, in which the possibility of estimating X  
from Y  would remain. 
Let the hidden couple ( , )X U  be a Markov chain, with 

transition kernel having density 

1 1 1 1 1( , , ) ( ) ( , , )n n n n n n n n n np x u x u p x x p u x x u+ + + + +=  (2.2) 

We still assume that the observations 1Y ,…, NY  are 

independent conditionally on ( , )U X  and that 

( , ) ( , )n n n np y u x p y u x=  for each 1,...,n N= . We stress 

on the fact that 1Y ,…, NY  are no more independent 

conditionally on X . In other words, by introducing some 
dependence (conditionally on X ) among the texture 
variables 1U , …, NU , we introduce some dependence 

among 1Y , …, NY  (conditionally on X ), and we get a 

more general model. 
The dependence between the iU ’s is modeled, as in [3], 

by a copula. Thus following [3], with the chain U  instead 
of Y , we can define a “hidden Markov chain with 
copulas” ( , )X U . The density of the transition kernel of 

the chain ( , )X U  is: 

( )
1 1 1 1 1

1 1

( , , ) ( ) ( )

( ), ( )

n n n n n n n n

n n n n

p x u x u p x x g u x

c G u x G u x

+ + + + +

+ +

=

×
 (2.3) 

where g  is the probability density function (pdf) of nU  

conditionally on nX  (and G  the corresponding cdf). By 

the use of copulas,  we can choose the density g  

independently of the dependence structure, so we can 
always have the desired expression for ( )n np y x . For 

example, if the margins of U  are gamma distributed 
(conditionally on X ), then we get a process Y  having 
Student margins (conditionally on X ). 
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Remark 2.1: The introduction of a copula in order to have 
a correlated Markovian texture has a proper interest for 
designing models of stationary processes with SIRV 
margins. If there is one class ( { }1ωΩ = ), Y is a classical 

Hidden Markov Chain, with a continuous hidden state U . 
Some examples of stationary process with SIRV margins 
have been introduced for modeling correlated K clutter in 
[13] in coherent radar detection context, but our model is 
parsimonious since the dependence structure of the 
observations is completely described by the Markovian 
dependence (represented by the copula C ) of the hidden 
state.  
 
The model can also be seen as an extension of some 
stochastic volatility (SV) models, the latter being used in 
econometrics to model the volatility of asset returns. 
Some SV models are HMC, having the following state-
space representation 

( )
1 1, 1,

2, 2,

(0,1)

exp / 2 (0,1)
n n n n

n n n n

U U N

Y U N

ρ σε ε
β ε ε
+ = +

 =

∼

∼
  (2.4) 

nY  is the observed process of asset prices, and 

( )exp / 2nUβ  is the volatility, so nU  is termed the log-

volatility instead of texture. The randomness of the 
volatility enables then to reproduce the heavy tails 
observed on real data, such as Student laws. Nevertheless, 
the dynamic of nU  is often linear (autoregressive process) 

in order to be able to identify the stationary behavior of 
the volatility U , and hence of the observed process. 
The use of copulas for describing the dynamic of nU  

enables to consider any non-linear first order dependency 
and any stationary law for nU  and for nY , among the 

family of SIRV (see the relationship between texture and 
clutter laws in [19]). For instance, if we use a Gaussian 
copula with density  

2 2 2 2
2 1/ 2 1 2 1 2 1 2

2

2
( , ; ) (1 ) exp

2(1 ) 2
c u v

ς ς ρς ς ς ςρ ρ
ρ

−  + − +
= − − + − 

 (2.5) 

and  1 1

1 2( ), ( )u vς ς− −= Φ = Φ , 1−Φ  being the inverse of 

the standardized Gaussian cdf, the state space 
representation of the process Y  conditionally on X  (by 
removing the states nX  ) is: 

( ) ( )1 1 2

1 1, 1,

1/ 2

2, 2,

( ) ( ) 1 (0,1)

(0,1)
n n n n

n n n n

G U G U N

Y U N

ρ ρ ε ε
σ ε ε

− −
+

−

Φ = Φ + −


=

∼

∼

 (2.6) 

The equation of evolution of the “volatility” is not linear, 
and it suffices to adapt G  in order to have directly the 
desired law for a better fitting of the model to the data. 
The proposed model has three main properties: 
(i) the law of Y  conditionally on X  is neither 
independent nor Markovian. 
(ii) the above dependence is controlled by copulas, so that 
we can describe various and numerous kinds of 

dependence (elliptical or Archimedean copulas among 
others) [11,14].  
(iii) the margins of Y  are controlled and belongs to 
parametric families which have been proved to be 
adequate for describing real data (in Radar, Image 
Processing, or Finance and Econometrics), and exhibiting 
heavy tails. 
Finally the model can also deal with complex 
observations (usual in radar) by considering complex 
SIRV via a complex Gaussian vector V . Moreover, in 
order to deal with a general problem of segmentation, we 
can also consider that the mean level is discriminating, 
hence we introduce a shift in the mean: 1/ 2

n n nY m U V−= + . 

The obtained law still belongs to the family of elliptical 
laws [10]. 

 
3. SMOOTHING AND SEGMENTATION 

 
We present in this section the effective computation of the 

posterior densities 1( )N

np x y  by using the celebrated 

forward-backward formulas of HMM, adapted to the 
context of TMC [18]. Nevertheless, the computational 
weight is increased because of the necessity of the 

computation of the joint posterior density 1( , )N

n np x u y , 

and we propose a Sequential Monte Carlo (SMC) 
algorithm to deal with the composite (discrete and 
continuous) nature of the hidden process.  In order to limit 
the computational burden and to avoid the simulation of 
discrete particles, we use the algorithm proposed 
independently by Perez and Vermaak [16] in a 
mathematically equivalent model. Contrary to us, Perez et 
al. want to retrieve the continuous process U from the 
observations, but the same equations apply. Hence, we 
present first a SMC algorithm for the stationary HMC 

( ),U Y  ( { }1ωΩ = ) and derive the final algorithm for the 

TMC. 
 
3.1. Smoothing for HMC ( ),U Y  

 
The process is indexed by the mean vector Mm ∈ℝ  and 

the variance matrix M M×Σ ∈ℝ  of the Gaussian conditional 
vector n nY U  (whose density is noted ( )f y u  dropping 

m  and Σ ). The stationary density of the Markov chain is 
indexed by a parameter g gθ= , as the copula C Cα= , 

with density c cα= . 

 
3.1.1. Filtering 
We propose here a regularized particle filter, called post-
regularized by Musso, Oudjane and Le Gland [15], based 
on a Gaussian kernel with periodic resampling. We 
simulate at each iteration n  a population of D  particles 
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( )
1

n

i i D
ζ

≤ ≤
, with corresponding weights ( )

1

n

i i D
w

≤ ≤
. The 

regularized particle approximation of the forward density 

1( )n

np u y  is  

( )

1

( ) ( )
n

D
r n n

i h i
i

u w uπ φ ζ
=

= −∑     (3.1) 

where hφ  is the Gaussian centered density with standard 

deviation h , h  being the optimal bandwidth of the non-
parametric estimator of the density with the Gaussian 
kernel. The cdf of ( )

n

rπ  is ( ) ( ) (( ) / )
n

r n n

i ii
u w u hζΠ = Φ −∑ .  

At 1n = , the particles ( )1

1i i D
ζ

≤ ≤
 are drawn according to 

gθ  and have weights 1 1 1

1 1( ) ( )i i j
j

w f y f yζ ζ= ∑ . 

For 1n ≥ , the prediction step is: 

• draw D  particles ( )( ) 1

n

i i D
ζ

≤ ≤
 from the density nπɶ . 

Then simulate [ ], 0,1n

ii D ϖ∀ ≤ ∈  such as the joint 

cdf of ( )( )

( )( ),
n

r n n

i iς ϖΠ  is the copula Cα . The 

propagated particle is 1| 1( )n n n

i iGθς ϖ+ −= , so that the 

joint cdf of ( )1|

( ) ,
n n n

i iς ς +  is ( )( ) ,
n

rC GθΠ . The predictive 

density 1| 1 1( ) ( )n

n n nu p u yπ + +=  can be approximated by 

1
1

( )
D

n n

i n i
i

w p u ζ+
=
∑ . 

And the correction step is: 
• Update the weights by 

( )
( )

1

( )1 1

1 ( ) 1

( )

( ), ( )
( )

( ), ( )
n

n n

i in n n

i i n i r n n

i i

c G G
w w f y

c G

α θ θ

α θ

ζ ζ
ζ

ζ ζ

+

+ +
+ +

∝ × ×
Π

 (3.2) 

since the instrumental transition density is 
( )( ') ( ) ( ( '), ( ))
n

r

nq u u g u c u G uθ α θ= Π . 

The use of this instrumental kernel enables to put 
emphasis on the influence of the copula on the 
dependence between the particles and between the 
observations. Moreover, the true and the instrumental 
transition kernels share the same dependence structure 
(copula) and one margin, consequently the instrumental 
distribution is expected to be close to the true distribution. 
 
3.1.2. Backward procedure and smoothing 
Thanks to our knowledge of the stationary distribution of 

nU , we can propose a SMC algorithm for computing the 

backward procedure, in order to obtain easily a particle 
approximation of the marginal posterior density. For 
stationary Markov chains, the backward procedure can be 
interpreted as the forward procedure of the time reversed 

process ( ) ( )1 1 1
, ,N n N n n N

U Y U Y− + − + ≤ ≤
=ɶ ɶ  [6]. Indeed, the 

backward density can be rewritten 

1 1
1

1

1 1

1

( , )
( ) ( )

( )

( )

( )

N n
N N n

n n n n

N n

N n

N n

N n

p y u
u p y u

P u

p u y

g uθ

β
−

− +
+

− +

−
− +

− +

= =

∝

ɶ ɶ

ɶ

ɶ ɶ

ɶ

  (3.3) 

The joint process ( ),U Yɶ ɶ  is still a HMC, and Uɶ  has the 

following transition density: 

1 1 1( ) ( ) ( ( ), ( ))n n n n np u u g u c G u G uθ α θ θ+ + +=ɶ ɶ ɶ ɶ ɶ   (3.4) 

so we can use a similar SMC algorithm in order to 
compute the particle approximation of the predictive 

densities of the process Uɶ . The simulated particles are 

then sorted in the non-reverse order so that ( )
1

n

i
i D

ζ
≤ ≤

ɶ  with 

weights ( )
1

n

i i D
w

≤ ≤
ɶ  approximate the predictive densities by 

1 1

1|
1

( ) ( )
D

n n

N n N n j j
j

u p u wπ ς + +
− + −

=

=∑ ɶɶ ɶ ɶ . Using Eq.(3.4), the 

deduced approximation of the backward density is  
1 1

1

( ) ( ( ), ( ))
D

n n

n j j
j

u c G u G wα θ θβ ς + +

=

∝∑ ɶ ɶ    (3.5) 

Hence the smoothing densities are approximated by: 
1 1

1
, 1

( ) ( ( ), ( )) ( )n
i

D
N n n n n

n i i j j
i j

p u y w c G G w uα θ θ ς
ς ς δ+ +

=

=∑ ɶ ɶ  (3.6) 

 
3.2. Smoothing for composite TMC ( , , )X U Y  

 
The tracking algorithm of Perez et al. enables to keep the 
previous simple smoothing algorithm, and to make a 

direct computation of the probabilities 1( )N

np x y , without 

the need of a joint simulation of ( , )n nX U . As shown in 

Eq. (2.2), the transition density is the product of the 
transition densities of X  and U . The latter is noted 

11 1 , 1( , , ) ( )
n nn n n n x x n np u u x x p u u

++ + += . The transitions of the 

discrete process is given by the matrix ( )ijA a= , and we 

suppose that A  has a unique positive stationary 
distribution ν , represented by the vector ( )

1

M

i i M
ν

≤ ≤
∈ℝ . 

We modify the notation of the density of the Gaussian 
conditional vector to take into account the dependence 
toward nX : ( )

nx n nf y u  that depends on the discrete and 

the continuous part of the process. The forward density 

can then be factorized 
1

( , )
n

n np x u y =
1 1

( ) ( )
n

n n

x n np u y p x y , 

so that the conditional forward density 

1 1( , ) ( )
n

n n

n n x np u y x p u y=  appears. Finally, for the 

segmentation of the process Y , we are interested in the 

marginal probability 
1

( )
n

nn

x np x yξ =  of the joint forward 

probability. 
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3.2.1. Filtering for composite TMC 
It is possible to update recursively the two parts of the 
joint filtering probability thanks to a set a successive 
recurrences.  
The first step is the computation of 

1

1

1 1

1

( , )
( )

( )
n

n

n

n

x n nn

x n n

x n

p u y y
p u y

p y y

−

−
=  (subscript nx  indicates 

conditioning on n nX x= ) whose numerator can be 

decomposed  

1

1

1 1

1 , 1

1

1 1

( , ) ( , )

( , )

n n n

n

n n

x n n x x n n
x

n

n n

p u y y p u y y

p x x y

−
−

− −

−
−

=

×

∑
   (3.6) 

with 

1 1 1

1 1

, 1 , 1 1 1 1( , ) ( ) ( ) ( )
n n n n n n

n n

x x n n x n n x x n n x n np u y y f y u p u u p u y du
− − −

− −
− − −= ∫

 and 
, ,1 1

1

1 1( , )
x x x xn n n n

n n n

n n ia p x x y a ξ
− −

−
−= ∝ɶ . The denominator, 

termed conditional predictive likelihood, is obtained by 
integrating Eq.(3.6) 

,1
1

1 1 1

1 1 1 1( ) ( , ) ( , )
x x xn n n

n

n n n

n n n n n n
x

p y y p u y y p x x y du
−

−

− − −
−=∑∫  

The final recursions are  

, ,1 11

1

1

1 1

1

( , )
( )

( )
x x x xn n n nn

xn

n

n n

n nxn

n n

x n

a p u y y
p u y

p y y
− −−

−

−
=
∑ ɶ

  (3.7) 

,1 1

1

,1 1
1

1 1

1

1 1

1

( )

( )

x x x xn n n n
xn

xn

n x x xn n n
n n

n n

n

n

n n

x n
x x

p y y a

p y y a

ξ
ξ

ξ

− −
−

− −
−

− −

− −
=

∑

∑ ∑
   (3.8) 

As in [16], if we use a SMC algorithm to compute the 

probabilities 1( )
xn

n

np u y , we can adapt the simulation of 

the population of particles by using proposal transition 
density of the form 1 1( , , )n n n n nq u u x x− −  corresponding to 

the joint distribution with cdf 1 1( ( ), ( ))n n n nC G u x G u xα θ θ + + . 

 
3.2.2. Backward procedure and smoothing 
We can still use a forward procedure to achieve the 
backward procedure, and the smoothing step. We 

introduce the time-reversed process ( )1 1N n n N
X X − + ≤ ≤

=ɶ , so 

that we rewrite Eq. (3.3) by adding the discrete process: 

1 1 1

1 1

( , )
( , )

( , )

N n

N n N n

n n n

N n N n

P u x y
u x

P u x
β

−
− + − +

− + − +

∝
ɶ ɶ ɶ

ɶ ɶ
   (3.9) 

The density of the stationary law of the hidden process 
( , )X U  is equal to the product 

1 1 1( )
nx n ng u xθυ

+ + + , and we 

only need to extend the recursions to the predictive filter 
density 

11 1

1 1

1 , 1 1 1 1 1,
( , ) ( ) ( , )

n nn n n

n n

n n x x n n n n nx x x
p u x y a p u u p u x y du

−− −

− −
− − − −=∑ ∫

whose computation is direct.  

The particle approximation of the continuous part of the 
forward density gives also a particle approximation of the 
backward density and of the marginal posterior density 

1( , )N

n np u x y . For segmentation, we need only to sum 

over the particles to obtain an approximation of the  

probability 1( )N

nP x y . 

 
4. ESTIMATION 

 
Inference in Hidden Markov Models (HMM) is often 
done by the Maximum Likelihood Estimator (MLE) 
because of the existence of consistency results in a broad 
variety of HMM, and also because of the existence of 
numerous algorithms (amongst them the celebrated EM 
algorithm) to compute it [4].   
The cornerstone of the success of these iterative methods 
(EM, SEM, ICE) is the ability to compute rapidly and 
recursively the posterior probabilities of the hidden 
process ( )nU  or ( , )n nX U . For instance, if we consider 

the estimation of the HMC ( , )U Y  (when { }1ωΩ = ), the 

EM algorithm is based on the “complete log-likelihood” 

( ) ( ) ( )

( ) ( )

21 1
1

1

1
1 1

log ( , ) log (2 ) log
2

log ( ) log ( ( ), ( ))

N
N N M M

n n n
n

N N

n n n
n n

N
p u y u u p

g u c G u G uθ α θ θ

π
=

−

+
= =

= − Σ + −

+ +

∑

∑ ∑
with np  the quadratic form of the Gaussian density. 

The “E step” involves only the computation of the 

posterior densities 1( )N

np u y  and  1 1( , )N

n np u u y+ , which 

can be done thanks to the recursions described in the 
previous section. Finally, iterative estimation of the 
parameters can also be performed by the method proposed 
by Cappé in [5] due to the additive form of the projected 

log-likelihood ( )1 1 1log ( , )n n nE p U y y 
  . 

 
5. CONCLUSIONS 

 
We have presented in this paper a new model for the 
segmentation of SIRV within the setting of Triplet 
Markov Models which enables to remove the usual 
assumption of conditional independence. We stress on the 
fact that the introduction of a correlated hidden scalar 
process is relevant for modeling real phenomenon since it 
corresponds to common and validated models of 
stationary process in the Radar and Econometric 
communities for representing radar pulses or volatility 
returns. Moreover, the original use of copulas in the 
modeling of the dependence of a hidden process can be 
applied to the construction of HMC where we need to 
control the shapes of the laws of the observations. This 
gives an additional degree of freedom for use on real data. 
Despite the increase of complexity in the model and the 
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presence of a continuous hidden process, we have show 
that there still exists recursive, efficient and simple 
procedures for the computation of posterior probabilities, 
and hence for segmentation and estimation. We focus here 
on the estimation of the state process, but exactly the same 
machinery can be used for the estimation of the texture 
process, as in [16] and it may be an interesting 
continuation to perform and compare the estimation of the 
continuous and the discrete process on real radar data. An 
additional development is the study and comparison of 
different estimators of the TMC amongst the different 
existing techniques for HMC [4].  
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