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ABSTRACT for example, ifU has a gamma distribution, the margins
are Student laws, and whds has an inverse gamma

Our paper deals with multivariate hidden Markovioka  distribution, the margins are K laws. In SIRV, thargins
(MHMC) with a view towards segmentation. We propose define the whole distribution of , which is somewhat
a new model in which temporal dependencies arerestricting. One possible way to remedy this rettm is
modelled using copulas and sensor dependencies arg use copulas in which it is possible to consitiéerent
represented by Spherically Invariant Random Vector joint distributions with fixed marginal distributis [14].
(S|RV). Copulas are very useful and flexible toalhich More precise|y7 let Zl, . ZM be M real random

have been little applied in signal processing peoid variables, with F,...,F, their respective cumulative

until now. In particular, for some desirable maggin . e
distributions it is possible to obtain differentn#i of distribution functions (cdf), and= the cdf of the law of

dependencies. Using some recent results on TripletZ =(Z,,...Z, ). If F, ..., F, are continuous, which will
Markov chains, the new model extends the case ofbe assumed in this paper, then according to Sklar's
MHMC when the observations are SIRV and independenttheorem  there  exists  an unique  function
conditionally on the states. We propose algoritHiors c:io4" O - [0,1], called *“copula”, such that
computing efficiently the posterior probabilitie the —

involved Triplet Markov Chain, in order to proposeid F(z2)=CE (Zl)f""FM @ ) .
segmentation and estimation procedures. (2,2, )OR". An important property is that for a

random vector Z =(Z,,...,Z,,) the associated copula
models the dependence of its componefjts..,Z,, in an

intrinsic way, independently of the margins. More
precisely, letZ" =(Z,,...,.Z,, ) be another random vector

Spherically Invariant Random Vectors are important  defined from Z=(Z,...,.Z,) by Z =¢(Z),i =1.M

different radar signal or image modeling and prét®  \\here theg 's are non-decreasing functions froR to
In fact, such a model enables one to deal with non ‘

Gaussian and correlated multivariate distributiomisich R. Then Z and Zk_ have the same copula, while the
are very useful in numerous situations [9,19]. margins vary according t@, ,...,4,, . In particular, letZ

Let Y =(Y,...Y") be a random vector taking its values be a random vectorC the associated copula, and let us
in R". The vectorY is called Spherically Invariant co*n5|deer distributions O_n R g|ver1 b){ the - cdf
Random Vector (SIRV) if there exists a random Gawmss F - F, - Then  considering Z =¢,(Z) ...,
vector V =(V*,...V") called “speckle”, and a positive Z, =4, (Z,) with ¢ (z)=(F)*oF(z),i=1.M, we
real random variabler called “texture”, such that obtain 2" =(Z,....Z, ) such that the associated copula is
Y =/1V . This representation enables also to introduce ¢ and the margins arg, ,...,F, . Thus we see that for a

yarious stat!stical laws fqr modeling inten.sitieEr'adar given copula we can obtain any desired distribufion

o oy e 13 vt ey components ofZ'_ Anther mporat propery
P ) y _ ) 3 especially for simulation, is tha€C is the cdf of the

for computational purpose: putting =7, we have standardized vector (F.(Z,),..F, @,)). The cross-

Y =U ™4 . We will call the distributions off*, ..., Y"

“marginal distributions” ofY , or simply “margins” ofY .

For some distributions o) , the margins are calculable;

for every

1. INTRODUCTION
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M

derivative function ¢ =

oy, ---0u

called the density of the copula.

C(w,---,u,) is then

M

Let us assume that there is a sequence of SIRV

Y, = (YL YY) Y =(Yg,-YY' ), such as  the
distribution of eachy, =(Y%,....Y") depends on a hidden
state X, =x, in Q={a,...w }. Multivariate Hidden

Markov Chain (MHMC) is then a classical model
enabling one to deal with such situations. In tlsgical

MHMC the sequenceX =(X,,...,X,, ) is a Markov chain,
and the random variable¥;, ..., Y, are independent
conditionally on X , and such ag(y, |x) = p(y, |X,) (the

conditional density ofY, on X is equal to its conditional
distribution on X,) for eachn=1,...,N. Such a model

can then be used in different problems; in thisepape
will focus on estimation of the hidden states
X =(X,,..., X, ) from the observed multivariate sequence

Y =(Y,...,Y,,), that is the classical problem in image and
signal processing of the Bayesian segmentation.abuar
is to specify a conditional proceg¥, |X')., with SIRV
necessarily a sequence of

n21

margins which is not
independent variables.
Very recently, copulas have been introduced in dvdd
Markov chains in two kinds of situations:

(i) for M =1, one can use copulas to introduce temporal
dependencies of Y, ..., Y, conditionally on

X =(X,,...X,) [3], which can be made either in the

classical context of HMC, or in the more generaltern
of “Pairwise” Markov chains [18];

(i) for any M, one can use copulas to model the
dependence among sensors, in the classical coofext
independence of,, ..., Y, conditionally on X as in the
previous paragraph [2].

We will simultaneously consider (i) and (ii) by adgi
dependencies in the texture chain=(,,..,U, ) so that
the three chainsX,U,Y can be modeled as a “Triplet
Markov chain” (TMC [12,17]). In the next section, we
will describe in detail the TMC model proposed, anel
will emphasize some interesting properties. Thendesd
with the essential problem of the computation o th
posterior probabilities and we propose a Sequeklidaite
Carlo algorithm for filtering and smoothing. Fingliwe
address the problem of estimation of the TMC, ireottd
perform unsupervised segmentation.

2. MODEL AND SOME PROPERTIES

Let us consider the SIRV model in the classical MEIM
context above. Thus we have two sequences

X =(X,,...X,) and Y =(Y,....Y, ); according to the

very definition of SIRV there is also a third chain
U =,...U, ) such as the density can be written

+00

x)= [ p(y,

p(y, X, U,) p(u,|X,)du, (2.1)

Therefore, we can say that there are three random

processes X =(X,,...,X,), U=@U,..U,), and
Y =(Y,,....Y, ) verifying:

(i) X is a Markov chain

(i) U,Y), ..., U,.Y,) are independent conditionally
on X and such thatp(u,,y,|x)=p(u,,Y,|x,) for each
n=1..,N.

We see that the triplef =(X,U,Y) is a Markov chain,
and thus the model can be seen as a particulaettti
Markov chain. Our aim is to extend this model tmare
general one, in which the possibility of estimating
from Y would remain.

Let the hidden coupldX,U) be a Markov chain, with

transition kernel having density

P(Xpizs Unia [ %, 0Un ) = Pt [X,) P (Ui [ X100 X2, ) (2.2)
We still assume that the observatiolYs,..., Y, are
independent conditionally on (U,X) and that
p(y,|u,x) = p(y,|u,,x,) for eachn=1,...,N. We stress

on the fact thaty,,..., Y, are no more independent

conditionally on X . In other words, by introducing some
dependence (conditionally orX) among the texture
variablesU,, ..., U,, we introduce some dependence

among Y,, ...,Y, (conditionally on X), and we get a

more general model.
The dependence between tbe’s is modeled, as in [3],

by a copula. Thus following [3], with the chaih instead
of Y, we can define a “hidden Markov chain with
copulas” (X,U). The density of the transition kernel of

the chain(X,U) is:
p(xﬂ+11un+1 Xﬂ lun) = p(xn+l Xr1)g(un+1 Xn+1)

xc(G(U,[X,), G (U, %))
where g is the probability density function (pdf) &,
conditionally on X, (and G the corresponding cdf). By
the use of copulas, we can choose the dengity
independently of the dependence structure, so we ca
always have the desired expression fp('yn|xn). For

example, if the margins of) are gamma distributed
(conditionally on X)), then we get a proces¢ having
Student margins (conditionally oK ).

(2.3)
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Remark 2.1: The introduction of a copula in ordehave dependence (elliptical or Archimedean copulas among
a correlated Markovian texture has a proper intefias others) [11,14].

designing models of stationary processes with SIRV (iii) the margins of Y are controlled and belongs to
margins. If there is one cIasS)(:{aJl}), Y is a classical parametric families which have been proved to be
adequate for describing real data (in Radar, Image
Processing, or Finance and Econometrics), and iixigib
heavy tails.

Finally the model can also deal with complex
observations (usual in radar) by considering corple
%SIRV via a complex Gaussian vectdr. Moreover, in
order to deal with a general problem of segmematice

can also consider that the mean level is discritiniga

hence we introduce a shift in the meafi=m+U_ "%/ .
The model can also be seen as an extension of soméhe obtained law still belongs to the family ofitical

stochastic volatility (SV) models, the latter beinged in  laws [10].
econometrics to model the volatility of asset nesur

Hidden Markov Chain, with a continuous hidden stdte
Some examples of stationary process with SIRV margi
have been introduced for modeling correlated Ktetun
[13] in coherent radar detection context, but owdsl is
parsimonious since the dependence structure of th
observations is completely described by the Markovi
dependence (represented by the coplilnof the hidden
state.

Some SV models are HMC, having the following state- 3. SMOOTHING AND SEGMENTATION
space representation
U, =pJ +og, g, ~N(0,1) We present in this section the effective computatibthe
N+ n n n 1
{Y :,Bexp(U /2)£ £, ~N (0,1 (2.4) posterior densitiesp(xﬁ|y1“‘) by using the celebrated
n n 2n 2n 1

andforward-backward formulas of HMM, adapted to the
] - ) context of TMC [18]. Nevertheless, the computational
Bexp(U, 12 is the volatility, soU, is termed the log-  weight is increased because of the necessity of the

volatility instead of texture. The randomness ot th computation of the joint posterior density(x,,u,|y"),

volatility enables then to reproduce the heavystalil .
observed on real data, such as Student laws. Nelesth and we propose a Sequential Monte Carlo (SMC)
y algorithm to deal with the composite (discrete and

the dynamic olU, is often linear (autoregressive process) continuous) nature of the hidden process. In ci@é&mit

Y, is the observed process of asset prices,

in order to be able to identify the stationary hetwe of the computational burden and to avoid the simuiatib
the volatility U , and hence of the observed process. discrete particles, we use the algorithm proposed
The use of copulas for describing the dynamiclbf independently by Perez and Vermaak [16] in a

enables to consider any non-linear first order ddpacy mathematically equivalent model. Contrary to usePet
and any stationary law fot), and for Y,, among the  a. want to retrieve the continuous procédsfrom the

family of SIRV (see the relationship between textanel ~ OPservations, but the same equations apply. Hemee,
clutter laws in [19]). For instance, if we use auGsian present first a SMC algorithm for the stationary &M
copula with density (U.Y) (@={w}) and derive the final algorithm for the

c(u,v;p)=(1-p2>“2exp(—‘1 +2‘(21:;f)‘1‘2+‘1+2¢2] (25)  T™C.
and ¢ =d7(u),¢, =d*(v), @ being the inverse of

the standardized Gaussian cdf, the state space
representation of the proce¥s conditionally on X (by The process is indexed by the mean vectdi R" and

3.1. Smoothing for HMC (U,Y)

removing the state¥X, ) is: the variance matrixx OR"™ of the Gaussian conditional
{qb1(G(UM))=,0<D1(G(U"))+\/1——p2£ln £,~NOY (26) vector Y |U, (whose density is noted(y|u) dropping

Y, =oU, "%, &,, ~ N(0,2) m and X ). The stationary density of the Markov chain is
The equation of evolution of the “volatility” is htinear, ~ indexed by a parameteg = g,, as the copulaC =C,,

and it suffices to adap& in order to have directly the with densityc=c, .
desired law for a better fitting of the model te thata.

The proposed model has three main properties: 3.1.1. Filtering

\ _ e propose here a regularized patrticle filter, ost-
(i) the law of Y conditionally on X is neither We prop h gularized particle filter,ezhip
independent nor Markovian. regularized by Musso, Oudjane and Le Gland [15]gbas

(i) the above dependence is controlled by copashat  on 5 Gaussian kerel with periodic resampling. We
we can describe various and numerous kinds Ofgimyate at each iteration a population ofD particles
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(¢")..,» with corresponding weights(w') . The
regularized particle approximation of the forwaehdity
p(u, i) is

W =Y W u-77)

(3.1)

where ¢ is the Gaussian centered density with standard

deviation h, h being the optimal bandwidth of the non-
parametric estimator of the density with the Gaussian
kernel. The cdf ofr” is M (u) =Y w'd((u-¢")/h).

At n=1, the particles(¢;)__
g, and have weightsy = f (y,|¢?) /Z f(y,
]

For n=1, the prediction step is:
draw D particles (Z )E@ from the density 7, .

are drawn according to

7).

n

()

Then simulatei < D, @ 0[0,1] such as the joint
cdf of (I‘Iﬁ”(c("”),wi”) is the copulaC,. The
propagated particle is™" =G, (@"), so that the
joint cdf of (q?),q”*””) is C(I‘I(n”,Gg) . The predictive

density 7z, (u) = p(u,,,|y;) can be approximated by

WP, [0

And the correction step is:
Update the weights by

C GH T 'GS \n+1
WWMMMMWXA(Q)MJMQ)
Ca (n(nr)(Z(T))’Ge(Zin ))
since the instrumental transition density s

g, (ufu’) = g, (u)e, (M U),G, W)
The use of this instrumental kernel enables to put
emphasis on the influence of the copula on the

dependence between the particles and between th

observations. Moreover, the true and the instruatent
transition kernels share the same dependence wstuct
(copula) and one margin, consequently the instraahen
distribution is expected to be close to the trigtridiution.

3.1.2. Backward procedure and smoothing
Thanks to our knowledge of the stationary distitoutof
U, we can propose a SMC algorithm for computing the

backward procedure, in order to obtain easily digar
approximation of the marginal posterior density.r Fo
stationary Markov chains, the backward proceduretma
interpreted as the forward procedure of the timensed

process (U,\?):(U Y, [6]. Indeed, the

N-n+1
backward density can be rewritten

N-n+17 )]snsN

PO " O

P(GN—rH-l)
. p(ﬂanjl A

ge(uN—nﬂ)

The joint process{U,\?) is still a HMC, andU has the
following transition density:
p("]nﬂ l'jn) = gs (Gml)ca (GE (l]n+1)’GS (Gn )) (3'4)
SO we can use a similar SMC algorithm in order to
compute the particle approximation of the preditiv

densities of the procesd . The simulated particles are
with

IisD

B,(u,) = p(Yp.|u,) =

(3.3)

then sorted in the non-reverse order so (Ia;dt)

weights (\K,F) approximate the predictive densities by

I<isD

the

D
Tl (U) = Z p(ulgm W™,  Using Eq.(3.4),
j=1

deduced approximation of the backward density is
B0 Zi:ca (G, (u).G, (&)W (3.5
Hence tr;;e smoothing densities are approximated by:
p(u,|y.') = ZD: wW'e, (G, (¢"), G, (¢[")HW™0,, (u) (3.6)

i,j=1

3.2. Smoothing for composite TMC (X,U,Y)

The tracking algorithm of Peret al. enables to keep the
previous simple smoothing algorithm, and to make a

direct computation of the probabilitieg(x, |y1“) , Without

the need of a joint simulation afX, ,U ). As shown in

Eq. (2.2), the transition density is the product tbé
transition densities ofX and U . The latter is noted

P(U,. U, X0 %) = P, ., (U,,|u,). The transitions of the

giscrete process is given by the matie (a” ) and we

suppose that A has a unique positive stationary
distribution v, represented by the vect¢w,)  OR".
We modify the notation of the density of the Gaassi
conditional vector to take into account the depecde
toward X : f, (y,|u,) that depends on the discrete and

the continuous part of the process. The forwardsiten

can then be factorizeg(x,,u,|y)) = p,_(u,|Y,)p(x,|Y))
SO that the conditional forward density
p(u, |y, %) =p, (U,|y;) appears. Finally, for the

segmentation of the proceds, we are interested in the
marginal probability ] = p(Xn|yln) of the joint forward
probability.
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3.2.1. Filtering for composite TMC

It is possible to update recursively the two patshe
joint filtering probability thanks to a set a sussiwe
recurrences.

The first step is the computation of
u , n-1
p, (U, |y) = P, (.. ¥, nyi ) (subscript x indicates
P, (Yo 1

conditioning on X =x,) whose numerator can be
decomposed

P (U Yo | YT) = 20 P (U Y, [V17)
o= (3.6)
X (X%, i)
with
Py (U Y Y0 = £, (U] Py (U JU) P, (U Vi),

and & = p(>g,1|>g1,y1”‘1) Oa_ &'. The denominator,

termed conditional predictive likelihood, is obtih by
integrating Eq.(3.6)

P, L= P, @y,
Xn-1

The final recursions are

z Xn-1 é:ﬂflvxﬂ p“ﬂflv“ﬂ (un ! yn

Y P, v )du,

Y )

p_(u,[y) = 5.7
" pxﬂ (yn yl )
G OAIAS) IS
- (3.8)
n Z pxﬂ (yn yl )z axn-l'xn <(Xﬂ-l
Xo Xn-1

As in [16], if we use a SMC algorithm to compute th
probabilities p_(u,|y;), we can adapt the simulation of

the population of particles by using proposal titiors
density of the formq, (u,|u.,,X%,,X,,) corresponding to

the joint distribution with cdiC, (G, (u, x,),G, (U,., [X...)) -

3.2.2. Backward procedure and smoothing

We can still use a forward procedure to achieve the

The particle approximation of the continuous pdrthe
forward density gives also a particle approximatdrhe
backward density and of the marginal posterior igns

p(un,xn|y1“‘). For segmentation, we need only to sum
over the particles to obtain an approximation o€ th
probability P(x,|y,')

4. ESTIMATION

Inference in Hidden Markov Models (HMM) is often
done by the Maximum Likelihood Estimator (MLE)
because of the existence of consistency resulishroad
variety of HMM, and also because of the existente o
numerous algorithms (amongst them the celebrated EM
algorithm) to compute it [4].

The cornerstone of the success of these iteratathods
(EM, SEM, ICE) is the ability to compute rapidly can
recursively the posterior probabilities of the hedd
process(U ) or (X, ,U, ). For instance, if we consider

the estimation of the HMQU,Y) (when Q ={w} ), the
EM algorithm is based on the “complete log-likebidd

log (Pl 1) = ~-log 27" [£]) + 3. log(u,)-u,p,

+3log(g, 1)+ X log(c, G, 1), ©,.))

with p, the quadratic form of the Gaussian density.

The “E step” involves only the computation of the
posterior densitiesp(u,|y,') and p(u,,u.,|y!), which
can be done thanks to the recursions describedhan t
previous section. Finally, iterative estimation die

parameters can also be performed by the methoageop
by Cappé in [5] due to the additive form of thejpoted

log-likelihood E[log( pU;,y:))|y; |-

5. CONCLUSIONS

backward procedure, and the smoothing step. Wewe have presented in this paper a new model for the

introduce the time-reversed procegs:(XN_nﬂ)KnsN,
that we rewrite Eq. (3.3) by adding the discretecpss:

Py 1 Xy |91 7)
Bn (un ’ Xn) D

P(GN—n+1’ )N(N—n+]_)
The density of the stationary law of the hiddencpss
(X,U) is equal to the produat, g,(u,,|x.,), and we

only need to extend the recursions to the predidiiter

density
P x| =Y, [a b,

whose computation is direct.

SO

(3.9)

unfl) p(un—l’ )%71 yz_l )dunfl

segmentation of SIRV within the setting of Triplet
Markov Models which enables to remove the usual
assumption of conditional independence. We strash®
fact that the introduction of a correlated hidderalar
process is relevant for modeling real phenomeniocesit
corresponds to common and validated models of
stationary process in the Radar and Econometric
communities for representing radar pulses or \iiati
returns. Moreover, the original use of copulas lwe t
modeling of the dependence of a hidden processhean
applied to the construction of HMC where we need to
control the shapes of the laws of the observatidihss
gives an additional degree of freedom for use ahdata.
Despite the increase of complexity in the model Hrel



|EEE Workshop on Statistical Sgnal Processing (SSP2005), Bordeaux, France, July 2005

presence of a continuous hidden process, we hawe sh
that there still exists recursive, efficient andngie
procedures for the computation of posterior prolitads,
and hence for segmentation and estimation. We foetes
on the estimation of the state process, but ex#totiysame
machinery can be used for the estimation of théutex
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