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ABSTRACT

The hidden Markov chains (HMC), which are widely used
in different data restoration problems, have recently been
generalised to pairwise partially Markov chains (PPMC),
in which the distribution of the observed chain conditional
on the hidden one is of any form. In particular, long-
memory noise cases can be dealt with. The aim of this
paper is to propose a parameter estimation method and to
show, via experiments, that unsupervised PPMC based
image segmentation can perform better, when the noise is
a long-memory one, than the classica HMC based
methods.

1. INTRODUCTION

Let X=(X_)N,, Y=(Y)., be two stochagtic
processes, where X ishidden and Y is observable. Each

X, takesitsvaluesin Q ={w,,...,w,} and ead Y, takes

its values in R. The problem of estimating X from Y,
which occursin numerous applicdions, can be solved with
Bayesian methods once one has chosen the acarate
distribution for Z =(X,Y) . The Hidden Markov Chains

(HMC) mode isthe simplest and most well known model.
This model has been extended to Pairwise Markov Chains
(PMC [4, 8]) and then to Triplet Markov Chains (TMC
[7]). The PMC and TMC models, on their hand, have then
been extended to Pairwise Partidly Markov Chains
(PPMC [9]) and Triplet Partialy Markov Chains (TPMC
[9]), in which the distribution of the noise — in other
words, the distribution of Y conditionally on X which
will be denoted by p(y|x) —is not necessrily a Markov

chain (MC) [9]. One posshle gplicaion, which we ded
with in this paper, is to consider a “long-memory” noise,
which occurs in numerous stuations [1, 2, 3] and which
can ot be taken into acount via dasscd Markov models.

The am of this paper is to show, via some
experiments, the eistence of situations in which PEMC
are of interest with resped to PMC. In particular, we ae

interested in the long-memory noise in which the
correlations in p(y|x) deaeae in a “dow” manner.

Moreover, we show how the non stationarity of the hidden
process can be modelled in the same way as in [6] by a
third random processand the use of TPMC.

The organisation of the paper is the following. In the
next Sedion we briefly recdl the TMC and PMC models
and we develop the PPMC and TPMC models in which
the noise is of a long memory kind. We recdl how it
works and, in particular, how the Bayesian MPM method
enables us to rewver the hidden process from the
observed one. Then we show how to take the non
stationarity of the hidden process into acount via a
TPMC. The third sedion is devoted to the Gaussan case,
which makes posshle eplicit cdculations of interest.
Sedion 4 is devoted to two experiments in which we
compare the recent HMC with long-memory noise (HMC-
LMN) model, which is a particular PPMC, with the
classcd HMC model in supervised and unsupervised

ways.

2. PAIRWISE PARTIALLY MARKOV CHAINS
2.1 Pairwiseand Triplet Markov chains

Let X =(X,)r,, Y=(Y,)), betwo stochastic processs,
where X =X is unobservable and has to be estimated
from the observation Y =y. The stochastic interadions
between the hidden and the observable processs are then
given by the distribution p(x,y) of Z =(X,Y). When
p(x,y) = p(2) is smple enough many Bayesian methods
are available. In particular, HMC with independent noise
(HMC-IN), whose distribution is given by (1), have been
widely used and studied.

P(2) = PO PO [T P X ) PYafe) (D)
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We see tha in HMC-IN X is a MC with
p(x) = p(x1)|'|nN:'llp(xm1 x) and ‘independent noise”
PO =[], PV,
(v)', are independent conditionaly on X. The

X,) means that the random variables

simplicity of p(yx) is often difficult to justify. To

improve the latter, the HMC-IN model has been
generalized into the PMC model, in which one directly
assumes the Markovianity of Z , so that:

p(2) = P(2) [, P2

z,) @

PMC is strictly more general than HMC; in fact, X isno
longer necessarily an MC. However, X remains a MC
conditionally on Y, and this property enables the
development of analogous Bayesian restoration
algorithms.

PMC has further been extended to TMC. Roughly
speaking, in the TMC model the distribution of Z is a
marginal distribution of the T = (X,U,Y) assumed to be
anMC, and U =(U,)", isan auxiliary process, which can
have a physical signification or not. When the random
variables (U,)", are not too complex (for example, finite
with not too rich set of values), it appears that
X =(X,), can dill be estimated from Y =(Y,)N, by
Bayesian methods that are analogous to those used in the
classical  HMC model. In particular, p(x,|y) is
computable, which makes the estimation of x by the
Maximum Posterior Mode (MPM) possible. Let us notice
that TMC generalizes some classical models in the sense
that none of the chains X, U, Y, V=(X,U),
Z=(X,Y) or (U,Y) needsto bean MC [11]. The wider
generality of PMC with respect to HMC and of TMC with
respect to PMC, can aso be seen through the expression
of p(yx). In an HMC-IN, p(y|x) is often (too) simple

for certain applications. Since in a PMC, p(y|x) is an
MC, it is much richer, and in a TMC, p(y|x) is the
marginal distribution of the MC p(u, y|x) and therefore

even richer than an MC. These increasingly complex
models are likely to meet the growing need for a better
modelling of the noise in many applications such as, for
example, image processing.

2.2 Pairwiseand Triplet Partially Markov chains

Recently, PMC have been extended to Pairwise Partially
Markov Chains (PPMC), where the distribution of the

noise p(y|x) is not necessarily a MC. The pairwise chain
Z =(X,Y) isaPPMCiif itsdistribution verifies:

Zn ’ y”’l)
Zn’ y”‘l) p(yn+l

2") = p(z,.
= p(Xn+1

p(z,.,
©)

Zn 1 Xn+1’ y“‘l)

where z" =(z),, and ditto for x" and y". We again find
the classical HMC for p(X,.,(z,,¥Y"™") = p(X,.,
P(Y,u|Zos X V') = P(Y, /X)) » @nd we again find the
classica PMC for p(X,.|z,,y"") = p(X,.,

P(Yoer|Z0s X V") = P(Yn Otherwise,  the
distribution of Z =(X,Y) can be written:

x,) and

z,) and

Zn’ Xn+1) "

P(2) = P[], P22 V') @

This enables one to show classically that p(Xy) isaMC,
with transitions given by P(X,..|%,, Y)
= P(Zy|Z0 Y B (%) [Ba(X,) . with  B"(x,)

calculable by the following « backward » recursions

B (x,) =1
gwxn) =3 Pz

Xn+1

2,y (x.)lsnsN-1 O

Therefore, these transitions are calculable once the
transitions p(z,.,|z,,y"™") diven by (3) are caculable for

every 1sn<N-1.

By introducing an auxiliary process U =(U,)N,,
PPMC can be extended to TPMC in the same manner as
PMC can be extended to TMC. The triplet process
T =(X,U,Y) will be caled “Triplet Partially Markov
Chain”if for each 1<n< N-1, p(t ,[t") = p(t,..|v..y") .

PPMC is then a particular case of TPMC in which
X =U (thismeansthat V = X and that there is no latent
process)

3. GAUSSIAN PPMC

Let us briefly recall the so-called «Gaussian» PPMC
model proposed in [10] (in French). The crux is that in

Gaussan PPMC, in which p(y|x) are Gaussian, the

transitions p(x,,,|X,,y) are calculable. More precisely,

n+l

we need to calculate the transitions p(z,,,

z,,y"") given
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in (3) for every 1<n< N -1. Let us consider a particular
case in which p(X,.|z,,y"™) = p(X,.[x,) and p(yx)

are Gaussian. The trangitions p(y,.,|z,,X,..,Y"") ae

then also Gaussian and can be recursively calculated using
the following classical property (P) :

Property (P):

Let W=(W,)\, be area Gaussian chain with, for
each 1<ns<N, M"=(M))", the mean vector and
" = (Vi )enien the covariance matrix of W" = (W), . It
is then possible to calculate, for each n, the Gaussian

density p(y") corresponding to M", I'". Classicaly,

one uses the fact that p(y") = p(y" ™) p(y,|y"™), where
p(y.|y"™) is Gaussian with mean
Mn +(An)T (rn—l)—l(yn—l_M n—1) and Variance

Vo —(A)T (T A", where A" =(y, )2) (the
matrix (F"™*)™ in p(y,
density p(y"™)).

y"™) is given by the Gaussian

The idea given in [10] is to apply this property k*
times (remember that k is the number of possible values
of each x, ). More precisely, for each (x,,X.,,) the

P(Ypia
corresponding to (X,,X,,,) and it is calculated using the
property above.

transition transition

zZ,X%..,Yy") is the

3.1 Bayesian segmentation using PPM C

To estimate X =x from Y =y by Maximum Posterior
Mode (MPM), it is necessary to compute p(x,|y) for

1<n< N. It can be donein the following way:

1) Compute p(z.,|z") transitions according to the

n+l

property (P) by k* forward recursions;

2) Compute B"(x,) by backward recursions and deduce
P(X,.a|%,,y) and p(x,|y);

3) Compute p(x,|y) for 1sn<N by the following
forward recursions:
PXaY) =D, o P(Xo

X Y) P(X,|Y) -

We see that the points 2) and 3) are classical and used in
HMC, while the point 1) is new and is due to the
“partially” Markov aspect of the model.

3.2 Long Memory noise with non stationary hidden
process

We are now interested in the long memory noise, in which
the correlations of p(y|x) decrease in a “sow” manner so

that lim,__ 1°p(t)=c,, where aJ0], c, >0 is a
constant, and p(r) is an autocorrelation function. These
processes are useful in numerous complex systems [1, 3]

and, in particular, in telecommunication networks [2]. As
the sequence T" =(V,)n.n Of COvariance matrices
considered above is of any kind, it suffices to take them of
theform y, =y, (k=1 =y, k=1

When, in such processes Y, there exists a hidden
“switching” process X (in other words, when the given
long memory process Y is not stationary), we can
consider that Y is a noisy version of X, with a long-
memory noise. Then the corresponding PPMC enables us
to estimate X from Y, using some Bayesian methods like
“Maximum a Posteriori” (MAP) or MPM.

Also, we showed in [6] that when (X,Y) is the
classica HMC-IN with non stationary X, this non
stationarity can be modelled by a third random chain U
and the use of the TMC (X,U,Y) enables us to improve

the results obtained with the HMC (X,Y) . The same idea

can be apply considering long memory noise by using the
TPMC model.

4. EXPERIMENTS

4.1 Supervised restoration of a process with long
memory noise

In the first experiment, we consider the following case of a
noisy class image segmentation. There are four classes in
the hidden image, and it is considered as a realization of a
Markov chain X . The mono-dimensional process X is
obtained from the bi-dimensional set of pixels using a
Hilbert-Peano scan, as aready used in [5]. Moreover, we

assume that p(yn+l Xn L] Xn+1’ yn) = p( yn+1 Xn+1’ yn) and

p(Xn+1 Zn’ yn_l) = p(Xn+1 Xn) :
The four Gaussian distributions (we have four
distributions instead of sixteen because of the particular

Case p(yn+1 Zn ' Xn+1’ yn_l) = p( yn+1 Xn+1’ yn) ) Of W = (Wn)nN=1

will also assumed to be stationary, with all means null and
all variances equal to one. Thus the correlations are the
only discriminating parameters. All  the four

autocorrelations have the following form: p(r) =|r+1 "
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where 1=|j-i|, a, =099, a, =03, a, =005,
a, =001

o (and are therefore “long memory”

autocorrelations). The model parameters are then the
distribution p(x,,%,) on Q% ={w,w,}*, and a >0. The
noisy version of (&) with long memory noise is presented
on (b) and the MPM restoration is presented on (c).

The model is then a particular case of PPMC that will
be denoted by “HMC with long memory noise” (HMC-
LMN) in the following.

@ o ©

Figurel

(a) afour classes image, (b) its noisy version (same means
and same variances for al four clas®s), and (c) the
Bayesian MPM segmentation result considering the HMC
-LMN mode. (@) and (b) are wnverted into mono-
dimensional chains via Hil bert-Peano scan (see[5]).

The misclassfied pixels ratio is equal to 6.9%. We
can notice that the noise is rather strong and the human
eye can hardly distingush anythingin the image (b).

4.2 Unsupervised restoration of a process with long
memory noise

In the second experiment, we restore, in an ursupervised
way, atwo-classimage with 2 dfferent noises. In the same
way as in the first experiment, we aame that X is a
stationary Markov chain after conversion of the image (a)
using an Hilbert-Peano scan, and we a&sume that

p(yn+1 Zn’Xn+1’ y”’l) = p(yn+1 Xn+1’ yn) . In bo{h C&Sl the
two Gaussan distributions of W =(W,)", are stationary,

with all means nul.

The first noisy image presented in the figure 2 (b), is
obtained by using an independent noise with variances
respedively equal to 1 and 4 for the two classes. The
seoond noisy image presented in (c) is obtained by using a
long memory noise, with both variances equal to 1 and
a, =099, a, =02.

@ (b) (©)

Figure2

(a) is a two classs image, (b) the noisy version with
independent noise, and (c) the noisy version with long
memory noise

The parameters are estimated by an Expedation-
Maximisation (EM) algorithm considering the dasscd
HMC-IN model and the HMC-LMN model, with means
set to zero in both cases. The estimations are given in
Table | and Table Il and the hidden processes restored by
MPM are given in Figure 3.

The MPM restoration results concerning the
independent noise ae quite similar when it comes to the
HMC-IN (a) and the HMC-LMN (b) models, with a
misclassfied pixels ratio equal to 5.3%. This confirms the
fad that HMC-IN is a particular case of the HMC-LMN
model. Also, we notice the high estimate values of
a, =631, a, =509, which highlights the short range

memory nature of the independent noise.

Concerning the long memory noise, we can seethat the
HMC-IN model (d) is unable to take acount of the long
range arrelation. The wrong estimates imply a poa MPM
restoration with a misclassfied pixels ratio equa to
27.6%. On the other hand, the HMC-LMN gives better
estimates which results in a good MPM restoration (c) of
the hidden process with a misclassfied pixels ratio equal
to 6.5%.

p(X,, X,) HMC-IN HMN-LMN
IN .69 0.00 .69 0.00
%OO O.3OE %OO O.3OE
LMN 61 0.02 .67 0.00
%.02 0.34E %.OO O.SZE
Tablel

p(x,,Xx,) EM Estimates of the two models (HMC-IN and

HMC-LMN) for both noises (IN and LMN). The ‘red”
value, it isto say the value estimated from the dassimage,

P66 002
.02 0.30E
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HMC-IN HMC-LMN
w, w, w, w,
IN o2 3.93 0.97 3.93 0.97
a - - 6.31 5.09
LMN o2 1.25 0.33 1.02 0.70
a - - 0.97 0.32
Tablell

o? and a (EM Estimates) of the two models (HMC-IN
and HMC-LMN) for both noises (IN and LMN)

Figure3

First linee MPM restoration results for the independent
noise nsidering (a ) the HMC-IN model (error
ratio=5.3%) and (b) the HMC-LMN mode (error
ratio=5.3%). Seoond linee MPM restoration result
considering (c) the HMC-IN model (error ratio=27.6%)
and (d) the HMC-LMN model (error ratio=6.5%).

4. CONCLUSIONS

The am of this paper was to show, via experiments, that
the recently introduced Pairwise and Triplet “Partialy”
Markov chains enable one to ded with long-memory noise
hidden Markov chains. In fad, estimating al the
parameters, by the dasscd “Expedation- Maximization”
(EM) method, we gave two series of results, showing that
these recent models based supervised and unsupervised
segmentation methods cen significantly improve the
classcd hidden Markov chains based ones. Although we
have not presented any results concerning Triplet
“Partially” Markov chains, passng from pairwise models
to triplet one is quite straightforward and daes not pose
any particular problem.
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