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ABSTRACT

This work deals with the unsupervised Bayesian hidden
Markov chain restoration extended to the non stationary case.
Unsupervised restoration based on “Expectation-
Maximization” (EM) or “Stochastic EM” (SEM) estimates
considering the “Hidden Markov Chain” (HMC) model is
quite eff icient when the hidden chain is stationary. However,
when the latter is not stationary, the unsupervised restoration
results can be poor, due to a bad match between the real and
estimated models. In this paper we present a more appropriate
model for non stationary HMC, via recent Triplet Markov
Chains (TMC) model. Using TMC, we show that the classical
restoration results can be significantly improved in the case of
non stationary data. The latter improvement is performed in an
unsupervised way using a SEM parameter estimation method.
Some application examples to unsupervised image segmenta-
tion are also provided.

1. INTRODUCTION

The hidden Markov chain (HMC) model is widely used
for various problems, including signal and image proc-
essing, economical prediction, and health sciences. In
such model, )...,,( 1 NXXX =  is a stochastic process

modeling an unobservable – or hidden – discrete signal
(each nX  takes its values in a finite set

{ }Kωω ...,,1=Ω ) and )...,,( 1 NYYY =  is a stochastic

process modeling the observations (each nY  takes its

values in the set of real numbers R ). The problem is
then to estimate the hidden discrete signal xX =  from
the observed signal yY = . The links between X  and Y

are then modeled by the following joint distribution :
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Such a model is called “hidden“ Markov chain with
“independent noise” (because the hidden process X  is a
Markov chain and the random variables )...,,( 1 NYY  are

independent conditionally on X ). Hereafter, it will be
denoted by HMC-IN. It allows one to recover the hidden
data xX =  from the observed data yY =  using differ-

ent Bayesian classification techniques like Maximum A

Posteriori (MAP), or Maximal Posterior Mode (MPM)
[1-2]. These restoration methods use the distribution of
the hidden process conditional to the observations,
which is called its “posterior” distribution.

When ),( yxp  is based on unknown parameters Θ∈θ ,

the latter can be estimated from yY = , considering the

stationarity of the hidden process by methods like
“Expectation-Maximization” (EM [ 3]) or “Stochastic
Expectation-Maximization” (SEM [ 4]). Thus, when the
hidden process is a stationary Markov chain, parameters
are well estimated, and the restoration based on the es-
timated parameters gives good results. However, when
this is not the case, the estimation necessarily gives
wrong results, which can imply poor restoration of X .
In this work, we propose to model the non stationarity
by introducing an auxiliary process governing the re-
gime switching of the hidden process. The introduction
of an auxiliary process to model the non stationarity has
already been treated before. In [5], the authors introduce
auxiliary data to modify the transition probabilities of
the Markov hidden process. In [6], the author present a
model based on the superposition of two Markov chains.
A non-homogeneous discrete process is described by a
set of transition matrices. At each n , the choice of the
active matrix is then governed by a hidden homogeneous
Markov chain.
Nevertheless, our approach is quite different : we pro-
pose a model of non stationary hidden Markov chain by
using the Triplet Markov Chain (TMC) model [7,8].

It is based on the three following points :
(i) When X  is non stationary, we can introduce an aux-
iliary stochastic process U  whose aim is to model the
regime switching of X ;
(ii) We directly assume the markovianity and the station-
arity of the pairwise process ),( UXV = . Then, the dis-

tributions XP  and UP  are not necessarily Markovian

which allows one to deal with different kinds of sto-
chastic processes;
(iii) The distribution of Y  conditional on ),( UXV =  is

such that the triplet process ),,( YUXT =  is a Markov

chain. Although the marginal distribution ),( YXP  of T  is
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not necessarily a Markov distribution, it can be used to
perform Bayesian restorations, T  being a particular case
of Triplet Markov chain [7].
We provide different simulation studies, showing that
such an introduction of an auxili ary process can improve
the results obtained with the classical unsupervised Bay-
esian restoration. We provide a complete derivation of
the Forward-Backward, MPM and SEM algorithms for
the new model and give computable versions of these
ones.
The paper is organized in the following way : The next
section is devoted to a brief description of the Triplet
Markov Chain model. The particular model used and the
related processing method is described in section three
and different simulation results described in section four.

2. TRIPLET MARKOV CHAINS

Let NnnXX ≤≤= 1)(  and NnnYY ≤≤= )(  be two stochastic

processes. X  is hidden (each nX  takes its values in a

finite set { }Kωω ...,,1=Ω ), and Y  is observed (each nY

takes its values in the set of real numbers R ). The
problem is then to estimate xX =  from yY = .

Definition 2.1
The model considered is called a Triplet Markov Chain
if there exists a stochastic process NnnUU ∈= )( , with

each nU  taking its values in a set { }Mλλ ...,,1=Λ , such

that ( )
Nnnnn YUXYUXT ≤≤== ),,(),,(  is a Markov chain.

The idea of TMC is to consider the distribution of
),( YXZ = , which models the interactions between the

observed and the searched process, as a marginal distri-
bution of a Markov chain ),,( YUXT = . The distribu-

tion s ),( yxp n , which are used in MPM restoration, are

then computable. In fact, let ),( UXV = . As T  is

Markovian, the process ),( YV  is a Pairwise Markov

Chain (PMC) and we can formulate and calculate the
distribution of ),( YVn  using Forward-Backward recur-

sions [9]. This means that the distributions

∑∑
Λ∈Λ∈

==
nn u

n
u

nnn yvpyuxpyxp ),(),,(),(  also are com-

putable. Finally, although the distribution of ),( YX  is

not necessarily a Markov one, the marginal distributions
)( yxp n  are computable. which in particular enables the

use of the Bayesian MPM restoration method.
We said above that ),( YXZ =  in not necessarily a

Markov chain. More precisely, the following result
specifies “locally” on what the greater generality of
TMC with respect to PMC consists [8] :

Proposition 2.1

Let ),,( YUXT =  be a TMC verifying :

(a) ),( 1+nn ttp  does not depend on 11 −≤≤ Nn ; and

(b) ),(),( 11 nnnn ttpttp ++ = .

Then the three following conditions:
(i) ),( YXZ =  is a Markov chain ;

(ii )for each Nn ≤≤2 , )(),( 1 nnnnn zupzzup =− ;

(iii )for each Nn ≤≤1 , )()( nnn zupzup =
are equivalent.

The Pairwise Markov Chain (PMC [9,10,11]) model, in
which Z  is assumed to be a Markov chain, is then a
particular case of the TMC obtained by taking Ω=Λ
and XU = . Furthermore, according to the Proposition
2.1 above TMC is strictly more general than PMC, the
latter being strictly more general than classical HMC, in
that there exist Markov chains T  such that Z  are not
Markov chains.

3. THE PARTICULAR TMC USED AND
RELATED PROCESSING METHOD

3.1. TMC used model

Let X  be a non stationary hidden process X . Let us
introduce )...,,( 1 NUUU =  (each nU  takes its values in

a finite set { }Mλλ ...,,1=Λ ) governing the regime

switching of X . The pairwise process ),( UXV =  is

assumed to be a Markov chain. Further, we assume that

NYY ,...,1  are independent conditionally on X , and

)(),( nnnnn xypuxyp = . Then, ),( YVT =  is a particu-

lar TMC, in which V  is a Markov chain, and which will
be called “TMC” in the following.

3.2. MPM restoration in TMC

According to the general Bayesian theory, the MPM
restoration is given by

)ˆ...,,ˆ()...,,(ˆ
11 NNMPM xxyys =  with

)(maxargˆ yxpx n
x

n
n Ω∈

= (2)

Thus, we need to calculate )( yxp n . As T  is a TMC,

the process ),( YV  is a PMC and we can write the dis-

tribution of ),( YVn  as )()(),( nnn vvyvp βα= , with.

)...,,,()( 1 nnn yyvpv =α  (“Forward” probabiliti es) and

)...,,()( 1 nNnn vyypv +=β  (“Backward” probabiliti es).
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These probabiliti es can then be recursively calculated
for 11 −≤≤ Nn  by

)()()( 1111 xypvpv =α ;

)()()()( 1111 +++
Λ×Ω∈

+ ∑= nnnn
v

nn xypvvpvv
n

αα (3)

1)( =Nvβ ;

)()()()( 1111

1

+++
Λ×Ω∈

+∑
+

= nnnn
v

nn xypvvpvv
n

ββ (4)

The marginal posterior distributions of the hidden state
can be calculated by

)()()( nnn vvyvp βα∝ (5)

and the transition of the posterior Markov distribution
)( yvp  are calculated by

)...,,,( 11 Nnn yyvvp + )()()( 1111 ++++∝ nnnnn vxypvvp β (6)

Having calculated )( yvp n , we can then calculate

∑
Λ∈

=
nu

nn yvpyxp )()(  and (2) to perform MPM.

3.3. Learning TMC

We assume that )( nn xyp  are Gaussian. For K  classes

{ }Kωω ...,,1=Ω , we have to estimate K  means 1µ , …,

Kµ , and K  variances 2
1σ , …, 2

Kσ  of the K  Gaussian

densities )1( =nn xyp , …, )( Kxyp nn = . Further, the

distribution of the stationary Markov chain ),( XUV =
is given by )12(2 −× ×× MKMK  parameters

),( 21 jvivpp ij === , which is a probabilit y on
2][ Λ×Ω . The SEM method we use runs as follows :

(i) consider an initial values ( )20000 )(,, kkijp σµθ = , for

12,0 −≤≤ Λ×Kji , and Kk ≤≤1 ;

(ii ) for each *Nq ∈  :

-simulate qvV =  according to )( yvp  based on qθ
(which is possible due to (6));
-calculate ( )21111 )(,, ++++ = q

k

q

k

q

ij

q p σµθ  with

∑
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4. UNSUPERVISED IMAGE SEGMENTATION
USING TMC

In this section, we compare the HMC-IN and the pro-
posed TMC models in the field of image segmentation.
The HMC-IN model has already been successfully ap-
plied to this problem : to do so, the bi-dimensional set of
pixels is transformed into a mono-dimensional sequence
through the Hilbert-Peano scan [10]. Parameters are then
estimated with SEM algorithm and the MPM is applied
to perform the segmentation. We present two series of
experiments. In the first one, two synthetic hidden non
stationary images are considered. We give different un-
supervised restoration results considering the HMC and
the TMC models and show that the latter is more appro-
priate when the hidden process presents different re-
gimes. In the second one, we compare the two models
considering a real image unsupervised segmentation.

4.1. Synthetic images

We consider two HMC ),( YX  verifying (1), with

{ }21 ,ωω=Ω  and 128128×=N . In the two HMC the

hidden processes are non-stationary in different way. We

define three transition matrices : 







=

98.002.0

02.098.0
1M ,









=

5.05.0

5.05.0
2M  and 








=

02.098.0

98.002.0
3M  and two

auxili ary processes )...,,( )1()1(
1

)1(
NUUU =  and

)...,,( )2()2(
1

)2(
NUUU = , each )1(

nU  and )2(
nU  takes its val-

ues in the finite set { }321 ,, λλλ=Λ .

* )1(U  is define by : 1
)1(

4/
)1(

1 ),...,( λ=NUU ,

2
)1(

2/
)1(

14/ ),...,( λ=+ NN UU , and 3
)1()1(

12/ ),...,( λ=+ NN UU .

* )2(U  is a Markov chain define as follow :

(i) the distribution of )2(
1U  is (1/3,1/3,1/3)

(ii ) the transition matrix of )2(U  is given by
















=

97.003.0

3.097.00

001.099.0

)2(U
M

In the first experiment, the Markov chain
)...,,( )1()1(

1
)1(

NXXX =  is non stationary in the following

way.
(i) the distribution of )1(

1X  is )5.0,5.0( ,

(ii ) pM  is the transition matrix in )1(
nX  when pnU λ=)1(

with 31 ≤≤ p
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In the second experiment, the Markov chain )2(X  is ob-
tain in the same way by replacing )1(U  by )2(U . We will
denote ),( 111 λων = , ),( 122 λων = , ),( 213 λων = ,

),( 224 λων = , ),( 315 λων = , ),( 326 λων = .

The processes )1(U , )2(U , )1(X , )2(X  are then converted,
via a Hilbert-Peano scan, into a bi-dimensional set as
described in [12] and their realizations are presented in
Figure 1.

)1()1( uU = )2()2( uU =

)1()1( xX = )2()2( xX =

)1()1( yY = )2()2( yY =

)1()1( ˆˆ xX =  (HMC),
%26=τ

)2()2( ˆˆ xX =  (HMC),
%19=τ .

)1()1( ˆˆ xX = (TMC),
%5=τ ,

)2()2( ˆˆ xX =  (TMC),
%5.4=τ

)1()1( ˆˆ uU =  (TMC) )2()2( ˆˆ uU =  (TMC)

Figure 1 : Different images and their unsupervised
HMC and TMC based restorations.

In the two experiments, a realization xX =  is simulated

and yY =  is sampled according to )( 11 xyp ,…,

)( NN xyp , where )1( =nn xyp  is Gaussian with mean

1  and variance 1 , and )2( =nn xyp  is Gaussian with

mean 3  and variance 1 , which gives )1()1( yY =  and
)2()2( yY =  in Figure 1. The realization xX =  is then

estimated by the Bayesian MPM method from yY =  in

two different ways. The first restoration is obtained us-
ing the parameters estimated with the SEM algorithm
and considering that ),( YX  is an HMC-IN (the hidden

chain is assumed stationary), which gives )1()1( ˆˆ xX =
(HMC), %26=τ  and )2()2( ˆˆ xX =  (HMC), %19=τ  in
Figure 1 (τ  is the error ratio). The second restoration is
obtained using the parameters estimated with the SEM
algorithm assuming that ),,( YUXT =  is the TMC con-

sidered above, which gives )1()1( ˆˆ xX =  (TMC), %5=τ ,

and )2()2( ˆˆ xX =  (TMC), %5.4=τ  in Figure 1. We also

show in Figure 1 the estimates )1()1( ˆˆ uU =  and
)2()2( ˆˆ uU =  of the of the auxiliary processes )1()1( uU =

and )2()2( uU = . We clearly see how the use of TMC can
improve the results obtained with the classical HMC-IN
model.
Furthermore, different parameters are well estimated
(Table 1 and 2), which show a good behavior of the
SEM considered.



Advanced Concepts for Intelligent Vision Systems (ACVIS 04), Aug. 31-Sept. 3, Brussels, Belgium, 2004

5

Model
1µ 2

1σ 2µ 2
2σ

)( )1()1( xyp

HMC 0.98 1.03 2.33 1.91
TMC 1.02 1.01 2.98 0.94

)( )2()2( xyp

HMC 2.4 1.82 1.03 1.04
TMC 0.99 1.02 3.01 0.98

Table 1 : estimated densities parameters.

(a)
1ν 2ν 3ν 4ν 5ν 6ν

1ν 0.98 0.02 0 2e-4. 0 0

2ν 0.02 0.98 0 0 0 0

3ν 0 5e-4 0.50 0.49 0 0

4ν 0 0 0.52 0.47 0 0

5ν 0 0 0 0 0 1

6ν 0 0 5e-4 0 0.95 0.04

(b) 0.26 0.24 0.13 0.12 0.12 0.13

Table 2 : estimated (a) )( )1()1(

1 nn vvp +  and (b) )( )1(
0vp

considering the TMC model.

(a)
1ν 2ν 3ν 4ν 5ν 6ν

1ν 0.97 0.02 0 0 6e-3 0

2ν 9e-3 0.98 0 0 0.01 0

3ν 0 0.03 0 0.94 0.02 0

4ν 0.03 0 0.97 0 0 0

5ν 0 0 0 0 0.46 0.54

6ν 0 0 0.8 0 0.45 0.46

(b) 0.23 0.40 0.09 0.09 0.09 0.09

Table 3 : estimated (a) )( )2()2(

1 nn vvp +  and (b) )( )2(
0vp

considering the TMC model.

4.2. Real Image

 Our example here is a 256x256 size satellite image of
Tokyo, which is presented in Figure 2. We restore the
image considering different number of real and auxiliary
states. Comparisons between models are carried out us-
ing the Bayes Information Criterion (BIC) [13]. This
Criterion is defined as )log(2 NpLLBIC +−=  where

LL  is the log-likelihood of the model, p  its number of

independent parameters and N  the number of data. We
do not take into account  parameters estimated to be ze-
ros according to the convention established in [14].

 The best model is the one with the lowest BIC. Results
are presented in Table 4.
 

 
Figure 2 : Image “T okyo”

 On Figure 3, we present the segmentation result by
MPM and SEM parameters estimation based on the sta-
tionary HMC model with 4 classes.
 On Figure 4, we present the segmentation result by
MPM and SEM parameters estimation based on the
TMC model with 4 classes and 2 states auxiliary proc-
ess.
 
 Number of
real states

 Number of
auxiliary

states

 LL
 

 Number of
parameters

 BIC
 

 2  1  -338750  7  677580
 2  2  -337460  13  675060
 2  3  -337360  23  674980
 3  1  -334310  14  668780
 3  2  -332070  27  664440
 3  3  -331760  55  664130
 4  1  -333020  21  666280
 4  2  -331210  43  662610

Table 4 : Comparisons between models.

 
 According to the BIC values, we can say that for each
number of states studied the TMC model with the largest
number of auxiliary states is more appropriate. Further-
more, we can see by comparing segmentation results on
Figure 3 and Figure 4 that the segmentation result con-
sidering the TMC model present finer features.
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Figure 3 : MPM segmentation after SEM parameters
estimation based on the stationary HMC mode with 4
real states. BIC=666280.

 
Figure 4 : MPM segmentation after SEM parameters
estimation based on the TMC model, with 4 real states
and 2 auxili ary states. BIC=662610.

5. CONCLUSIONS AND PERSPECTIVES

 In this paper, we have provided an unsupervised method
for restoring non stationary hidden Markov chains, with
potential applications to unsupervised image segmenta-
tion. The main contribution was to tackle the lack of
stationarity using the Triplet Markov Chain model. More

precisely, the non stationary prior distribution of the
hidden Markov chain was modeled by an auxili ary proc-
ess governing the switching of the transition matrix.
Bayesian segmentation techniques are then rendered ap-
plicable and different experiments show its interest in
simulated and real images.
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