Advanced Concepts for Intelli gent Vision Systems (ACVIS 04), Aug. 31-Sept. 3, Brussels, Belgium, 2004

UNSUPERVISED NON STATIONARY IMAGE SEGMENTATION
USING TRIPLET MARKOV CHAINS

Pierre Lanchantin and Wojciech Pieczynski

Pi erre. Lanchanti n@nt-evry.fr
GET/INT, Département CITI, CNRSUMR 5157, 9 rue Charles Fourier, 91000Evry, France

ABSTRACT

This work deds with the unsupervised Bayesian hidden
Markov chain restoration extended to the non stationary case.
Unsupervised  restoration besed on  “Expedation
Maximizaion® (EM) or “Stochastic EM” (SEM) estimates
considering the “Hidden Markov Chain” (HMC) modd is
quite dficient when the hidden chain is gationary. However,
when the latter is not stationary, the unsupervised restoration
results can be poa, due to a bad match between the red and
estimated models. In this paper we present a more gpropriate
model for non stationary HMC, via recent Triplet Markov
Chains (TMC) model. Using TMC, we show that the dasdcd
restoration results can be significantly improved in the cae of
nonstationary data. The latter improvement is performed in an
unsupervised way using a SEM parameter estimation method
Some gplicaion examples to ursupervised image segmenta
tionare dso provided.

1. INTRODUCTION

The hidden Markov chain (HMC) model is widely used
for various problems, including signal and image proc-
esdgng, economicd prediction, and hedth sciences. In
such model, X =(X,,...,X,) is a stochastic process
modeling an urobservable — or hidden — discrete signal
(eadh X, tekes its values in a finite set
Q={w,..w}) and Y=(Y,..Y,) is a stochastic
process modeling the observations (each Y, takes its
values in the set of real numbers R). The problem is
then to estimate the hidden discrete signal X = x from
the observed signal Y = y. Thelinks between X and Y

are then modeled by the following joint distribution :

p(x,y) =

%) PO [ POGXy ) PO ) P [x)
Such a model is called “hidden* Markov chain with
“‘independent noise” (because the hidden process X isa
Markov chain and the random variables (Y,,...,Y,) are
independent conditionally on X). Hereafter, it will be
denoted by HMC-IN. It allows one to recover the hidden
data X =x from the observed data Y =y using differ-

ent Bayesian classification techniques like Maximum A

Posteriori (MAP), or Maximal Posterior Mode (MPM)
[1-2]. These restoration methods use the distribution of
the hidden process conditional to the observations,
which is called its “posterior” distribution.

When p(x,y) is based on unknown parameters 6 00O,
the latter can be estimated from Y =y, considering the

stationarity of the hidden process by methods like
“Expectation-Maximization” (EM [ 3]) or “Stochastic
Expectation-Maximization” (SEM [4]). Thus, when the
hidden process is a stationary Markov chain, parameters
are well estimated, and the restoration based on the es-
timated parameters gives good results. However, when
this is not the case, the estimation necessarily gives
wrong results, which can imply poor restoration of X .
In this work, we propose to model the non stationarity
by introducing an auxiliary process governing the re-
gime switching of the hidden process. The introduction
of an auxiliary process to model the non stationarity has
already been treated before. In [5], the authors introduce
auxiliary data to modify the transition probabilities of
the Markov hidden process. In [6], the author present a
model based on the superposition of two Markov chains.
A non-homogeneous discrete process is described by a
set of transition matrices. At each n, the choice of the
active matrix is then governed by a hidden homogeneous
Markov chain.

Nevertheless, our approach is quite different : we pro-
pose a model of non stationary hidden Markov chain by
using the Triplet Markov Chain (TMC) model [7,8].

It is based on the three following points :

(i) When X isnon stationary, we can introduce an aux-
iliary stochastic process U whose aim is to model the
regime switching of X ;

(if) We directly assume the markovianity and the station-
arity of the pairwise process V = (X,U) . Then, the dis-
tributions P, and PR, are not necessarily Markovian
which allows one to deal with different kinds of sto-
chastic processes,

(iii) The distribution of Y conditional on V =(X,U) is
such that the triplet process T =(X,U,Y) isaMarkov
chain. Although the margina distribution P, ., of T is

(X.Y)
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not necessarily a Markov distribution, it can be used to
perform Bayesian restorations, T being a particular case
of Triplet Markov chain [7].

We provide different simulation studies, showing that
such an introduction of an auxili ary processcan improve
the results obtained with the dasscd unsupervised Bay-
esian restoration. We provide a omplete derivation of
the Forward-Badkward, MPM and SEM algorithms for
the new model and give @mputable versions of these
ones.

The paper is organized in the following way : The next
sedion is devoted to a brief description of the Triplet
Markov Chain model. The particular model used and the
related processng method is described in sedion three
and different simulation results described in section four.

2. TRIPLET MARKOV CHAINS

Let X =(X, )y and Y =(Y,).., be two stochastic
processs. X is hidden (eah X, takes its valuesin a
finite set Q :{wl,...,a)K}), and Y isobserved (ead Y,

takes its values in the set of red numbers R). The
problemisthento estimate X =x fromY =y.

Definition 2.1

The model considered is cdled a Triplet Markov Chain
if there eists a stochastic process U = (U, ), ., With
eah U, takingitsvaluesinaset A={A,,...,.A,}, such
that T =(X,U,Y) =((X,,U,.Y,))..,, isaMarkov chain.

The idea of TMC is to consider the distribution of
Z =(X,Y), which models the interadions between the
observed and the seached process as a marginal distri-
bution of a Markov chain T =(X,U,Y) . The distribu-
tion s p(x,,y), which are used in MPM restoration, are
then computable. In fad, let V=(X,U). As T is
Markovian, the process (V,Y) is a Pairwise Markov

Chain (PMC) and we ca formulate and cdculate the
distribution of (V,,Y) using Forward-Badkward reaur-

sions [9]. This means that the distributions
p(X,,y) = %p(xn,un,y): ;p(vn,y) aso are om-

putable. Finaly, athough the distribution of (X,Y) is
not necessarily a Markov one, the marginal distributions
p(x,|y) are mmputable. which in particular enables the
use of the Bayesian MPM restoration method.

We said above that Z =(X,Y) in ot necessxily a

Markov chain. More predsely, the following result
spedfies “locdly” on what the greaer generdlity of
TMC with resped to PMC consists [8] :

Proposition 2.1

Let T =(X,U,Y) be aTMC verifying:

(@ p(t,,t,.,) doesnot depend on 1<sn<N-1; and
(b) p(t,.t,..) = P(t,..t,) -

Then the threefoll owing conditi ons:
(i) Z=(X,Y) isaMarkov chain;

(iforeahh 2<sn< N, p(u,|z,,2z,._)=p,
(iii yfor eahy 1<n< N, p(u,|2) = p(u,|z,)
are ejuivalent.

The Pairwise Markov Chain (PMC [9,10,11]) model, in
which Z is assumed to be aMarkov chain, is then a
particular case of the TMC obtained by taking A =Q
and U = X . Furthermore, acording to the Propasition
2.1 above TMC is grictly more general than PMC, the
latter being strictly more general than classcd HMC, in
that there exist Markov chains T such that Z are not
Markov chains.

z,);

3. THE PARTICULAR TMC USED AND
RELATED PROCESSING METHOD

3.1. TMC used model

Let X be anon stationary hidden process X . Let us
introduce U =(U,,...,U,) (eat U, takesitsvaluesin

a finite set A:{/\l,...,/\M}) governing the regime
switching of X . The pairwise process V =(X,U) is
asamed to be aMarkov chain. Further, we asume that
Y,,....Y, ae independent conditionaly on X, and

p(Y,[X,.u,) = p(Y,|X,). Then, T =(V,Y) is a particu-

lar TMC, inwhich V isaMarkov chain, and which will
be cdled “TMC" in the following.

3.2. MPM restorationin TMC

According to the genera Bayesian theory, the MPM
restoration is given by

Sup (V1o ¥y ) = (X, .., X ) with

X, = argmaxp(x,|y) @)
y). As T isaTMC,
the process (V,Y) isa PMC and we can write the dis-
tribution of (V. ,Y) as p(v,,y)=a(v,)B(v,), with.
a(v,)=p,,Y,,...Y,) (‘Forward” probabiliti es) and
BV.)=p(Vurs-- Yy |Vv,) (‘Badkward” probabiliti es).

Thus, we nedl to cdculate p(x,
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These probabiliti es can then be reaursively cdculated
for I<n<N-1 by

a(vl) = p(Vl) p( y1|X1) ;

a(V,) = ) aV,)P(Vea Vo) P>V |Xa) ©)
Blvy)=1;
BMV) = ) BVea)P(Vaua[Ve) P(Yaur [X0r) 4

The marginal posterior distributions of the hidden state
can be cdculated by

y)Da(v,)B(v,) ©)

and the transition of the posterior Markov distribution
p(My) are cdculated by

p(v,

p(Vn+1 Vn ! yl’ R yN ) EI p(vnﬂ Vn) p( yn+1 Xn+1)ﬁ(vn+1) (6)
Having cdculated p(v,|y), we can then cdculate

p(x,|y) = ; p(v,|y) and (2) to perform MPM.

3.3. LearningTMC

We ssume that p(y,
Q:{wl,...,wK},we have to estimate K means y,, ...,

X,) are Gausgan. For K classs

U, ,and K variances o7, ..., o} of the K Gausdan
densties p(y,|X, =1, ..., p(y.|x, =K). Further, the
distribution of the stationary Markov chain V = (U, X)
is given by 2°M x (2" —1) parameters
p, = p(v, =i,v, =), which is a probability on

[QxA]?. The SEM method we use runs as foll ows::

(i) consider an initial values 8° :(pi?,/.lf,(af)z), for
0<i,j<2"" -1,and 1<k <K;

(i) foreach qON* :

-simulate V =v* acording to p(vy) based on 6°
(which is possble due to (6));

-cdculate 8 = pij.‘*l,/.lf”,(ak“'”)z) with

N

pf'*l = i NZ_ll[ ) i usﬂ = w
1] Vv, =iV, =] 7 N ,

N _1 - Zn=11[><n=k]

N +
(O_qﬂ)z _ znzl(Yn _I‘ll? 1)21[><,‘=k]
K N
Zn=11[><n=k]

()

4. UNSUPERVISED IMAGE SEGMENTATION
USING TMC

In this edion, we cmpare the HMC-IN and the pro-
posed TMC models in the field of image segmentation.
The HMC-IN model has already been successully ap-
plied to this problem : to doso, the bi-dimensional set of
pixelsis transformed into a mono-dimensional sequence
throughthe Hil bert-Peano scan [10]. Parameters are then
estimated with SEM algorithm and the MPM s applied
to perform the segmentation. We present two series of
experiments. In the first one, two synthetic hidden non
stationary images are ansidered. We give different un-
supervised restoration results considering the HMC and
the TMC models and show that the latter is more gpro-
priate when the hidden process presents different re-
gimes. In the second one, we compare the two models
considering ared image unsupervised segmentation.

4.1. Synthetic images

We onsider two HMC (X,Y) verifying (1), with
Q={w,w,} and N =128x128. In the two HMC the
hidden processs are non-stationary in different way. We

[0.98 0.02C
define three transition matrices : M, = ,
.02 o098
0.5 0.5C [0.02 0.98C
M, = C and = C and two
05 05F .98 002"
auxilialy  processes U@ =U/”,..UP) ad

U®=U®,.Uu?), eah U® and U? takesits val-
uesinthefiniteset A ={A,,A,,A,}.

o2

*U® is  define by : (U®,..U%)=A,
UG a-Ui) =4 and U, UP) =4,
*U @ isaMarkov chain define & follow :
(i) the distribution of U @ is (1/3,1/3,1/3)
(i) the transition matrix of U ® isgiven by
099 001 0O
M,, =50 097 03f
o3 0 0978

In the first experiment, the Markov chain
X® =(XP,..,X?) is non stationary in the following

way.
(i) the distribution of X is (0.5,0.5),

(i) M isthe transition matrix in X when U = A
with1< p<3

p
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In the second experiment, the Markov chain X is ob-
tain in the same way by replacing U ® by U @ . We will
denote v, =(w,,A,), V,=(w,,A), V,=(w,A,),
V4 :(wZ’AZ)’ VS :(wl’AS) 1 VG :(w2’A3) :

The processes U@, U@, X®, X® are then converted,
via a Hilbert-Peano scan, into a bi-dimensional set as

described in [12] and their realizations are presented in
Figure 1.

i R ok <1 TR e e
Y® =y® Y = y®
r

o

-
X® =% (HMC), X® =%? (HMC),
T =26% T=

X® =¥ (TMO),

7T=5%, T =4.5%

U® =a® (TMC)

Figure 1 : Different images and their unsupervised
HMC and TMC based restorations.

In the two experiments, arealization X = x issimulated
and Y=y is sampled according to p(y1|x1),..,

P(Yy[%y) » where p(y,
1 and variance 1, and p(y,

X, =1) is Gaussian with mean

X, =2) is Gaussian with
mean 3 and variance 1, which gives Y® =y® and
Y® =y® in Figure 1. The redization X =x is then
estimated by the Bayesian MPM method from Y =y in

two different ways. The first restoration is obtained us-
ing the parameters estimated with the SEM algorithm
and considering that (X,Y) isan HMC-IN (the hidden
chain is assumed stationary), which gives X @ =%
(HMC), T=26% and X?® =%® (HMC), T =19% in
Figure 1 (7 isthe error ratio). The second restoration is
obtained using the parameters estimated with the SEM
algorithm assuming that T =(X,U,Y) isthe TMC con-
sidered above, which gives X® =%® (TMC), T =5%,
and X® =%® (TMC), T =4.5% in Figure 1. We also
show in Figure 1 the estimates U® =G® and
U@ =3 of the of the auxiliary processes U ® =u®
and U® =u® . We clearly see how the use of TMC can
improve the results obtained with the classical HMC-IN
model.

Furthermore, different parameters are well estimated

(Table 1 and 2), which show a good behavior of the
SEM considered.
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Model My o; He o]
p(y® |x®)

HMC 0.98 1.03 2.33 1.91
TMC 1.02 1.01 2.98 0.94
p(y®[x®)

HMC 2.4 1.82 1.03 1.04
TMC 0.99 1.02 3.01 0.98

Table 1 : estimated densiti es parameters.

€ v, v, v, v, v, v
v, | 098 0.02 0 2e-4. 0 0
v, | 002 0.98 0 0 0 0
Vs, 0 5e-4 050 049 0 0
v, 0 0 052 047 0 0
Vs 0 0 0 0 0 1
Ve 0 0 5e-4 0 095 0.04
() 1026 024 013 012 012 013

Table 2 : estimated (a) p(v"

n+l

v) and(b) p(v{)

considering the TMC model.

The best model is the one with the lowest BIC. Results
are presented in Table 4.

Figure 2 : Image “T okyo”

On Figure 3, we present the segmentation result by
MPM and SEM parameters estimation based on the sta-
tionary HM C model with 4 classes.

On Figure 4, we present the segmentation result by
MPM and SEM parameters estimation based on the
TMC model with 4 classes and 2 states auxiliary proc-
€sS.

€] v, v, s v, v, Vs
v, | 097 0.02 0 0 6e-3 0
v, | 93 098 0 0 0.01 0
Vs, 0 0.03 0 094 0.02 0
v, | 0.03 0 0.97 0 0 0
Vs 0 0 0 0 046 054
Ve 0 0 0.8 0 045 046
(b) 1023 040 009 009 0.09 0.09

Table 3 : estimated (a) p(v'%,
considering the TMC model.

v®) and(b) p(vy)

4.2. Real Image

Our example here is a 256x256 size satellite image of
Tokyo, which is presented in Figure 2. We restore the
image considering different number of real and auxiliary
states. Comparisons between models are carried out us-
ing the Bayes Information Criterion (BIC) [13]. This
Criterion is defined as BIC =-2LL + plog(N) where

LL isthe log-likelihood of the model, p its number of

independent parameters and N the number of data. We
do not take into account parameters estimated to be ze-
ros according to the convention established in [14].

Number of ~ Number of LL Number of BIC
real states auxiliary parameters
States
2 1 -338750 7 677580
2 2 -337460 13 675060
2 3 -337360 23 674980
3 1 -334310 14 668780
3 2 -332070 27 664440
3 3 -331760 55 664130
4 1 -333020 21 666280
4 2 -331210 43 662610

Table 4 : Comparisons between models.

According to the BIC values, we can say that for each
number of states studied the TMC model with the largest
number of auxiliary states is more appropriate. Further-
more, we can see by comparing segmentation results on
Figure 3 and Figure 4 that the segmentation result con-
sidering the TMC model present finer features.
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predsely, the non stationary prior distribution of the
hidden Markov chain was modeled by an auxili ary proc-
ess governing the switching of the transition matrix.
Bayesian segmentation techniques are then rendered ap-
plicable and dfferent experiments dow its interest in
simulated and red images.
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