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ABSTRACT

Hidden Markov fields (HMF), which are widely applied in
various problems arising in image processing, have recently
been generalized to Pairwise Markov Fields (PMF). Although
the hidden process is no longer necessarily a Markov one in
PMF models, they still allow one to recover it from observed
data. We propose in this paper two original methods of pa-
rameter estimation in PMF, based on general Stochastic Gra-
dient (SG) and Iterative Conditional Estimation (ICE) princi-
ples, respectively. Some experiments concerning unsupervised
image segmentation based on Bayesian Maximum Posterior
Mode (MPM) are also presented.

1. INTRODUCTION

Hidden Markov fields (HMF) are widely used in various
problems comprising two stochastic processes

SssXX ∈= )(  and SssYY ∈= )( , in which xX =  is unob-

servable and must be estimated from the observed
yY = . The interest of HMF is based on the following

property. When X  is a Markov field and when the dis-
tributions )( xyp  of Y  conditional on xX =  are sim-

ple enough, the pair ),( YX  retains the Markovian

structure, and likewise for the distribution )( yxp  of X

conditional on yY = . Then the Markovianity of )( yxp

allows one to estimate the unobservable xX =  from the
observed yY = , even in the case of very rich sets S .

However, the simplicity of )( xyp  required to ensure

the Markovianity of )( yxp  can pose problems, in par-

ticular in textured images segmentation [10]. To remedy
this, Pairwise Markov fields (PMF), in which one di-
rectly assumes the Markovianity of ),( YX , have been

proposed [12]. Both )( xyp  and )( yxp  are then Mark-

ovian, the former ensuring possibilities to model textures
without approximations, and the latter allowing Baye-
sian processing. The aim of this paper is to propose two
original PMF parameter estimation methods and test
their efficiency in the unsupervised image segmentation
context. The first one is based on the general Stochastic
Gradient (SG) principle, and the second one is based on

the general Iterative Conditional Estimation (ICE) prin-
ciple.
The organization of the paper is as follows. PMF are
shortly recalled in the next section. Section 3 is devoted
to the parameter estimation and some unsupervised im-
age segmentation results are presented in Section 4. The
last Section 5 contains conclusions and perspectives.

2. PAIRWISE MARKOV FIELDS

The random pairwise field ),( YXZ =  is a PMF when

its distribution is a Gibbs distribution, given by
])(exp[)( ∑

∈

−=
Cc

cc zzp ϕγ (1)

The simplest PMF is the HMF with Independent Noise
(HMF-IN), in which X  is a Markov field, and the con-
ditional distribution )( xyp  verifies :

(H1) )()( sss xypxyp =  for each Ss ∈ ;

(H2) ∏
∈

=
Ss

s xypxyp )()( .

(H2) means that the random variables SssY ∈)(  are inde-

pendent conditionally on X . The distribution of ),( YX

is then :





 +−= ∑∑

∈∈ Ss
ss

Cc
cc xypLogxyxp )]([)(exp),( ϕγ (2)

HMF-IN models are the most currently used ones. A
HMF is a model such that both ),( YX  and X  are

Markov fields. This is a more general model than HMF-
IN; in particular, (H2) can be relaxed. Finally, PMF is
more general than HMF because in PMF X  is not nec-
essarily a Markov field.
Let us consider a Gaussian PMF ),( YX , with

[ ]),(exp),( yxUyxp −∝  and

( )
( )
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(where 1),( =ts xxδ  for ts xx =  and 0),( =ts xxδ  for

ts xx ≠ ). We see that both )( yxp  and )( xyp  are

Markov, and the latter is Gaussian.
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Let us see how to calculate )(
sVs zzp , which is useful in

sampling of the PMF ),( YX . We have

== ),,()(
sss VVssVs yxyxpzzp

),,(),(
ssss VVssVVs yxxypyxxp , with
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and ),,(
ss VVss yxxyp  Gaussian with mean and variance
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Let us notice that ),( yxxp
sVs  are in HMF-IN propor-

tional to ]),(exp[ ∑
⊂

−
sVc

scs yxxp , while in PMF they are

proportional to ]),,(exp[ ∑
⊂

−
sVc

cscs yyxxp , which is

much richer.

Remark 1

Introducing a third, possibly latent, random field

SssUU ∈= )( , one can consider a Triplet Markov Field

),,( YUXT =  (TMF [14]), whose distribution is given

by (1), with ),,( yuxt =  instead of ),( yxz = . If each

sU  takes its values in a finite set { }mλλ ...,,1=Λ , we

can write ∑
Λ∈

====
λ

λωω ),()( yuxpyxp sjsjs . Oth-

erwise, ),( UXV =  is Markovian conditionally on

yY = , which implies that )),(( yvp jis λω=  can be

classically estimated from sampled values of
),( UXV = . Finally, in TMF )( yxp js ω=  are calcula-

ble and thus Bayesian MPM method is workable. How
to estimate the parameters of TMF? As TMF

),,( YUXT =  also is a PMF ),( YVT = , the parameter

estimation problem in TMF is the same that the pa-
rameter estimation problem in PMF we deal with in this
paper.

3. PARAMETER ESTIMATION

The parameter estimation in HMF is a diff icult one and
the implementation of the popular “Expectation-
Maximization” (EM) method poses problems [9]. So,
some alternative methods have been proposed [1, 4, 5].
Here we propose two new methods valid in PMF : the

first one is an adaptation to PMF of the Stochastic Gra-
dient successfully applied in HMF [16]. The second one
is of Iterative Conditional Estimation (ICE) kind, which
also has already been successfully used in different
HMF based problems [2, 7, 11, 13, 15]. ICE resembles
EM, and a comparative study can be seen in [3]
We will specify the different methods in a simple par-
ticular Gaussian PMF defined by (3), with the neighbor-
hood system reduced to four nearest neighbors. On the
one hand, its generalization does not pose problems and,
on the other hand, such models, on which are based the
experiments presented below, are generally suff icient to
practical applications.
So, for k  classes { }kωω ...,,1=Ω , the vector of pa-

rameters θ  to be estimated contains α , k  components

ia  and 
im , ki ≤≤1  and 2k  components 

ijq ,

kji ≤≤ ,1 .

3.1. Stochastic Gradient (SG)

Adapting SG proposed in [16] to PMF we put :
- Initialize parameter vector 0θθ = ;

- Calculate 
1+nθ  from 

nθ  and yY =  by:

)],(),([
1

*

1111 yxUyxU
n

K
nnnnn nn ++++ ∇−∇
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+= θθθθ (6)

where ),( 11 ++∇ nn yxU
nθ  is the value at the point 

nθ  of the

),( 11 ++ nn yxU ’s gradient with respect to θ , ),( 11 ++ nn yx  is a

realization of ( )YX ,  simulated by Gibbs sampler using

nθ , *

1+nx  is a realization of X  simulated by Gibbs sam-

pling according to )( yxp  based on 
nθ , and K  is a con-

stant.
Adapting (6) to the Gaussian PMF defined by (3), we
obtain :
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Let us notice that when a learning sample is known, it is
to say when xX =  is observed, Stochastic Gradient can
still be used replacing in (6) the simulated *

1+nx  (which

varies with iterations) by the fixed observed xX = .
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Such a method will be called SG from complete data
(SGCD), while the new SG above will be called SG
from incomplete data (SGID).

3.2. Iterative Conditional Estimation (ICE)

ICE is based on the following assumptions : (i) there
exists an estimator of θ  from the complete data:

),(ˆˆ YXθθ = ; (ii ) for each Θ∈θ , either the conditional

expectation ]),(ˆ[ yYYXE =θθ  is computable, or simu-

lations of X  according to its distribution conditional to
yY =  are feasible.

It is an iterative method which runs as follows :
1. Initialize 0θθ = ;

2. for Nq ∈ ,

- put ]),(ˆ[1 yYYXE
qq ==+ θθ θ  if the conditional ex-

pectation is computable;
- if not, simulate l  realizations lxx ...,,1  of X  (each ix

is a class image) according to its distribution conditional
to yY =  and based on qθ  and put

l

yxyx l

q

),(ˆ...),(ˆ 1

1

θθ
θ

++
=+ .

Let us notice that it can occur that the conditional ex-
pectation is computed for some components of θ , and is
approximated for the other, where the exact computation
is not feasible. Such cases occur in Hidden Markov
Chains [6] or still i n spatially independent data [13].
As in PMF the distribution of X  conditional on yY =
is a Markov distribution, its simulations are feasible, and
thus the condition (ii ) is always verified. So, we only

need an estimator )(ˆˆ zθθ = . The new method we pro-

pose is mainly based on least squares method proposed
by Derin and Elli ott [4] to estimate the parameters α ,
and on the use of conditional distributions to estimate
the remaining model parameters, relative to Gaussian
distribution of Y  conditionally on X . The method be-
low can be either directly used when a learning sample
of ),( YX  is available, or inside of ICE, when not.

Although the proposed method can be extended to
higher order neighborhood systems, we present it in the
case of simple four-nearest neighbors, as shown in Fig-
ure 1.

2t

1t s 3t

4t

Let us consider a sequence of sets of pixels 1W , …, nW ,

where each iW  is of the form presented in Figure 1. Pa-

rameters ],,...,,[ 211 ααββα k= , kjiijqq ≤≤= ,1][ ,

kiiaa ≤≤= 1][  and kiimm ≤≤= 1][  are then estimated from

1W , …, nW , in the following way.

Estimation of α
The procedure, which is strictly the same that the Derin
et al. method, consists of the following steps:
(i) Find the relationship between the joint probabilit y

),(
sVs xxp  and the parameter α .

(ii ) Use histogram techniques to estimate all such prob-
abiliti es
(iii ) Construct an over-determined system of equations
in terms of the probabiliti es and parameters. This system
of linear equation is given by:
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
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J

ωω
ω (10)

(iv) Solve the over-determined system using the Least
Squares (LS) method.
Estimation of kjiijqq ≤≤= ,1][ , kiiaa ≤≤= 1][  and

kiimm ≤≤= 1][

As above, we consider a sequence of sets of pixels 1W ,

…, nW  as in Figure 1, centered on pixels 1 , …, n . Let

us denote by 
iWY  and 

iWX  the restriction of Y  and X

to iW . So, we have 







=

i

i

V

i

W Y

Y
Y  and 








=

i

i

V

i

W X

X
X ,

where iV  contains the four neighbors of the pixel i . The

idea of the estimator is the following. For each given
configuration Wx , which is a possible realization of

1WX , …, 
nWX , let 

Wxm  and 
WxΓ  be the mean vector and

the variance-covariance matrix of the distribution of WY

conditional on WW xX = . So, for a given Wx , we can

consider in the sequence 1W , …, nW  a sub-sequence

'1W , …, 'mW   such that  WWW xxx
m

== '' ...
1

 and use '1Wy ,

…, 'mWy  to classically estimate 
Wxm  and 

WxΓ  by:Figure 1. Set sW  containing pixel s  and its’ 4

neighbors.
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Otherwise, fixing Wx  let us omit it and let us put


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
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
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BA

A
TxW

2σ
, where 2σ  is the variance of iY  condi-

tional on ix . The distribution of iY  conditionally on 
iVY

(recall that 



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i

i

V
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W Y

Y
Y ) is then a Gaussian distribution

of mean and variance
)(1
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x AAB
s
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Comparing the estimates (11)-(14) with (5), we calculate

im , ia , and ijq  (with sxi = ). More precisely, 
sxm  is

given by (11), 
sxa  is given by 

2

1

s

s

x

xa
Σ

=  with 2

sxΣ  given

by (14). Further, putting ),,,(
4321 tstststss xxxxxxxxx qqqqq =

and comparing (13) to (5) gives :
12 −−= ABaq

ss xx (15)

So, we have the estimates of im , ia , and ijq  for each

configuration Wx . So, when the configurations vary, say,

from 1  to r , we obtain r

ii mm ,,1
�  possibly different

estimates for im , and the same for ia , and ijq . Let us

put 1d  the cardinal of configurations of type 1,…, rd

the cardinal of configurations of type r  (we have
ndd r =++ ...1 ). Then we take as final estimates the

means of the estimates associated with particular con-
figurations Wx :

∑
=

=
r

t

t

iii md
n

m
1

1
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∑
=
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t

t
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=
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ijiij qd
n

q
1
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Finally, the whole approach can be summarized in the
following steps:
(a) Estimation of iα  using Derin and Elli ott method;

(b) For each configuration Wx , estimation of means

Wx
m  and variance-covariance matrices 

WxΓ  with (11)

and (12);
(c) For each configuration Wx , computation of im , 

sxa

and ),,,(
4321 tstststss xxxxxxxxx qqqqq =  with (13) and (15);

(d) Calculation of final ijq , ia  and im  with (16)-(18)

applied to the estimates obtained from r  configurations
of Wx  used.

Let us notice that it is not necessary to take all the con-
figurations Wx  into account. For example, one could

decide to consider the only configurations with no more
than two classes.

The estimator )(ˆˆ zθθ =  above will be called “new

method from complete data” (NMCD), and its use inside
ICE will be called “new method from incomplete data”
(NMID).

4. UNSUPERVISED IMAGE SEGMENTATION

We present below the results of two series of experi-
ments. The first series concerns simulated PMF with the
energy given by (3). Considering two classes, the pa-
rameter is: ( )122211212121 ,,,,,,,, qqqmmaaααθ = . The

aim here is to make different comparisons in the unsu-
pervised image segmentation context. The first point of
interest is to compare the estimates obtained with the
four methods SGCD, SGID, NMCD and NMID consid-
ered. The second one is to look how these different es-
timates act upon the unsupervised segmentation methods
based on them.
We performed two series of experiments, each of which
having contained numerous and various situations.
The first series concerns simulated PMF. One result is
presented in Table 1 and the corresponding images are
presented in Figure 2. Roughly speaking, we can put
forth the following conclusions :
(i) the estimates SGCD and NMCD are of comparable
eff iciency. The latter is rather a good one, even in the
case of very strong noise. In particular, there is littl e dif-
ference when segmenting the noisy image with real pa-
rameters or with the estimated ones;
(ii ) the estimate NMID works better than SGID in every
kind of situations. When the noise is not too strong, their
eff iciency can be comparable; but, when it is strong,
NMID can be significantly better than SGID.
In the case of SG estimation, 15 iterations have been
used from the complete data and 30 iterations from the
incomplete data. In the proposed parameter estimation
method, 30 iterations have been used in ICE.
The second series concerns two classes images cor-
rupted with a correlated noise. Let us consider a “ ring”
image corrupted with a synthetic Gaussian correlated
noise. So, we have a partial knowledge about the model,
or still t he data correspond partially to PMF above (we
only know that the noise is correlated and Gaussian).
Such models are interesting because studying them al-
lows one to understand how the methods work when the
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used model goes away from theoretical one. In other
words, such studies provide some knowledge about the
robustness of the methods considered.
So, we consider the two-classes image “ Ring” , which is
noisy with a correlated noise. The observed sY  is then

obtained from an independent noise SssWW ∈= )(  by

averaging on the four nearest neighbors :

)(
5

1 ∑
∈

+=
sVt

tss WWY (19)

So, first tW  (for each St ∈ ) is drawn with the Gaussian

distribution ),( 2
11 σmN  if tx  is white, and with the

Gaussian distribution ),( 2
22 σmN  if tx  is black, and

then sY  is calculated, for each Ss∈ , using (19). Of

course, such a correlated Gaussian field is not a Markov
one and thus the model considered is not of PMF kind ,
in which )( xyp  is a Markov distribution, considered in

the previous subsection.
As for the first series, we performed numerous experi-
ments and some results, representatives of the different
results obtained, are specified in Table 2. They corre-
spond to .01 =m , 5.02 =m , 12

2
2

1 == σσ , which is a

very strongly noisy case. In the whole, analogous con-
clusions to those specified in the previous sub-section
hold. In general, SGCD and NMCD are quite efficient,
even in the very noisy cases. When considering the in-
complete data situation, NMID works better than SGID.
We present in Figure 3 the two images obtained by Bay-
esian MPM based on SGID and NMID estimates. We
have chosen an extreme case; in many others the differ-
ence between the two methods is less striking.

RV NMCD NMID SGCD SGID

1α 2 2.11 1.11 2.36 1.75

2α 2 2.02 1.03 2.35 1.75

1a 1. 0.96 1.11 0.91 0.91

2a 1. 0.98 1.13 0.86 0.83

1m 0. 0.01 0. 0.01 0.2

2m 1. 0.97 1.14 1.08 0.4

11q -0.4 -0.37 -0.41 -0.32 -0.41

22q -0.4 -0.38 -0.41 -0.32 -0.3

12q 0. 0. 0. -0.01 0.

ER 11.53% 11.65% 12.23% 12.40% 48.67%

(a)

(b)
ErrorRate=12.23%

(c)
ErrorRate=48.67%

NM SG
NMCD NMID SGCD SGID

1α 2.01 1.12 2.42 2.31

2α 2.01 1.07 2.41 2.3

1a 7.3 8.47 5.19 3.8

2a 7.61 8.55 5.11 3.36

1m 0. 0. 0. 0.

2m 0.47 0.55 0.47 0.15

11q -0.5 -0.5 -0.32 0.

22q -0.49 -0.5 -0.17 -0.5

12q 0. 0. 0. 0.

ER 7.15% 14.59% 7.72% 62.53%

Table 1. Results corresponding to Figure 2. Real values
of parameters (RV), estimates from complete data with
NM (NMCD), estimates from observed data with NM and
ICE. (NMID), estimates from complete data with
(SGCD), estimates from observed data (SGID), and error
ration (ER) of MPM segmentation.

Table 2. Results corresponding to Image "ring".
NMCD : estimated values using complete data, NMID :
estimated values with NM and ICE using incomplete
data, SGCD: estimated values with SG using complete
data, SGID: estimated values with SG using incomplete.
data. ER: error rate using MPM based on estimated pa-
rameters.

Figure 2. (a) : simulated PMF. (b) and (c) : new method
and SG based unsupervised segmentations (columns
NMID and SGID  in Table 1). Real parameters based
Error Rate =11.53%
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Image "Ring" Noisy Ring 1

NMID : ER=14.59% SGID : ER=62.53%

5.  CONCLUSIONS

The Hidden Markov Fields model find numerous appli-
cations in various problems occurring in image proc-
essing. In such models, the hidden field X  is a Markov
one, and, when the noise in not too complex, its poste-
rior distribution remains a Markov distribution. The lat-
ter property is vital, because it allows one to simulate X
and thus apply different Bayesian processing methods.
However, when willi ng model texture by a Markov
noise, such a noise is too complex and thus the posterior
distribution is no longer a Markov one. To remedy this,
in Pairwise Markov Fields (PMF) one directly assumes
that the couple (hidden field, observed field) is a
Markov field. Although X  is possibly no longer a
Markov field in such models, they still allow one to re-
cover the hidden process from the observed one.
In this paper we tackled the problem of parameter esti-
mation. We proposed two original methods based on
Stochastic Gradient (SG) and Iterative Conditional Es-
timation (ICE), the latter being associated with an origi-
nal generalization of Derin’s et al. method. The general
conclusion is that the ICE based method is faster and
more eff icient than the SG based one. In particular, the
ICE based estimation is close to the estimation obtained
from complete data, which attests that the use of ICE is
interesting in the context considered.
As perspective, we may view different use of the new
parameter estimation method in more complex TMF,
and their applications in real image unsupervised seg-
mentation.
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Figure 3. Image "ring", its noisy version, and two
Bayesian MPM segmentation results based on
parameters estimation by NMID and SGID, re-
spectively


