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ABSTRACT

Hidden Markov fields (HMF), which are widely applied in
various problems arising in image processng, have receitly
been generalized to Pairwise Markov Fields (PMF). Although
the hidden processis no longer necessarily a Markov one in
PMF models, they still alow one to recver it from observed
data. We propcse in this paper two ariginal methods of pa-
rameter estimation in PMF, based on general Stochastic Gra-
dient (SG) and Iterative Condtional Estimation (ICE) princi-
ples, respedively. Some eperiments concerning unsupervised
image segmentation besed on Bayesian Maximum Posterior
Mode (MPM) are dso presented.

1. INTRODUCTION

Hidden Markov fields (HMF) are widely used in various
problems comprising two stochastic processes
X =(X)gs and Y =(Y,) ., inwhich X =x is unob-
servable and must be estimated from the observed
Y =y. The interest of HMF is based on the following
property. When X isaMarkov field and when the dis-
tributions p(y|x) of Y conditional on X =x are sm-

ple enough, the pair (X,Y) retains the Markovian
structure, and likewise for the distribution p(><|y) of X

conditional on Y =y . Then the Markovianity of p(x|y)

allows one to estimate the unobservable X = x from the
observed Y =y, even in the case of very rich sets S.

However, the simplicity of p(y|x) required to ensure
the Markovianity of p(xly) can pose problems, in par-
ticular in textured images segmentation [10]. To remedy

this, Pairwise Markov fields (PMF), in which one di-
rectly assumes the Markovianity of (X,Y), have been

proposed [12]. Both p(y|x) and p(xy) are then Mark-

ovian, the former ensuring possibilities to model textures
without approximations, and the latter allowing Baye-
sian processing. The aim of this paper is to propose two
origindl PMF parameter estimation methods and test
their efficiency in the unsupervised image segmentation
context. The first one is based on the general Stochastic
Gradient (SG) principle, and the second one is based on

the general Iterative Conditional Estimation (ICE) prin-
ciple.

The organization of the paper is as follows. PMF are
shortly recalled in the next section. Section 3 is devoted
to the parameter estimation and some unsupervised im-
age segmentation results are presented in Section 4. The
last Section 5 contains conclusions and perspectives.

2. PAIRWISE MARKOYV FIELDS

The random pairwise field Z = (X,Y) is a PMF when
its distribution is a Gibbs distribution, given by
p(2) = yexp[—g ¢.(z.)] @

The simplest PMF is the HMF with Independent Noise
(HMF-IN), in which X is aMarkov field, and the con-

ditional distribution p(y|x) verifies:
(H1) p(y.[x) = p(y.|x,) for each sUS;
(H2) p(y]¥) = |] P(YL[X) -
s
(H2) means that the random variables (Y,) . are inde-

pendent conditionally on X . The distribution of (X,Y)
isthen :

0 O
p(xy) = yexper Zcbc(xc) + ; Log[ p(y, Xs)]E @
HMF-IN models are the most currently used ones. A

HMF is a model such that both (X,Y) and X are

Markov fields. Thisis a more genera model than HMF-
IN; in particular, (H2) can be relaxed. Finaly, PMF is
more general than HMF because in PMF X is not nec-
essarily aMarkov field.

Let us consider a Gaussan PMF (X,Y), with

p(x, y) 0 exp[-U (x, y)] and
1 o,
U(x y)—Eiaxs(yxs m )+

3
[al-25(x,, %))+, (v, -m, )y, -m, )1E

(sTrc
(where o(x.,x ) =1 for x,=x and o(x,x)=0 for
X, #x). We see that both p(x]y) and p(y]x) are
Markov, and the latter is Gaussian.
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Let us seehow to cdculate p(z,

z, ), whichisuseful in

sampling of the PMF (X,Y). We have
P(z,|z,) = P(X, Yo (X, s Vo) =
P(X Xy, s Yo, ) P(Y<|Xo 0 X, s Yy, ) » With

pLx, expl-5 (Y a(l-25(x,,x)

1
Xvsayvs)DE

1 2
_E(gs Ay (Yo =M, )]

(4)

and p(y,|X.. X, Y, ) Gausdanwith mean and variance
g qxsx( (yt - mx| ) 1
M, =m -———————— 5’ =— ()
: : 2a *oa

Xs Xs

Let us notice that p(x
tional to exp[—; P(X,

X,.,y) arein HMF-IN propar-

X., ¥.)], while in PMF they are

propartional  to exp[—; p(x.|x., Y., ¥.)], which is

much richer.

Remark 1

Introducing a third, possbly latent, random field
U=(U,).s, One can consider a Triplet Markov Field

T=(X,U,Y) (TMF [14]), whose distribution is given
by (1), with t =(x,u,y) instead of z=(x,y). If eat
U, takes its values in a finite set A={A,,...,A_}, we
can write p(x, =w,|y) = ; p(x, =w,,u, =Aly). Oth-

erwise, V =(X,U)
Y =y, which implies that p(v, =(w,,A,)|y) can be
clasdcdly edstimated from sampled vaues of
V =(X,U). Finally, in TMF p(x, =w,|y) are cdcula
ble and thus Bayesian MPM method is workable. How

to edimate the parameters of TMF? As TMF
T=(X,U,Y) dsoisaPMF T =(V,Y), the parameter
estimation problem in TMF is the same that the pa
rameter estimation problem in PMF we ded with in this
paper.

is Markovian conditionaly on

3. PARAMETER ESTIMATION

The parameter estimation in HMF is a difficult one and
the implementation of the popular “Expedation-
Maximizaion” (EM) method pases problems [9]. So,
some dternative methods have been proposed [1, 4, 5].
Here we propose two new methods valid in PMF : the

first one is an adaptation to PMF of the Stochastic Gra-
dient succesdully applied in HMF [16]. The second one
is of Iterative Conditional Estimation (ICE) kind, which
aso has aready been succesdully used in different
HMF based problems [2, 7, 11, 13, 15]. ICE resembles
EM, and a comparative study can be seenin [3]

We will spedfy the different methods in a simple par-
ticular Gaussan PMF defined by (3), with the neighbor-
hood system reduced to four neaest neighbors. On the
one hand, its generali zation does not pase problems and,
on the other hand, such models, on which are based the
experiments presented below, are generally sufficient to
pradicd applications.

So, for k classes Q:{wl,...,wk}, the vedor of pa
rameters 6 to be estimated contains a, k components
a and m, 1l<i<k and k* components q,,

1<i,j<k.

3.1. Stochastic Gradient (SG)

Adapting SG proposed in [16] to PMF we put :
- Initi alize parameter vedor 8 =0,;

- Celculate 6, from 6, and Y =y by:

6.6, + [0,V (X ¥, " UK V)] ©
where O, U(X,.,.,Y,.) isthevalue & the paint g, of the
U(X..,,Y..,) 'Sgradient withresped to 6, (x,.,,V,.,) isa
redizaion of (X,Y) smulated by Gibbs smpler using
0,, X, isaredizaion of X simulated by Gibbs sam-
plingacardingto p(Xy) based on 6., and K isa @n-
stant.

Adapting (6) to the Gaussan PMF defined by (3), we
obtain :

5 =053 0.~ M)
ou _
Fy

U _ ) ]
E—(Szﬂc(ys m)(y, —m)L, o1, -, @

0'5(;@!1_ 25(x,, x)]

ou

m = ; g, (m -y )1[><5=i] +

(S%quj (mj Y )]'[xszi]l[x(:jti] +
;i (Zmi Y. Y, )]'[xszi]l[xl:i]

(s,f)rC
Let us notice that when aleaning sample is known, it is
to say when X = x isobserved, Stochastic Gradient can
gtill be used repladng in (6) the simulated x’., (which

varies with iterations) by the fixed observed X =x.
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Such a method will be cdled SG from complete data
(SGCD), while the new SG above will be cdled SG
from incomplete data (SGID).

3.2. Iterative Conditional Estimation (ICE)

ICE is based on the following asaumptions : (i) there
exists an estimator of 6 from the mmplete data

6 =6(X,Y); (i) for eah 60O, either the conditional
expedation E, [é(X,Y)|Y =y] is computable, or simu-
lations of X acarding to its distribution conditional to
Y =y arefeaible.

It is an iterative method which runs as follows :

1. Initidize 6 =6,;

2. for qON,

- put 6., =E, [B(X, Y)Y =y] if the conditional ex-
pedation is computable;

-if not, smulate | redizations x',...,x' of X (ead X
isa dassimage) acording to its distribution conditional
to Y=y ad based on 6, and put

_ é(xl,y)+...+é(x',y)

q+l |

0

Let us notice that it can occur that the conditional ex-
pedation is computed for some components of 8, and is
approximated for the other, where the exad computation
is not feasible. Such cases occur in Hidden Markov
Chains [6] or still i n spatially independent data[13)].

As in PMF the distribution of X conditional on Y =y
isaMarkov distribution, its Smulations are feasible, and
thus the mndition (ii) is aways verified. So, we only

neel an estimator @ :é(z). The new method we pro-

pose is mainly based on least squares method proposed
by Derin and Elliott [4] to estimate the parameters o ,
and on the use of conditional distributions to estimate
the remaining model parameters, relative to Gausdan
distribution of Y conditionally on X . The method be-
low can be dther diredly used when a leaning sample
of (X,Y) isavailable, or inside of ICE, when not.

Although the proposed method can be extended to
higher order neighborhood systems, we present it in the
case of simple four-nearest neighbors, as down in Fig-
ure 1.

Figure 1. Set W, containing gxd S andits 4
neighbas.

Let us consider a sequence of sets of pixels W,, ..., W,

n?

where eabh W, is of the form presented in Figure 1. Pa-
rameters az[ﬁla--'vﬁk'awaz]a q:[qij]]si,jsk’
a=[al.., ad m=[m],__ are then estimated from
W,, ..., W, inthefollowing way.

[y
Estimation of a

The procedure, which is grictly the same that the Derin
et al. method, consists of the foll owing steps:

(i) Find the relationship between the joint probability

P(X,, X, ) and the parameter a .

(i) Use histogram techniques to estimate dl such prob-
ahiliti es

(iii) Construct an over-determined system of equations
in terms of the probabiliti es and parameters. This g/stem
of linea eguation is given by:

p(w;, X,)
D(w, X, ) - D, = Log(—— %2 8
[(w. X))~ P(w, &S)]Ta og(p(%&)) ®)

where

CD(OJ,XVS):[Jl((}.)),--',\]k(&)),|(&),th)+ I(wlxta)a

Hw, %)+ H{w,x)]"

with
Ol if w=x, ==X
(@, X, .+, %, ) =0 .1 0O
' " -l otherwise
and
o+1 if w=w,
Jo(@)= %) otherwise 1o

(iv) Solve the over-determined system using the Least
Squares (L S) method.

Esimation o q=[0q;]. -
m:[m|]]s|sk

As above, we consider a sequence of sets of pixels W,,
... W, asin Figure 1, centered on pixels 1, .., n. Let
us denote by Y, and X,, the restriction of Y and X

ov, C OX, C
to W.. So, we have Y, =3, C and X, = C
‘ v ‘ %’(\AE

a=[al., and

where V. contains the four neighbors of the pixel i . The

idea of the estimator is the following. For each given
configuration x,,, which is a possible realization of

Xy s +n Xy, ol m and I, bethe mean vector and
the variance-covariance matrix of the distribution of Y,,
conditional on X, =x, . So, for a given x,, we can
consider in the sequence W,, .., W, a sub-sequence
W', .., W' suchthat x,.=..X,.=X, adusey,,.,
s Yy, toclassicaly estimate m, and I', ~by:
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A 1
== ) 11
M, =152, (11)
A 1 P .
rxw :EZ(yw]' _mxw) (ywl' _mxw) (12)
&
Otherwise, fixing x, let us omit it and let us put
.\
r, = SJT [» Where g is the variance of Y, condi-
BC

tional on x; . The distribution of Y; conditionally on Y,
oy, C . . o
(recall that Y, = % D) is then a Gaussian distribution
VI |:

of mean and variance
M, =m,_+ABA(y, -m,) (13)
22 =g - AB'A" (14)
Comparing the estimates (11)-(14) with (5), we calculate
m, a,and q; (with i=x). More precisely, m_ is

givenby (11), a, isgivenby a, = 1

2
Xs

by (14). Further, putting q, = (0, +0.s, :Oyx, » Orx, )
and comparing (13) to (5) gives:

q, =-2a, AB™ (15)
So, we have the estimates of m, a;, and g, for each

with 2% given

configuration x,, . So, when the configurations vary, say,
from 1 to r, we obtain m',...,m" possbly different
estimates for m, and the same for a , and ¢ . Let us
put d, the cadinal of configurations of type 1,.., d,
the cadina of configurations of type r (we have
d, +...+d, =n). Then we take & fina estimates the
means of the estimates associated with particular con-
figurations x,, :

“ 1¢

m==ydm, 16
. nZ m (16)

~ 1

a==-VYda, 1
1 ng [ | (7)

~ 1 .

qij = E Z diqij (18

Finaly, the whole gproach can be summarized in the
foll owing steps:
(8) Estimation of a, using Derin and Elli ott method,

(b) For ead configuration x,, estimation of means
m, ~and variance-covariance matrices ', ~ with (11)
and (12);

(c) For eadh configuration X, , computationof m, a,_

and QXS = (QXSX‘l YQXSX(2 ’qxsx‘3 ’qxsxt4 ) Wlth (13) and (15)1

(d) Calculation of fina q;, a and m with (16)-(18)
applied to the estimates obtained from r configurations
of x, used.

Let us notice that it is not necessary to take dl the con-
figurations x, into acwunt. For example, one wuld

dedde to consider the only configurations with no more
than two classes.

The estimator ézé(z) above will be cdled “new

method from complete data” (NMCD), and its use inside
ICE will be cdled “new method from incomplete data”
(NMID).

4. UNSUPERVISED IMAGE SEGMENTATION

We present below the results of two series of experi-
ments. The first series concerns smulated PMF with the
energy given by (3). Considering two classs, the pa
ra'meter iS: 9 :(al!a2'a1'a2'ml'mz!qu'qzz!qlz)' The
aim here is to make different comparisons in the unsu-
pervised image segmentation context. The first point of
interest is to compare the estimates obtained with the
four methods SGCD, SGID, NMCD and NMID consid-
ered. The seaond one is to look how these different es-
timates ad upon the unsupervised segmentation methods
based on them.

We performed two series of experiments, ead of which
having contained numerous and various stuations.

The first series concerns smulated PMF. One result is
presented in Table 1 and the mrresponding images are
presented in Figure 2. Roughy spe&ing, we can put
forth the foll owing conclusions :

(i) the estimates SGCD and NMCD are of comparable
efficiency. The latter is rather a good e, even in the
case of very strong moise. In particular, there is littl e dif-
ference when segmenting the noisy image with red pa-
rameters or with the estimated ones;

(i) the estimate NMID works better than SGID in every
kind of situations. When the noise is not too strong, their
efficiency can be @mparable; but, when it is grong,
NMID can be significantly better than SGID.

In the cae of SG estimation, 15 iterations have been
used from the complete data and 30 iterations from the
incomplete data. In the proposed parameter estimation
method, 30 iterations have been used in ICE.

The second series concerns two classes images cor-
rupted with a crrelated noise. Let us consider a“ ring’

image orrupted with a synthetic Gausdan correlated
noise. So, we have apartial knowledge éout the model,
or gtill the data correspond pertialy to PMF above (we
only know that the noise is correlated and Gaussan).
Such models are interesting because studying them al-
lows one to understand how the methods work when the
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used model goes away from theoretical one. In other
words, such studies provide some knowledge about the
robustness of the methods considered.

So, we consider the two-classes image “ Ring”, which is
noisy with a correlated noise. The observed Y, is then
obtained from an independent noise W = (W,)s by

averaging on the four nearest neighbors :
1
Y.==W, +$§ W 19
=g W ; () (19)

So, first W, (for each tO'S) is drawn with the Gaussian
distribution N(m,,c?) if x is white, and with the
Gaussian distribution N(m,,0?) if x is black, and
then Y, is calculated, for each sOS, using (19). Of

course, such a correlated Gaussian field is not a Markov
one and thus the model considered is not of PMF kind ,
in which p(y|x) isa Markov distribution, considered in
the previous subsection.

As for the first series, we performed numerous experi-
ments and some results, representatives of the different
results obtained, are specified in Table 2. They corre-

spond to m =0., m, =05, o/ =0 =1, which is a
very strongly noisy case. In the whole, analogous con-

(b)
ErrorRate=12.23%

(©

ErrorRate=48.67%

Figure 2. (a) : simulated PMF. (b) and (c) : new method
and SG based unsupervised segmentations (columns
NMID and SGID in Table 1). Real parameters based
Error Rate =11.53%

clusions to those specified in the previous sub-section NM SG
hold. In general, SGCD and NMCD are quite efficient, NMCD NMID SGCD SGID
even in the very noisy cases. When considering the in- a, 2.01 112 242 231
complete dafta si_tuation, NMID _vvorks bettq than SGID. a, 201 107 241 23
We present in Figure 3 the two images obtai r_1ed by Bay- 2 73 847 519 38
esian MPM based on SGID and NMID estimates. We
have chosen an extreme case; in many others the differ- a, 7.61 8.55 511 3.36
ence between the two methods is less striking. m, 0. 0. 0. 0.
RV NMCD NMID SGCD SGID m, 0.47 0.55 0.47 0.15
a, 2 211 111 2.36 1.75 a, -0.5 -0.5 -0.32 0.
a, |2 2.02 103 2.35 175 q, 049 -05 017 [-05
a 1. 0.96 111 0.91 0.91 Ui 0. 0. 0. 0.
a, 1. 0.98 1.13 0.86 0.83 ER 7.15% 14.59% 7.72% 62.53%
m, 0. 0.01 0. 0.01 0.2
Table 2. Results corresponding to Image "ring".
m, |t 0.97 114 108 04 NMCD : estimated values using complete data, NMID :
q, |04 -0.37 -0.41 -0.32 -0.41 estimated values with NM and ICE using incomplete
data, SGCD: estimated values with SG using complete
O, |04 0.38 041 032 03 data, SGID: estimated values with SG using incomplete.
q, |O 0. 0. -0.01 0. data. ER: error rate using MPM based on estimated pa-
ER | 11.53% | 11.65% |12.23% |12.40% |48.67% rameters.

Table 1. Results corresponding to Figure 2. Real values
of parameters (RV), estimates from complete data with
NM (NMCD), estimates from observed data with NM and
ICE. (NMID), estimates from complete data with
(SGCD), estimates from observed data (SGID), and error
ration (ER) of MPM segmentation.
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-

“NMID : ER=14.5%%

SGID T ER=6253%

Figure 3. Image "ring", its noisy version, and two
Bayesian MPM segmentation results based on
parameters estimation by NMID and SGID, re-
spectively

5. CONCLUSIONS

The Hidden Markov Fields model find numerous appli-
cdions in various problems occurring in image proc-
esdng. In such models, the hidden field X isa Markov
one, and, when the noise in not too complex, its poste-
rior distribution remains a Markov distribution. The lat-
ter property isvital, becaise it allows oneto simulate X
and thus apply different Bayesian processng methods.
However, when willing model texture by a Markov
noise, such a noise istoo complex and thus the posterior
distribution is no longer a Markov one. To remedy this,
in Pairwise Markov Fields (PMF) one diredly assumes
that the wuple (hidden field, observed field) is a
Markov field. Although X is possbly no longer a
Markov field in such models, they still allow one to re-
cover the hidden processfrom the observed one.

In this paper we tadkled the problem of parameter esti-
mation. We proposed two origina methods based on
Stochastic Gradient (SG) and Iterative Conditiona Es-
timation (ICE), the latter being assciated with an origi-
nal generalizaion of Derin’'s et al. method. The genera
conclusion is that the ICE based method is faster and
more dficient than the SG based one. In particular, the
ICE based estimation is close to the estimation obtained
from complete data, which attests that the use of ICE is
interesting in the cntext considered.

As perspedive, we may view different use of the new
parameter estimation method in more mmplex TMF,
and their applicdions in red image unsupervised seg-
mentation.
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