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ABSTRACT

Hidden Markov models (HMM), like dains or trees
considered in this paper, are widely used in different
situations. Such models, in which the hidden process X is
a Markov one, alow one etimating the latter from an
observed process 'Y, which can be seen as a noisy version
of X. This is possble once the distribution of X
conditional on Y isa Markov distribution. These models
have been recently generalized to Pairwise Markov models
(PMM), in which one a&sumes the markovianity of
(X,Y), and Triplet Markov models (TMM), in which the

distribution of (X,Y) is the margina distribution of an
Markov model (X,U,Y). Inthis paper we propase further
generadizaion of TMM by considering that (X,U,Y) isa
Markov model with resped to (X,U), but is not
necessrily aMarkov one with resped to Y . We show that

in such models, cdled “partialy Markov”, classcd
restoration algorithms remain valid.

1. INTRODUCTION

Let S be afinite set and X = (X )gs, Y =(Y.)gs twO

stochastic processes. The problem is to estimate X =x
fromY =y.Theset S can be seen as a set of nodesin a

network, and thus X =x is 9sme “hidden” state of the
network that we have to estimate from its “observed” state
Y =y. When the distribution of Z =(X,Y) is smple
enough X =x can be estimated from Y =y by some

Bayesian methods. We ded in this paper with two
particular cases of increasing generdity : Markov chains
and Markov trees. The simplest models, which are widely
used in various stuations, are Hidden Markov Chains
(HMC) and Hidden Markov Trees (HMT). Receantly they
have been first generalized to Pairwise Markov Chains
(PMC [2, 9]) and Pairwise Markov Trees (PMT [5, 6]),
and then to Triplet Markov Chains (TMC [7]) and Triplet
Markov Trees (TMT [10]). Roughy spe&king, in a Triplet
Markov Mode (chain or tred, the distribution of
Z =(X,Y) is a margina distribution of T =(X,U,Y),

which is asaumed to be aMarkov model and where U isa
latent process One can then show that when U is not too
complex, classcd cdculus used in HMC and HMT can be
adapted and thus different quantities of interest can be

cdculated. In particular, p(xs|y) is computable, which

makes possible the application of the Bayesian Maximum;
Posterior Mode (PMP) restoration method.

The am of this paper is to introduce a further
generaization of TMC and TMT, called Partially TMC
(PTMC) and Partially TMT (PTMT). Roughly speaking,
different calculus of interest can be performed once
(X,U) is Markovian conditionally on Y =y . Thisis true
when T =(X,U,Y) isaMarkov process [7]; however, the

latter is not necessary and thus, relaxing it, we arrive to
more general context.

2. TRIPLET PARTIALLY MARKOV CHAINS
2.1 Pairwiseand Triplet Markov chains

Let us briefly recall Pairwise and Triplet Markov chains
(PMC and TMC) models. Let X =(X,,...X,),

Y =(Y,,...,Y,) betwo stochastic processes, where X =x
is not observable and has to be estimated from Y =y. In
the classical HMC model the distribution of Z =(X,Y) is

P(2) = P%) P(X%[X,) - PO X, 1) POY[X) - PV X,) . which

means that X is a Makov chan with
P9 = P(X) POG[X,) - PO X1 and
P(YIX) = P(Y1]%,) .- P(Y4|X,) - In PMC model one assume
the markovianity Z=(X,Y),
P(2) = p(z) P(2,|7,)... P(Z,|Z,1) - PMC is strictly more
general that HMC becausein PMC X is not necessarily a
Markov process [9]. In TMC model one assumes that the
ditribution of Z =(X,Y) isthe margina distribution of a
Markov chain T =(X,U,Y). In an analogous manner that
above, TMC is strictly more general that PMC because in
TMC Z =(X,Y) isnot necessarily aMarkov process[7].

which means that
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PMC have been studied for discrete X [2] and continuous
one[1, 8] aswell, and the same has been done for TMC in
[5, 7] and [4, 5], respectively.

2.2 Pairwiseand Triplet Partially Markov Chains

Let us directly deal with Triplet Partially Markov chains,
the Pairwise ones appearing as a particular case of the
latter. So, let T =(X,U,Y)=(X,,U;,Y,.... X,,,U,.,Y,)

be atriplet process, where X =(X,,..., X,,) is the hidden
process we look for, Y =(Y,,...,Y,) is the observed
process, and U =(U,,...,U.) is an auxiliary, possibly

without physical existence, process. To fix things, we will
assume that X, takes its values in a finite set
Q ={wl,...,wk}, eah U, takes its values in a finite set
A={A,...A,}, and eath Y, takes its values in R.

Further, let usput V = (X,U) = (X,U,,....X,,U,).
Definition 1

The triplet process T =(X,U,Y) will be cdled “Triplet
Partially Markov Chain” (TPMC) if for ead 1<i <n-1,

p(ti+1|tl""'ti) = p(ti+l|vi Y i) (21)

We seehow a TPMC is more genera that a TMC: in the
latter, we have p(t;,qft;,....t;) = Pt t;) -

To show that TPMC has good goperties we will need the
following lemma.

Lemmal

Let W=(W,,....W,) be aprocesswith eath W, taking its
values in afinite set. W is a Markov chain if and only if

there eist positive functions q, , ..., ¢, suchthat
PWy, W, ) O 0 (W, W5 ) ...l (W1, W) (2.2)
Further, q,, ..., q, define the transitions p(w.,,|w;) and

the marginas p(w;) via the following “forward” and
“baowvard” quantiti es, cdculated reaursively with :

a,(w) =1, a;,, (W) = Z g (W, Wi ) (W) (23)

Ba(Wo) =1, Bi(W) = Qg (Wi W) Bra(We) - (24)

We have

p(Wi+1|Wi) = O (W, W) Bis (Wi ) B (W) (25)
and
p(w;) =a;(W)B, (wi)/zai (W ")B; (W) (2.9)

This lemma, whose proof is quite dasscd, alow us to
state the foll owing propasition

Proposition 1

Let T=(X,U,Y) be a TPMC verifying (2.1). Then
V =(X,U) is a Markov chain conditionally on Y.
Further, the transitions p(v;,,

v,,y) and the marginal
distributions p(v;|y) are omputable.

Proof. According to (2.1) we can write

P(ty,nity) = P(t) P(t[t) Pt [ty L) - P(ta [ty - ts) =
POV, Y1 Voo ¥2) POV, YaVa, Vi ¥2) oo POV YilVis Vi Yica)
On the one hand, we have p(v| y) Op(t,,...,.t,) and, onthe
other hand, putting

o (Vi, V) = P(Ves Y1, V2, Ya)

05 (V2 V) = p(vs, y3|V2, YirYa)s ooy

O (Voss Vi) = PV, yn|Vn—1v Yir-o1Yna)

we have

Pty --tn) = 0 (Vi, Vo) Gs (V2 V) -Gy (Vg Vi) -

So p(vy) Od, (V;,V,) 05 (V2. Vs) -Gy (Vo V,) » and thus it
is a Markov chain, with cdculable transitions and
marginals, from Lemma 1.

Remarks

1. According to (2.5) and the definition of q,,(v,V,,;)
vi,Y)
depends on al vy,,...,y,. In classicd HMC, PMC and
TMC it depends on vy,,...,y,, but does not depend on
Yoo Vi

above we seethat in a TPMC the transition p(v.,,

2. Pairwise Partially Markov chain (PPMC) is a particular
case of TPMC in which X =U (this means that V = X
and thus there is no latent process.

3. If we consider a PEMC (in which (2.1) is replaced by
P(Za|Z11-0Z) = P(Za] X Yicg oo Y;) 5 TeCAEl tha V = X
and Z =(X,Y)), we find a particular case of the high
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order hidden Markov chains, successfully applied in
image segmentation in [3].

4. The continuous state case, where V;, =(U,, X;) take

their valuesin R™ and Y, take their valuesin R", could
also be considered. For example, the recursive calculus of
P(X, |11 Ya) (€ither Kalman or particle filtering) is

possible in PMC [1, 8] and TMC [4] as well. So, these
different methods would be generalized to TPMC in an
analogous manner that the generalization described above
in the case of discrete hidden state.

3. TRIPLET PARTIALLY MARKOV TREES

Let S be a finite set of points and X =(X,)g¢s,
Y =(Y,) o5 two stochastic processes indexed on S. Each
X, tekes its values in a finite set Q :{wl,...,wk}, and
each Y, takesits valuesin the set of real numbers R. Let
S', .., S" be a partition of S representing different
« generations ». Each s00S' admits s 0 S (called his
« children ») in such away that every element of t0S'*
has a unique « parent » t~0S'. We assume that S' is a
singleton (itselement s, is called « root »). Then we have

four models with increasing generality [4, 5, 10]:

(i) the classical Hidden Markov Tree (see [11] for arich

bibliography) with independent noise (HMT-IN), in which

p(X) = p(Xs ) |'| P(X|X. ) (which means that X is a
sis-st

Markov tree), and p(y|x) = |_| P(Ys|X,) - Thus

sOS

P(2) = PO )P(Ys [s) [ POKfX)PYIx): (B.1)

(ii) the Hidden Markov Tree (HMT), in which X is a
Markov tree as above and the pairwise process
Z=(Z,)gs, Where Z_,=(X,,Y,), is a Pairwise Markov

Tree (PMT) [5], which meansthat its distribution verifies

P =p(z,) [] Pz

ss-st

z.); (3.2

(iii) the PMT Z =(Z,) s Verifying (3.2);

(iv) the Triplet Markov Trees (TMT [7]), in which one
introduces a latent variable U = (U,). . and assumes that
the triplet T =(X,U,Y) is a Markov tree (i.e., verifies
(3.2) with t = (x,u,y) instead of z=(x,Y)).

Remark

Let us remark that the greater generality of PMC with
respect to HMT-IN appears localy at the transition

probability level. In fact, as p(z|z.) in (3.2) can be

written p(zg|z. ) = p(Xs, Ys|X» Yo ) =
= P(Xg[X. Y )P(Ye[Xer X, Y, ), We seethat HMT-IN isa
PMT  such  that  p(x|x .Yy, )=p(x]x, ) and

P(Ye[Xer X s Vi) = P(Ye[X,) -

As above, we will directly consider TMT and generalize
them to Triplet Partially Markov Trees (TPMT). As
above, we will assume that each U, takes its values in a

finiteset A ={A,,...A,}.

Definition 2

Thetriplet process T = (X,U,Y) = (X,,U,,Y,) s Will be
called “Triplet Partially Markov Tree” (TPMT) if for each
1<i<n-1wehave

p(ti+1t1,...,ti) - p(ti+1 Vi , yll.", yl)

(3.3)

i+l

p(tiﬂvi,yl,...,yi)): |_I p(vsly Vs”yl""'yi)

SISt

We see how a TPMT generalizes TMT: in the latter, we

have pt™t,...t") = pt™ V', y')), and pt"',y')) =
[T POVer Yolvy o ¥y ) -
g]sl*»l

Asfor TPMC above, we have the following lemma.
Lemma 2
Let S be a finite set structured as above and let

W =(W"*,..,W") be a process with each W' = (W)

and each W, taking its values in a finite set. W is a

Markov tree if and only if there exist positive functions
d,, ... 0, suchthat

s !

p(wh,...,w™) O g, (W', w?)...q, (W"™,w") , with (3.4)

qi+1(Wi 1Wi+l) = |_| qi+1(Wi51Wti+l) (35)

s0S',t0s™
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Further, the transitions p(w,

w_) and the marginas
p(w,) canbe cdculated from g, , .., g, inthefollowing
way.

Let B(w,)=1for s" =0 (sOS"),and
B(w) = |_|(Z a(ws, W) B(w,) for s™ # 0 (3.6)

s W

The transitions p(w;

w_ ) arethen given by

q(wg-, we) B(ws)

)= 3.7
p(W,|w,.) S q(w,w,)Bw,) (37)
Otherwise, the marginals p(w,) are given by

a(wg) B(w,)
= SIPRTS) 3.8
P = S awy) Bow,) ©9

where a(w,) is cdculated by (2.4), using the unique
sequence of nodes s, .., s; such that s; =s, ..,
S,=S , ... S =5, (the sequence is the sequence of
succesgve parents, urtil the root).

Proposition 2

Let T=(X,U,Y) be a TPMT verifying (3.3). Then
V =(X,U) isaMarkov tree onditionally on Y . Further,
the transitions p(vi+l|vi,y) and the marginal distributions

p(v;|y) are computable.

Asfor Propasition 1, the proof uses Lemma 2.

4. CONCLUSIONS

We proposed in this paper two new models, cdled Triplet
Partially Markov Chains (TPMC) and Triplet Partialy
Markov Trees (TPMT). More genera that the Triplet
Markov Chains (TMC) and Triplet Markov Trees (TMT),
they till allow one to estimate the hidden state from the
observed ore.

As further research we may mention the possbiliti es of
extending the proposed models to more complex Markov
Graphicd models, with the assciated methods of hidden
processrestoration.

5. REFERENCES

[1] N. Caylus, A. Guyader, and F. LeGland, Particle filters
for partially observed Markov chains, IEEE Workshop on
Satigtical Sgnd Processng (S 2003, Saint Louis,
Misouri, September, 28-October 1, 2003

[2] S. Derrode aad W. Piecynski, SAR image
segmentation using generalized Pairwise Markov Chains,
SPIE's Internationd Symposium on Remote Sensing,
September 22-27, Crete, Greece 2002

[3] S. Derode, C. Carincotte, and S. Bourennane,
Unsupervised image segmentation based on high-order
hidden Markov chains, Internationd Conference on
Acoustics, Speet and $gnd Processng (ICASS 04),
Montréd, Canada, 2004

[4] F. Desbouvries and W. Piecznski, Particle Filteringin
Pairwise and Triplet Markov Chains, Procealings of the
IEEE — EURASIP Workshop on Nonlinear Sgnd and
Image Processng (NSIP 2003, Grado-Gorizia, Italy, June
8-11, 2003

[5] E. Monfrini, J. Lecomte, F. Desbouvries, and W.
Pieczynski, Image and Signal Restoration using Pairwise
Markov Trees, IEEE Workshop on $atistical Sgnd
Processng (S 2003, Saint Louis, Missouri, September,
28-October 1, 2003

[6] W. Piecznski, Arbres de Markov Coupe — Pairwise
Markov Trees, CRAS —Mathématique, Paris, Ser. | 335
pp. 79-82, 2002

[7] W. Piecanski, Chaines de Markov Triplet CRAS —
Mathématique, Série I, Vol. 335 Iswue 3, pp. 275278
2002

[8] W. Pieczynski and F. Desbouwies, Kalman Filtering
usng Pairwise Gausdan Models, Internationd
Conference on Acoustics, Speet and $gnd Processng
(ICASS 03), Hong-Kong, April 2003

[9] W. Pieczynski, Pairwise Markov chains, |IEEE Trans.
onPAMI, Vol. 25, No. 5, pp. 634639, 2003

[10] W. Pieczynski, Arbres de Markov Triplet et fusion de
Dempster-Shafer, CRAS — Mathématique, Série I, Val.
336, Iswe 10, pp. 869-872 2003

[11] A. S Willsky, Multiresolution Markov models for
signal and image procesding, Proceealings of IEEE, Vol.
90, No. 8, pp. 13961458 2002



