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ABSTRACT

Hidden Markov models (HMM), like chains or trees
considered in this paper, are widely used in different
situations. Such models, in which the hidden process X  is
a Markov one, allow one estimating the latter from an
observed process Y , which can be seen as a noisy version
of X . This is possible once the distribution of X
conditional on Y  is a Markov distribution. These models
have been recently generalized to Pairwise Markov models
(PMM), in which one assumes the markovianity of

),( YX , and Triplet Markov models (TMM), in which the

distribution of ),( YX  is the marginal distribution of an

Markov model ),,( YUX . In this paper we propose further

generalization of TMM by considering that ),,( YUX  is a

Markov model with respect to ),( UX , but is not

necessarily a Markov one with respect to Y . We show that
in such models, called “partially Markov” , classical
restoration algorithms remain valid.

1. INTRODUCTION

Let S  be a finite set and SssXX ∈= )( , SssYY ∈= )(  two

stochastic processes. The problem is to estimate xX =
from yY = . The set S  can be seen as a set of nodes in a

network, and thus xX =  is some “hidden” state of the
network that we have to estimate from its “observed” state

yY = . When the distribution of ),( YXZ =  is simple

enough, xX =  can be estimated from yY =  by some

Bayesian methods. We deal in this paper with two
particular cases of increasing generality : Markov chains
and Markov trees. The simplest models, which are widely
used in various situations, are Hidden Markov Chains
(HMC) and Hidden Markov Trees (HMT). Recently they
have been first generalized to Pairwise Markov Chains
(PMC [2, 9]) and Pairwise Markov Trees (PMT [5, 6]),
and then to Triplet Markov Chains (TMC [7]) and Triplet
Markov Trees (TMT [10]). Roughly speaking, in a Triplet
Markov Model (chain or tree), the distribution of

),( YXZ =  is a marginal distribution of ),,( YUXT = ,

which is assumed to be a Markov model and where U  is a
latent process. One can then show that when U  is not too
complex, classical calculus used in HMC and HMT can be
adapted and thus different quantities of interest can be
calculated. In particular, )( yxp s  is computable, which

makes possible the application of the Bayesian Maximum;
Posterior Mode (PMP) restoration method.
The aim of this paper is to introduce a further
generalization of TMC and TMT, called Partially TMC
(PTMC) and Partially TMT (PTMT). Roughly speaking,
different calculus of interest can be performed once

),( UX  is Markovian conditionally on yY = . This is true

when ),,( YUXT =  is a Markov process [7]; however, the

latter is not necessary and thus, relaxing it, we arrive to
more general context.

2. TRIPLET PARTIALLY MARKOV CHAINS

2.1 Pairwise and Triplet Markov chains

Let us briefly recall Pairwise and Triplet Markov chains
(PMC and TMC) models. Let )...,,( 1 nXXX = ,

)...,,( 1 nYYY =  be two stochastic processes, where xX =
is not observable and has to be estimated from yY = . In

the classical HMC model the distribution of ),( YXZ =  is

)(...)()(...)()()( 111121 nnnn xypxypxxpxxpxpzp −= , which

means that X  is a Markov chain with
)(...)()()( 1121 −= nn xxpxxpxpxp , and

)(...)()( 11 nn xypxypxyp = . In PMC model one assume

the markovianity ),( YXZ = , which means that

)(...)()()( 1121 −= nn zzpzzpzpzp . PMC is strictly more

general that HMC because in PMC X  is not necessarily a
Markov process [9]. In TMC model one assumes that the
ditribution of ),( YXZ =  is the marginal distribution of a

Markov chain ),,( YUXT = . In an analogous manner that

above, TMC is strictly more general that PMC because in
TMC ),( YXZ =  is not necessarily a Markov process [7].
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PMC have been studied for discrete X  [2] and continuous
one [1, 8] as well, and the same has been done for TMC in
[5, 7] and [4, 5], respectively.

2.2 Pairwise and Triplet Partially Markov Chains

Let us directly deal with Triplet Partially Markov chains,
the Pairwise ones appearing as a particular case of the
latter. So, let ),,...,,,,(),,( 111 nnn YUXYUXYUXT ==
be a triplet process, where )...,,( 1 nXXX =  is the hidden

process we look for, )...,,( 1 nYYY =  is the observed

process, and )...,,( 1 nUUU =  is an auxiliary, possibly

without physical existence, process. To fix things, we will
assume that iX  takes its values in a finite set

{ }kωω ...,,1=Ω , each iU  takes its values in a finite set

{ }mλλ ...,,1=Λ , and each iY  takes its values in R .

Further, let us put ),...,,,(),( 11 nn UXUXUXV == .

Definition 1

The triplet process ),,( YUXT =  will be called “Triplet

Partially Markov Chain” (TPMC) if for each 11 −≤≤ ni ,

)...,,,()...,,( 1111 iiiii yyvtptttp ++ = (2.1)

We see how a TPMC is more general that a TMC: in the
latter, we have )()...,,( 111 iiii ttptttp ++ = .

To show that TPMC has good properties we will need the
following lemma.

Lemma 1

Let )...,,( 1 nWWW =  be a process with each iW  taking its

values in a finite set. W  is a Markov chain if and only if
there exist positive functions 2q , …, nq  such that

),(...),()...,,( 12121 nnnn wwqwwqwwp −∝ (2.2)

Further, 2q , …, nq  define the transitions )( 1 ii wwp +  and

the marginals )( iwp  via the following “forward” and

“bacward” quantities, calculated recursively with :

1)( 11 =wα , ∑
+

++++ =
1

)(),()( 1111

iw
iiiiiii wwwqw αα ; (2.3)

1)( =nn wβ , ∑
+

++++=
1

)(),()( 1111

iw
iiiiiii wwwqw ββ . (2.4)

We have

)(/)(),()( 11111 iiiiiiiii wwwwqwwp ββ +++++ = (2.5)

and

∑=
'

)'()'(/)()()(
iw

iiiiiiiii wwwwwp βαβα (2.5)

This lemma, whose proof is quite classical, allow us to
state the following proposition

Proposition 1

Let ),,( YUXT =  be a TPMC verifying (2.1). Then

),( UXV =  is a Markov chain conditionally on Y .

Further, the transitions ),( 1 yvvp ii+  and the marginal

distributions )( yvp i  are computable.

Proof. According to (2.1) we can write
== − )...,,(...),.,()()()...,,( 112131211 nnn tttptttpttptpttp

)...,,,,(...),,,(),,,( 111212332211 −− nnnn yyvyvpyyvyvpyvyvp

On the one hand, we have )...,,()( 1 nttpyvp ∝  and, on the

other hand, putting
),,,(),( 2211212 yvyvpvvq = ,

),,,(),( 21233323 yyvyvpvvq = , …,

)...,,,,(),( 1111 −−− = nnnnnnn yyvyvpvvq

we have
),(...),(),()...,,( 13232121 nnnn vvqvvqvvqttp −= .

So ),(...),(),()( 1323212 nnn vvqvvqvvqyvp −∝ , and thus it

is a Markov chain, with calculable transitions and
marginals, from Lemma 1.

Remarks

1. According to (2.5) and the definition of ),( 11 ++ iii vvq

above we see that in a TPMC the transition ),( 1 yvvp ii+

depends on all nyy ...,,1 . In classical HMC, PMC and

TMC it depends on ni yy ...,, , but does not depend on

11 ...,, −iyy .

2. Pairwise Partially Markov chain (PPMC) is a particular
case of TPMC in which UX = (this means that XV =
and thus there is no latent process).

3. If we consider a PPMC (in which (2.1) is replaced by
)...,,,()...,,( 111 iriiiii yyxzpzzzp −++ = ; recall that XV =

and ),( YXZ = ), we find a particular case of the high-
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order hidden Markov chains, successfully applied in
image segmentation in [3].

4. The continuous state case, where ),( iii XUV =  take

their values in NR  and iY  take their values in qR , could

also be considered. For example, the recursive calculus of
)...,,( 1 nn yyxp  (either Kalman or particle filtering) is

possible in PMC [1, 8] and TMC [4] as well. So, these
different methods would be generalized to TPMC in an
analogous manner that the generalization described above
in the case of discrete hidden state.

3. TRIPLET PARTIALLY MARKOV TREES

Let S  be a finite set of points and SssXX ∈= )( ,

SssYY ∈= )(  two stochastic processes indexed on S . Each

sX  takes its values in a finite set { }kωω ...,,1=Ω , and

each sY  takes its values in the set of real numbers R . Let
1S , …, nS  be a partition of S  representing different

« generations ». Each iSs∈  admits 1++ ⊂ iSs  (called his

« children ») in such a way that every element of 1+∈ iSt

has a unique « parent » iSt ∈− . We assume that 1S  is a
singleton (its element rs  is called « root »). Then we have

four models with increasing generality [4, 5, 10]:
(i) the classical Hidden Markov Tree (see [11] for a rich
bibliography) with independent noise (HMT-IN), in which

∏
−∈

−=
1

)()()(
SSs

sss xxpxpxp
r

 (which means that X  is a

Markov tree), and ∏
∈

=
Ss

ss xypxyp )()( . Thus

∏
−∈

−=
1

)()()()()(
SSs

sssssss xypxxpxypxpzp
rrr

; (3.1)

(ii) the Hidden Markov Tree (HMT), in which X  is a
Markov tree as above and the pairwise process

SssZZ ∈= )( , where ),( sss YXZ = , is a Pairwise Markov

Tree (PMT) [5], which means that its distribution verifies

∏
−∈

−=
1

)()()(
SSs

sss zzpzpzp
r

; (3.2)

(iii) the PMT SssZZ ∈= )(  verifying (3.2);

(iv) the Triplet Markov Trees (TMT [7]), in which one
introduces a latent variable SssUU ∈= )(  and assumes that

the triplet ),,( YUXT =  is a Markov tree (i.e., verifies

(3.2) with ),,( yuxt =  instead of ),( yxz = ).

Remark

Let us remark that the greater generality of PMC with
respect to HMT-IN appears locally at the transition

probability level. In fact, as )( −ss zzp  in (3.2) can be

written == −−− ),,()(
ssssss yxyxpzzp

),,(),( −−−−=
sssssss yxxypyxxp , we see that HMT-IN is a

PMT such that )(),( −−− =
sssss xxpyxxp  and

)(),,( ssssss xypyxxyp =−− .

As above, we will directly consider TMT and generalize
them to Triplet Partially Markov Trees (TPMT). As
above, we will assume that each iU  takes its values in a

finite set { }mλλ ...,,1=Λ .

Definition 2

The triplet process Sssss YUXYUXT ∈== ),,(),,(  will be

called “Triplet Partially Markov Tree” (TPMT) if for each
11 −≤≤ ni  we have:

)...,,,()...,,( 1111 iiiii yyvtptttp ++ =

(3.3)

∏
+

−

∈

++ =
11

)...,,,,())...,,,( 1111

Ss

i
s

i
s

iii yyvyvpyyvtp

We see how a TPMT generalizes TMT: in the latter, we

have ),()...,,( 111 iiiii yvtptttp ++ = ), and =+ )),( 1 iii yvtp

∏
+

−−

∈ 11

),,(
Ss

ssss yvyvp .

As for TPMC above, we have the following lemma.

Lemma 2

Let S  be a finite set structured as above and let

)...,,( 1 nWWW =  be a process with each iSs
i

s
i WW ∈= )( ,

and each i
sW  taking its values in a finite set. W  is a

Markov tree if and only if there exist positive functions

2q , …, nq  such that

),(...),()...,,( 121
2

1 nn
n

n wwqwwqwwp −∝ , with (3.4)

∏
=∈∈

+
+

+
+ =

stSs

i
t

i
si

ii
i

i

wwqwwq
,

1
1

1
1 ),(),( (3.5)
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Further, the transitions )( −ss wwp  and the marginals

)( swp  can be calculated from 2q , …, nq  in the following

way.

Let 1)( =swβ  for ∅=+s  ( nSs∈ ), and

∏ ∑
+∈

=
st w

ttss

t

wwwqw )(),(()( ββ for ∅≠+s (3.6)

The transitions )( −ss wwp  are then given by

∑ −

−

− =

sw
sss

sss
ss wwwq

wwwq
wwp

)(),(

)(),(
)(

β
β

(3.7)

Otherwise, the marginals )( swp  are given by

∑
=

sw
ss

ss
s ww

ww
wp

)()(

)()(
)(

βα
βα

(3.8)

where )( swα  is calculated by (2.4), using the unique

sequence of nodes 1s , …, js  such that ss j = , …,
−

− = ii ss 1 , …, rss =1  (the sequence is the sequence of

successive parents, until the root).

Proposition 2

Let ),,( YUXT =  be a TPMT verifying (3.3). Then

),( UXV =  is a Markov tree conditionally on Y . Further,

the transitions ),( 1 yvvp ii +  and the marginal distributions

)( yvp i  are computable.

As for Proposition 1, the proof uses Lemma 2.

4. CONCLUSIONS

We proposed in this paper two new models, called Triplet
Partially Markov Chains (TPMC) and Triplet Partially
Markov Trees (TPMT). More general that the Triplet
Markov Chains (TMC) and Triplet Markov Trees (TMT),
they still allow one to estimate the hidden state from the
observed one.
As further research we may mention the possibiliti es of
extending the proposed models to more complex Markov
Graphical models, with the associated methods of hidden
process restoration.
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