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ABSTRACT

This work deals with the statistical restoration of hidden
discrete signals. The problem we deal with is how to take
into account, in recent pairwise and triplet Markov chain
context, complex noises that can be non-Gaussian,
correlated, and of class-varying nature. We propose to
solve this modeling problem using Copulas. The interest
of the new modeling is validated by experiments
performed in supervised and unsupervised context. In the
latter, all parameters are estimated from the only observed
data by an original method.

1. INTRODUCTION

Let )...,,( 1 nXXX =  is a stochastic process modeling a

hidden discrete signal (each iX  takes its values in a finite

set { }k...,,1=Ω ), and let )...,,( 1 nYYY =  be a stochastic

process modeling the observations (each iY  takes its

values in the set of real numbers R ). The problem is then
to estimate xX =  from yY = . Different Bayesian

methods are then very useful tools, once the both process
X , Y  are linked by the mean of some appropriate joint
distribution ),( yxp . The hidden Markov chain (HMC)

model, in which this distribution is written

)(...)()(...)()(),( 111121 nnnn xypxypxxpxxpxpyxp −= (1.1)

is among the most widely used. The name “HMC” is due
to the fact that the hidden process X  is a Markov one.
Further, given that (1.1) implies the independence of 1Y ,

…, nY  conditionally on X , we will call the model (1.1)

HMC with independent noise (HMC-IN).
More recently, this model has been generalized to the so-
called “pairwise Markov chain” model, in which the
pairwise process )...,,( 1 nZZZ = , with ),( 111 YXZ = , …,

),( nnn YXZ =  is a Markov chain [7]. Thus we have:

)(...)()()( 1121 −= nn zzpzzpzpzp (1.2)

One can then easily see that HMC-IN are PMC (with
)()()( 1111 xypxpzp =  and =++ ),,( 11 iiii yxyxp

)()( 111 +++ iiii xypxxp ), but PMC are not necessarily HMC-

IN [7]. In fact, in PMC we have
),,(),(),,( 11111 iiiiiiiiiii yxxypyxxpyxyxp +++++ =  and so we

can say that HMC-IN are particular PMC in which
)(),( 11 iiiii xxpyxxp ++ = , )(),,( 1111 ++++ = iiiiii xypyxxyp .

Otherwise, in PMC the process X  is not necessarily a
Markov one [7]. However, likely to HMC-IN [1], PMC
can be used to estimate xX =  from yY =  by different

Bayesian methods and first results are encouraging [3].
In fact, considering the same “forward” probabilit y

)...,,,()( 1 iii yyxpx =α , and the new, more general,

“backward” probabilit y ),...,,()( 1 iinii yxyypx +=β , we

have analogous recursions

)()()( 1111 xypxpx =α , and

)()()( 11 ii
x

ii zzpxx
i

+
Ω∈

+ ∑= αα  for 11 −≤≤ Ni  ; (1.3)

1)( =Nxβ , and

)()()( 11

1

ii
x

ii zzpxx
i

+
Ω∈

+∑
+

= ββ , for 11 −≤≤ Ni (1.4)

As for each ni ≤≤1 , )()()...,,( 1 iini xxyyxp βα∝ , the

latter can be calculated and thus the Bayesian MPM
method given by )ˆ...,,ˆ()...,,(ˆ

11 nnMPM xxyys = , with

)...,,(maxargˆ
1 ni

x
i yyxpx

i Ω∈
= (1.5)

can also be calculated.
Otherwise, we have

)()()()...,,,( 1111 +++ ∝ iiiinii xzzpxyyxxp βα , (1.6)
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which gives )...,,,( 11 nii yyxxp +  and thus allows one to

simulate X  according to its posterior distribution )( yxp .

Further, these estimations of xX =  can be made in an
unsupervised manner, where all parameters of the PMC
used are estimated from yY =  [3].

2. COPULAS IN HMC-CN, PMC, AND TMC

2.1 Copulas in PMC.

Let us begin by the PMC, which are of a mid generality
and which correspond to the experiments described in
Section 4. The HMC with correlated noise (HMC-CN)
will t hen appear as a particular case of PMC, and the
TMC case will appear an extension of the PMC.
Let )...,,( 1 nZZZ =  be a PMC verifying (1.2). The

distribution )(zp  is also defined by ),( 21 zzp , …,

),( 1 nn zzp − , once for each 12 −≤≤ ni , ),( 1 ii zzp −  and

),( 1+ii zzp  give the same marginal distribution )( izp . The

latter is in particular ensured by the condition
),(),( 11 −− = iiii zzpzzp  for each ni ≤≤2 , which will be

assumed in the following. Further, assuming that
),( 21 zzp , …, ),( 1 nn zzp −  are equal, the distribution )(zp

of a PMC Z  is given by ),( 21 zzp . Writing

),,(),(),( 21212121 xxyypxxpzzp = , we see that the

distribution )(zp  is defined by a probabilit y ),( 21 xxp  on

{ }22 ...,,1 k=Ω , and 2k  probabiliti es on 2R . To simpli fy,

let us put ),,(),( 212121 jxixyypyypij === . Let us

assume that for each kji ≤≤ ,1 , the density

),()( 2111 jxixypypij ===  (which are equal to

),( 122 jxixyp == ) and the density

),()( 2122 jxixypypij ===  (which are equal to

),( 122 ixjxyp == ) are known and their correlation ijρ  is

given. Of course, in the Gaussian case this gives
),( 21 yypij  but in general case numerous different

),( 21 yypij  define the same )( 1ypij , )( 2ypij , and ijρ . So,

when using the PMC model in non Gaussian context the
following question can arise in real situations: having

)( 1ypij , )( 2ypij , and ijρ , how to define ),( 21 yypij ? The

theory of copulas responds, often in a very neat manner,
such questions [4, 8].
The main result of the theory of copulas is the following.
Let ),( 21 yyh  be a probabilit y density on 2R , H  the

associated pdf function, )( 11 yh  and )( 22 yh  the marginal

densities, and 1H , 2H  the pdf functions associated with

them. Then there exist a function C  defined on 2]1,0[

such that

))(),((),( 221121 yHyHCyyH = (2.1)

Deriving (2.1) with respect to 1y , 2y  and introducing

vu

vuC
vuc

∂∂
∂∂= ),(

),( , we have

))(),(()()(),( 2211221121 yHyHcyhyhyyh = (2.2)

Conversely, having 1H , 2H  and a copula C , one can use

(2.1) to define H . So, a given H  pdf on 2R  defines a
copula C  with (2.2), and this copula can also be used to
define any another 'H  from any another '1H , '2H .

Example 2.1
As an example, let us consider the Gaussian copulas. Let

),( 21 yyh  be Gaussian with correlation ρ  and marginal

distributions having null means and variances equal to
one. (2.1) and (2.2) then define a “Gaussian bivariate
copula” by

))(())((

))(),((
),(

1
22

1
11

1
2

1
1

vHhuHh

vHuHh
vuc −−

−−

= (2.3)

So, a bivariate Gaussian copula is defined by just one
parameter, which is the correlation ρ .

Finally, let 1Y , 2Y  be two real random variables with pdf

1F , 2F , and 1f , 2f , the corresponding densities. Using

(2.3), we can define a density for the distribution of
),( 21 YY  by

)))((()))(((

)))(()),(((
)()(),(

22
1

1111
1

11

22
1

111
1

1
221121 yFHhyFHh

yFHyFHh
yfyfyyf −−

−−

= (2.4)

Further, when ),( 21 YY  is Gaussian, (2.4) gives again its

distribution.
So, in a PMC, we can apply (2.4) 2k  times to

)( 1ypij , )( 2ypij , and ijρ  (remember that )( 1ypij  and

)( 2ypij  are two different functions). Thus the latter

defines all ),( 21 yypij , which gives, linked with a

distribution ),( 21 xxp  on { }22 ...,,1 k=Ω , the distribution

),,(),(),( 21212121 xxyypxxpzzp = , which finally gives

the distribution of the PMC )...,,( 1 nZZZ = .
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2.2 Copulas in HMC-CN.

As specified above the HMC-IN are the most frequently
used; however, more sophisticated HMC can also be
considered. Let )...,,( 1 nZZZ =  be a PMC verifying the

hypotheses of the previous sub-section. As showed in [7],
)...,,( 1 nXXX =  is then a Markov chain if and only if

)(),( 1 iiiii xypxxyp =−  (or )(),( 1 iiiii xypxxyp =+ ,

given that ),(),( 11 +− = iiiiii xxypxxyp ). This means that

we can have a “hidden” Markov chain, in the sense that
the hidden process X  is a Markov one, in more general
situations than (1.1), in which 1Y , …, nY  are not

independent conditionally on X . For example, in the
Gaussian case, when the mean and the variance of

),( 211 xxyp  only depends on 1x  (and thus it is the same

for the mean and the variance of ),( 212 xxyp ), the hidden

chain X  is a Markov one (the PMC is a HMC), even
when ),( 211 xxyp  and ),( 212 xxyp  are correlated. Of

course, in such simpler situations all that has been said
above subject to copulas in PMC remain valid.

2.3 Copulas in TMC.

The use of copulas in PMC above can be extended to the
so-called “triplet” Markov chains (TMC) model. The
latter consists of introducing a third stochastic process

)...,,( 1 nUUU = , each iU  taking its values in a finite set

{ }mλλ ...,,1=Λ . Thus we have three processes: the hidden

process X , the observed process Y , and a latent process
U . Assuming that the triplet process ),,( YUXT =  is a

Markov chain one can still estimate X  from Y  [6]. In
fact, putting ),( nnn UXV =  and V  the corresponding

process, we see that ),( YV  is a PMC and so different

marginal distributions of V  conditional on Y  can be

calculated. For example, )()(),( i

i

i

i

i vvyvp βα∝  are

calculable, which gives == ∑
Λ∈iu

iii yuxpyxp ),,(),(

∑
Λ∈

=
iu

i yvp ),( , and thus the Bayesian MPM restoration

(1.5) is workable. Otherwise, it is possible to show that
TMC are strictly more general than PMC (PMC are
particular TMC obtained for XU = , but for a given TMC

),,( YUXT = , the pairwise process ),( YXZ =  is not

necessarily a Markov one [6]).
So, as TMC ),,( YUXT =  also is a PMC ),( YV , copulas

can be used as described above. For { }k...,,1=Ω  and the

finite set { }mλλ ...,,1=Λ , there are 2)(km  distributions

),( 21 yypij  (the set Ω  is replaced by Λ×Ω ). These

distributions can then be defined from their marginal
distributions and the correlation coefficients of the latter,
with Gaussian copulas, or any other copulas, as described
above.

3. PARAMETER ESTIMATION

The aim this Section is to propose a method of estimation
of all the parameters θ  from yY = . In the classical

HMC-IN case the classical Expectation-Maximization
(EM [5]) algorithm, which, having started from an initial
value 0θ , produces a sequence of parameters according to

the principle ]),(([maxarg1 yYYXpLogE q

q ==+
θθθ

θ  and

works well in the classical Gaussian HMC-IN case, is
difficult to apply in the context considered. We propose
an original method, which can be seen as an extension of
the “stochastic” EM (SEM [2]), whose principle is:
(i) Simulate qxX =  according to )( yxp qθ

;

(ii) put ),(ˆ1 yxqq θθ =+ , where ),(ˆˆ YXθθ =  is an estimator

of θ  from the complete data ),( YX .

So, we have to find, in the case of Gaussian copulas
considered, 2k  densities )( 1ypij , 2k  densities )( 2ypij , 2k

correlation coefficients ijρ , and the distribution ),( 21 xxp

on { }22 ...,,1 k=Ω . Knowing that X  can be simulated

according to )( yxp  (see Section 1), all we have to do is

to define an estimator ),(ˆˆ YXθθ =  from the complete

data ),( YX .

The parameters ),( 21 xxp  can then be estimated by the

classical “empirical” estimate

1

1...1
),(ˆ ],[],[ 121

−
++

= ==== −

n
jip jxixjxix nn (3.1)

and the correlation coefficients ijρ  can be estimated by

the classical “empirical” correlation coefficients

n

yxyyxy
yx

ixijnixij

ij

n ][

2

][

2

1 1)),(ˆ(...1)),(ˆ(
),(ˆ 1 == −++−

=
µµ

ρ (3.2)

n

yy
yx ixnix

ij
n ][][1 1...1

),(ˆ 1 == ++
=µ (3.3)

Concerning the 2k  densities )( 1ypij , let us assume that

each of them is of a known form, and each of them
depends on some parameters, which can be estimated by
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some estimator. Selecting from ),( 11 yx , ),( 22 yx , …,

),( nn yx  the observations )( r

ij yy =  such that ixr =  and

jxr =+1 , we know that all ry  are produced according to

)( 1ypij , so the sample ijy  can be used to estimate )( 1ypij .

4. EXPERIMENTS

Let us consider the case of two classes, with the two
distributions )( 111 yp , )( 112 yp  being Gamma(3,3),

Gamma(2,2.5), and the two distributions )( 222 yp ,

)( 212 yp  being Weibull(1,1), and Weibull(2,1),

respectively (see their form in Figure 1). The probabilities
),( jip  are 4.0)1,1( =p , 15.0)1,2()2,1( == pp ,

3.0)0,0( =p . In the classical HMC verifying (1), we

assume that )1( 1yp  is Gamma and )2( 1yp  is Weibull

(the parameters are estimated with SEM). According to
the results presented in Table 1, we see that when data
come from a PMC with Gaussian Copula model, the
supervised and unsupervised Bayesian MPM methods
based on this model can be much more interesting than
the same supervised and unsupervised Bayesian MPM
methods based on the classical HMC models. Of course,
this is not surprising when the true parameters are used
because of the very Bayesian theory; however, it remains
when the parameters are estimated, which is interesting
for real applications.

PMC and Copulas model HMC model
Case (a) (b) (c) (b) (c)

1 5.31% 5.25% 6.44% 7.70% 12.30%
2 2.51% 2.60% 3.37% 7.70% 11.90%

Table 1. Error ratios obtained with the Bayesian method
MPM. (a): Real parameters, (b): Parameters estimated
from ),( yx , (c) : Parameters estimated from y  with

SEM. Case 1: 1.02211 == ρρ , 5.02112 == ρρ , Case 2:

5.02211 == ρρ , 8.02112 == ρρ . Sample size 500=n .

Figure 1. Distributions )( 111 yp , )( 112 yp , )( 222 yp ,

)( 212 yp  denoted by )1,1( , )2,1( , )1,2( , )2,2( .

5. CONCLUSIONS

Hidden Markov chains with independent noise (HMC-IN)
are widely used in different problems and this success is
generally due to the very good behavior of different
associated Bayesian unsupervised restorations. However,
these models are mainly used in the Gaussian noise
context and the noise independence is diff icult to clearly
justify in numerous real situations. When wishing to use
correlated and non-necessarily Gaussian noise, the theory
of Copulas is a quite well suited one. The aim of this
paper was to introduce copulas in recent Pairwise Markov
Chains (PMC) models, which generalize the classical
HMC-IN. We presented three possibiliti es of the use of
copulas in three models of increasing generality: (i)
hidden Markov chains with correlated noise (HMC-CN),
(ii ) PMC, and (iii ) “Triplet Markov Chain“ (TMC).
Furthermore, an original parameter estimation method is
proposed and some experiments in the PMC context are
described. In particular, the latter show the interest of the
Gaussian Copulas in the unsupervised Bayesian
Maximum of the Posterior Mode (MPM) restoration of
hidden data.
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