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ABSTRACT

This work deds with the statisticd restoration d hidden
discrete signals. The problem we ded with is how to take
into acaun, in recent pairwise and triplet Markov chain
context, complex noises that can be nonGaussan,
correlated, and o classvarying reture. We propose to
solve this modeling problem using Copuas. The interest
of the new modeing is validated by experiments
performed in supervised and ursupervised context. In the
latter, all parameters are estimated from the only observed
databy an original method

1. INTRODUCTION

Let X =(X,,...,X,) is a stochastic process modeling a
hidden discrete signal (ead X, takesitsvaluesin afinite
st Q={1...k}), and let Y =(Y,,....Y,) be astochastic
process modeling the observations (ead Y, takes its

valuesin the set of red numbers R). The problem is then
to estimate X =x from Y =y. Different Bayesian

methods are then very useful todls, once the both process
X, Y arelinked by the mean of some gpropriate joint
distribution p(x,y). The hidden Markov chain (HMC)

model, in which this distribution is written

X,) (1.1

P0G Y) = P%) POG[X,) - POX,[X,0) POV B,
is among the most widely used. The name “HMC” is due
to the fad that the hidden process X is a Markov ore.
Further, given that (1.1) implies the independence of Y, ,
..., Y, condtiondly on X, we will cdl the model (1.1)
HMC with independent noise (HMC-IN).

More receantly, this model has been generalized to the so-
cdled “pairwise Markov chain” model, in which the
pairwise process Z =(Z,,...,Z,), with Z, =(X.,,Y,), ...,
Z, =(X,.Y,) isaMarkov chain [7]. Thus we have:

z.,) (1.2

p(2) = p(z) p(z,|2)..-p(z,

One can then easly see that HMC-IN are PMC (with
p(z) = p(x) p(y[x) and P(Xs Yo%, Y1) =
P(X..[%) P(Y,.a|%.1) ), but PMC are not necessarily HMC-
IN [7. In fad, in PMC we have
PGz Yia X 1) = P(Kaf% 0 Y1) P(Yiaf%00 X2 ;) @Nd SO we
can say that HMC-IN are particular PMC in which
PG Y1) = POGaX) s P(Yial X X0 ¥i) = P(YiafXn) -
Otherwise, in PMC the process X is not necessrily a

Markov ore [7]. However, likely to HMC-IN [1], PMC
cean be used to estimate X =x from Y =y by dfferent

Bayesian methods and first results are encouraging [3].
In fad, considering the same “forward” probability
a(x)=p(x,Y.,-..y;), and the new, more general,

“badkward” probability  B(X) = p(Y.,-- VX, ¥;) » We
have analogouws reaursions

a(x) = p(x)p(y/x), and

a(x,,) = Z’car(x,)p(z,+1 z) for1<sisN-1; (13
B(x,)=1,and

B(x) = Zbﬁ(m)p(aﬂ z),for1<i<N-1 (1.4)

As for eah 1<is<n, p(x|y,...y,) Da(x)B(x), the

latter can be cdculated and thus the Bayesan MPM
method gven by S .., (V,,....V,) = (X,....X ), with

% = argmaxp(X|yy,---Y,) (1.5)
x0Q
can aso be cdculated.

Otherwise, we have
P(X s X g Yases Yo) DA (%) P(z,

z)B(x..)» (1.6)
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which gves p(x.,,

X, Y.,..,Y,) and thus allows ore to
simulate X acaording to its posterior distribution p(xly).

Further, these estimations of X =x can be made in an
unsupervised manner, where dl parameters of the PMC
used are estimated from Y =y [3].

2. COPULASIN HMC-CN, PMC, AND TMC
2.1 Copulasin PMC.

Let us begin by the PMC, which are of a mid generality
and which correspond to the experiments described in
Sedion 4 The HMC with correlated ndse (HMC-CN)
will then appea as a particular case of PMC, and the
TMC case will appea an extension d the PMC.

Let Zz=(Z,..,Z,) be a PMC verifying (1.2). The

distribution p(z) is aso defined by p(z,z), ..,
p(z.,z), once for eah 2<i<n-1, p(z,,z) and
p(z,z,,) givethe same marginal distribution p(z) . The

latter is in partticular ensured by the @ndtion
pP(z.,.z)=p(z,z.,) for eahh 2<i=<n, which will be

asumed in the following Further, assuming that
p(z,z), ... p(z.,z) are eual, the distribution p(2)

of a PMC Z is given by p(z,z). Writing
P(z,2) = P(%, %) (Y, Yo%, %), we see that the
distribution p(z) is defined by a probability p(x;,x,) on
Q?={1,...k}*, and k* probabilities on R?. To simplify,
let us put (¥, Y.) = P(Yo, Yo% =% = ). Let us
asume that for eah 1<i,j<k, the densty
P, (¥.) = POVI[X =%, = ) qua  to
P(Y,[%, =1,% = ])) and the density
P, (Y,) = P(Y,|x =i,x, = j) (which are eua to
p(y2|x2 = J,% =1i)) areknown and their correlation p; is

given. Of course, in the Gausdan cese this gives
p,(¥.,Y,) but in genera case numerous different

P, (Y., Y,) define the same p, (y,) . p;(.) . and p, . So,
when using the PMC model in nonGausdan context the
following guestion can arise in red stuations. having
P (%) py(¥,), and p;, how to define p, (y,,y,) ? The

theory of copuas responds, often in a very nea manner,
such questions [4, 8].

The main result of the theory of copuas is the following.
Let h(y,,y,) be aprobability density on R*, H the

asociated pd function, h(y,) and h,(y,) the margina

(which are

densities, and H,, H, the pdf functions associated with
them. Then there eist a function C defined on [0,1)°
such that

H(Y,, ¥,) =C(H.(Y,), H,(Y,)) (2.1

Deriving (2.1) with respea to y,, y, and introduwing

c(u,v) :% , we have
h(y:, ¥.) = h(y)h(y,)e(H, (¥,), Ho(Y.)) (22

Conversely, having H,, H, anda wmpua C, one can use
(2.1) to define H . So, agiven H pdf on R* defines a
copua C with (2.2), and this copua can also be used to
define any another H' from any ancther H,', H,".

Example 2.1

As an example, let us consider the Gausdan copuas. Let
h(y,,y,) be Gaussan with correlation p and marginal
distributions having ndl means and variances equa to

one. (2.1) and (2.2) then define a Gausdan hivariate
copua’by

h(H."(u), H;*(v))
h(H U)h,(H, (V)

c(u,v) = (2.3

S0, a bivariate Gaussan copua is defined by just one
parameter, which isthe wrrelation p .

Finaly, let Y,, Y, be two red random variables with pd
F,, F,,and f, f,, the mrrespondng densities. Using

(2.3), we can define a density for the distribution o
(Y.,Y,) by

D(H,(F ). HAE)

f Y, :fl L f2 2 -1 -
R RO LCRGITA)

Further, when (Y,,Y,) is Gaussan, (2.4) gives again its
distribution.

So, in a PMC, we can apply (2.4) k* times to
P (Y1), B (Y.), and p; (remember that p,(y,) and

p,(y,) are two dfferent functions). Thus the latter
defines al p,(y,,y,), which dves, linked with a
distribution p(x,x,) on Q2 ={1....k}, the distribution

P(z.2,) = P(%, %) P(Ys Yao[%, %,) , Which finally gives
thedistribution o thePMC Z =(Z,,...,Z,) .
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2.2 Copulasin HMC-CN.

As specified above the HMC-IN are the most frequently
used; however, more sophisticated HMC can aso be
considered. Let Z =(Z,...,Z,) be a PMC verifying the

hypotheses of the previous sub-section. As showed in [7],
X =(X,..., X,) is then a Markov chain if and only if
POY: X %) = P(Yi[x)  (or P [X, %) = P(Yi[%),
given that p(y;|X_,, %)= p(Y;|X,X.,)). This means that
we can have a “hidden” Markov chain, in the sense that

the hidden process X is a Markov one, in more general
situations than (1.1), in which Y,, .., Y, are not

independent conditionally on X . For example, in the
Gaussian case, when the mean and the variance of
p(y1|x1,x2) only depends on x, (and thus it is the same
for the mean and the variance of p(y2|x1, X,) ), the hidden
chain X is a Markov one (the PMC is a HMC), even
when p(y,[x.,x,) and p(y,|[x.,x,) are correlated. Of

course, in such smpler situations all that has been said
above subject to copulasin PMC remain valid.

2.3 Copulasin TMC.

The use of copulasin PMC above can be extended to the
so-caled ‘“triplet” Markov chains (TMC) model. The
latter consists of introducing a third stochastic process
U=(U,,..,U,), each U, taking its values in a finite set

N= {)\l,...,)\m}. Thus we have three processes: the hidden

process X, the observed process Y , and a latent process
U . Assuming that the triplet process T =(X,U,Y) isa

Markov chain one can still estimate X from Y [6]. In
fact, putting V, =(X,,U,) and V the corresponding

process, we see that (V,Y) is a PMC and so different
margina distributions of V conditional on Y can be
caculated. For example, p(v,y)Oa'(v)B'(v) ae
calculable, which gives p(x,y) = Z\p(xi,ui,y):

= Z\ p(v,,y), and thus the Bayesan MPM restoration

(1.5) is workable. Otherwise, it is possible to show that
TMC are drictly more general than PMC (PMC are
particular TMC obtained for U = X, but for agiven TMC
T =(X,U,Y), the pairwise process Z =(X,Y) is not
necessarily a Markov one [6]).

So,as TMC T =(X,U,Y) adsoisaPMC (V,Y), copulas
can be used as described above. For Q ={1,...,k} and the

finite st A={A,..,A}, there are (km)® distributions

P, (Y., Y,) (the set Q is replaced by QxA). These

distributions can then be defined from their marginal
distributions and the correlation coefficients of the latter,
with Gaussian copulas, or any other copulas, as described
above.

3. PARAMETER ESTIMATION

The aim this Section is to propose a method of estimation
of al the parameters 6 from Y =y. In the classical

HMC-IN case the classica Expectation-Maximization

(EM [5]) dgorithm, which, having started from an initial

value 8°, produces a sequence of parameters according to

the principle 6% = argmax E,,[Log(p,(X,Y)[Y =y] and
6

works well in the classical Gaussan HMC-IN case, is

difficult to apply in the context considered. We propose

an original method, which can be seen as an extension of

the “stochastic” EM (SEM [2]), whose principleis:

(i) Smulate X =x* accordingto p,,(Xy);

(i) put 8 =9(x°, y) , where 6 =6(X,Y) isan estimator

of 8 from the complete data (X,Y).

So, we have to find, in the case of Gaussian copulas

considered, k* densities p, (y,), k* densities p, (y,) , k*

correlation coefficients p, , and the distribution p(x;, x,)

on Q°={1...k}’. Knowing that X can be simulated

according to p(xly) (see Section 1), all we have to do is

to define an estimator é:é(X,Y) from the complete
data (X,Y).

The parameters p(x,,X,) can then be estimated by the
classical “empirical” etimate

U O R
llxrl‘xz—J] n_l:l[an—'vxn—ll (31)

p(i, i) =
and the correlation coefficients p, can be estimated by

the classical “empirical” correlation coefficients

AT C8Y) B R (AR 1N 08 Y))
n

p,(xy) = (32

(3.3)

~ Y1 X =i +"'+yn Xp =i

f, (xy) = et o
n

Concerning the k* densities p,(y,), let us assume that

each of them is of a known form, and each of them
depends on some parameters, which can be estimated by
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some estimator. Selecting from (X,VY,), (X,V¥,), -
(x,,Y,) the observations y’ =(y,) such that x =i and
X., =], weknow that all y are produced according to
p,(Y,) , sothesample y' can be used to estimate p, (y,) -

4. EXPERIMENTS

Let us consider the case of two classes, with the two

distributions  p,(y,), P,(y,) being Gamma(3,3),
Gamma(2,2.5), and the two distributions p,(Yy,),
p,(y,) being Webull(1,1), and Weibull(2,1),

respectively (see their form in Figure 1). The probabilities
p(,j) ae p@l)=04, plL2)=p(21)=015,
p(0,0) =0.3. In the classical HMC verifying (1), we
assume that p(y,|1) is Gamma and p(y,|2) is Weibull

(the parameters are estimated with SEM). According to
the results presented in Table 1, we see that when data
come from a PMC with Gaussian Copula model, the
supervised and unsupervised Bayesan MPM methods
based on this model can be much more interesting than
the same supervised and unsupervised Bayesan MPM
methods based on the classical HMC models. Of course,
this is not surprising when the true parameters are used
because of the very Bayesian theory; however, it remains
when the parameters are estimated, which is interesting
for real applications.

PMC and Copulas model HMC model

Case| (a) (b) © (b) ©
1 |531% | 525% | 6.44% | 7.70% | 12.30%
2 |251% | 260% | 3.37% | 7.70% | 11.90%

Table 1. Error ratios obtained with the Bayesian method
MPM. (a): Rea parameters, (b): Parameters estimated
from (x,y), (c) : Parameters estimated from Yy with

SEM. Cese 1. p,=p,, =01, p,=p, =05, Case 2:
P, =p, =05, p, =p, =0.8.Samplesize n =500.

— (1,1) : Gamma(3,3)

---- (1,2) : Gamma(2,2.5)
(2.1) : Weibuli(1,2)

“““ (2,2) : Weibull(1,1)

Figure 1. Didtributions p,(y,), pPL(V.),
P..(Y,) denoted by (L), (L2), (21, (2,2).

P, (Y,)

5. CONCLUSIONS

Hidden Markov chains with independent noise (HMC-IN)
are widely used in dfferent problems and this siccessis
generally due to the very good behavior of different
asciated Bayesian ursupervised restorations. However,
these models are mainly used in the Gausdan ndse
context and the noise independence is difficult to clealy
justify in numerous red situations. When wishing to use
correlated and nonnecessrily Gausdan ndse, the theory
of Copuas is a quite well suited ore. The am of this
paper was to introduce mpuasin recet Pairwise Markov
Chains (PMC) models, which generdize the dasdcd
HMC-IN. We presented three possbiliti es of the use of
copuas in three models of incressing generdity: (i)
hidden Markov chains with correlated ndse (HMC-CN),
(i) PMC, and (iii) “Triplet Markov Chain* (TMC).
Furthermore, an original parameter estimation method is
proposed and some experiments in the PMC context are
described. In particular, the latter show the interest of the
Gaussan Copuas in the unsupervised Bayesian
Maximum of the Posterior Mode (MPM) restoration o
hidden data.
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