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ABSTRACT

This work deds with the statisticd restoration d a hidden
signal using Pairwise Markov Trees (PMT). The latter
PMT, recently introduced in the cae of discrete hidden
signal, are here @plied to ursupervised image
segmentation and it is owed that they work better then
the dasdcd Hidden Markov Trees (HMT). Further,
considering a PMT in a linead Gausdan model with
continuows hidden data, which is new, we give the
formulas of an origina extension d the dasscd Kalman
filter.

1. INTRODUCTION

Hidden Markov models (HMM), like hidden Markov
chains (HMC), hidden Markov fields (HMF), or hidden
Markov trees (HMT) admit numerous applications in
various domains, and in particular in signal and image
processng. These models have been recently generalized
to pairwise Markov chains (PMC [10]), pairwise Markov
fields (PMF [6]), and pairwise Markov trees (PMT [7])
The @m of this paper isto present some further properties
of the PMT introduced in [7] (in French). On the one
hand, we present an applicaion to ursupervised image
segmentation o the PMT with discrete hidden process
On the other hand, we propose an original extension o
the well known Kalman filter to the PMT with continuows
hidden process The latter extends analogows results
propased in the cae of PMC[2, 9].

2. HIDDEN, PAIRWISE, AND TRIPLET MARKOV
TREE

Let S be a finite set of points and X =(X.)g s,
Y =(Y,) s two stochastic processes indexed on S. Each
X, takesitsvaluesin Q (which will be afinite set in the

next sedion and R" in sedion 3 and Y, takes its values
in the set of observations, which will be red numbers R
in the next sedion and R® in sedion 3 Let S', ..., S"
be apartition d S representing dfferent « generations ».
Each sOS' admits s' 0 S (cdled his «children ») in
such a way that every element of t0S™ has a unique
«parent» t"0S'. We asaume that S' is a singleton (its
element s, is cdled «root»). Then the distribution
p(x,y) of (X,Y) can be defined by four models with
increasing generality :

(i) the dasdcd Hidden Markov Tree with independent
nose (HMT-IN [1, 4]), in which p(x)=
= p(xs) |'| p(x[x,) (which means that X is a

Markov tree), p(y|x):|] p(y.|x.), and thus, putting
z=(xy) :
P(2) = (X, )P(, %) [ PGPV (D)

(ii) the Hidden Markov Tree (HMT), in which X is a
Markov tree as above and the pairwise process
Z=(2,).s,» Where Z_=(X_,Y,), is a Pairwise Markov
Tree (PMT), which means that its distribution verifies:

p(2) = p(z,) [] Pz,

sis-st

z.); @)

(iii) the PMT Z =(Z,) Vverifying (2);
(iv) the Triplet Markov Trees (TMT [8]), in which one
introduces a latent variable U = (U ) ., and assumes that

thetriplet T = (X,U,Y) isaMarkov tree (i.e., verifies (2)
with t = (x,u,y) instead of z=(x,y)).
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Let us remark that the greater generality of PMC with
respect to HMT-IN appears localy at the transition

probability level. In fact, as p(zz,.) in (2) can be

written p(zg|z. ) = p(Xg, Y|X» Yo ) =
= P(Xe[X. Yo )P(Ye[Xer X, Y, ) » We seethat HMT-IN isa
PMT  such  that  p(x|x .,y )=p(x[x, ) and

P(Ye[Xe, X1 Vi) = PYe[X,) -

3. DISCRETE HIDDEN PROCESS

Let us assume that Q ={w1,...,wk}, which mean that the
hidden processis a finite valued ore. Let Z be aPMT
defined with (2). Then the distribution p> of X
conditional to Y =y keegs the same form (1). More
predsely, for s child of s™, we have[7] :

_ BO)P(zz,)
X )=
S B(@,)p(,, Y,

W,0X

P (Xs (©)]

z.)

with the probabilities "badward"  B(x,) = p(y,. |z,)
reaursively cdculable by

B(x,)=1for s" =0,

B(x) = [(3 B@,)p@, ylz) for S #0 (a)

uls™ @,LQ

Otherwise, we have the following result, showing the
greaer generality of PMT with resped to HMT [7] :

Proposition 1

Let Z be aPMT defined with (2) and let (P) be the
following property :
For eah sOS-S',x_,x,0Q, and y_0OR,

X.) P

P(Xs|Xs 5 Yo ) = P(Xs
Then :

1. (P) impliesthat Z isaHMT (i.e,, X isaMarkov tree);
2. Asaume that eadh sOS has at least two children and

for eah t,0s" there eists t,0s" such that
p(z,|z.) = p(z,|z,) (the distributions of Z, and Z,
condtional on Z_ are ejual). Then* ZisaHMT” implies
(P).

In particular, (P) is a necessary and sufficient condtion
when p(z|z_) doesnot depend ons(s™)".

An analogous result shows the greaer generality of TMT
with resped to PMT [8].

Let Z be aPMT defined with (2) and let us consider the
problem of caculating the distribution o X_ condtional

on Y=y (margina «a posteriori » dstribution), needed
when using the Bayesian Maximum a Posteriori (MPM)
segmentation. This distribution p(x,|y) can be cdculated
in the following way. Let sOS, and let s =5/, ...,
s, =S be the unique path (for eah 2<i<n, s_, isthe
unique parent of s ) leading from the roat s, to s. All

py(xS |xSH) having bteen cdculated with (3), we have

Voo o QO)BEX) :
PO S B (@) ©
where a®(x,) is cdculated wsing the path s =s,, ...,
s, =s by
a® ()= B (%),
av ()= 3 P (x[x at (@) (6)

So, after having cdculated p(x,|y) for eadr sOS, one

can usethe dasdcd Bayesian MPM segmentation method
in which X=(X¢) g5 is obtained by

X, = argmaxp(x, = w|y) . When the segmentation is
wlQ

performed in an ursupervised manner, which is important
in red applicdions, one has to estimate the model
parameters from Y =y. The genera methods like

Expedaion-Maximization (EM [4]) or Iterative
Condtional Estimation (ICE [10]) have been applied in
the HMT and can be etended to the PMT and TMT
cases. Classcd HMT prove useful in satisticd
unsupervised segmentation poblems [4]. The dm of the
example presented in Figure 1 is to show that the greaer
generality of PMT can improve the results obtained with
HMT. The dass image is a 128x128 image ad the
Markov tree structure is a quad-tree [4]. So, we have the

root and seven “generations’, with the last generation S’
being the set of 128x128 |xels. The noisy image
y' =(Y;)os Iis obtained by simulating a dasscd
Gausdan ndse on the generation S°, and then wsing (2)

to oltain (y,)_ . - Inthe dasscd HMT case, we consider

that only the last generation S’ is noisy acaording to (1).
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The results prented in Figure 1 are obtained in an
unsupervised manner, the parameters being estimated with
ICE.

True image

HMT based mhod : error | PMT based method : error
rate of 7.71% rate of 1.52%

Figure 1. HMT and PMT based unsupervised Bayesian
segmentation results.

4. CONTINUOUSHIDDEN PROCESS

Let us now consider a PMT Z =(X,Y), in which each
X, takesitsvaluesin R" and each Y, takesitsvaluesin

RY. Equations (3)-(6) till hold (with the obvious
difference that sums should be replaced by intergrals), but
may be difficult to compute in the general case.

So, let us now address the particular case in which in
addition Z is a Gaussian process. Injecting this
assumption in the agorithm of section 3 immediately
leads to a Kaman-like smoothing algorithm which is
omitted here for want of space.

In this section, we will rather show that in Gaussian case,
it is aso possible to develop a Kaman-like adaptive

filtering algorithm for PMT. Recalling that S*, .., S" is
apartition of S representing different « generations », let
us put X,=(Xg) e and Xy, =(X,...,X,). The
random vectors Y,, Y.,, Z,, and Z,, are defined
similarly. Since Z is a Markov Tree, it can also be seen
as a Markov Chain Z=(Z,),,, to which the classica

Kaman filter can thus be applied. More precisely, our aim
consists in recursively estimating (as new data become
available) the p.d.f. of the last “leaves’ X,,, given all

observed variables up to level n+1, i.e. we want to

n?

compute  p(X,.,

yn+1'
Our assumptions are as follows. We assume that the
model is linear and Gaussian

Vi) iN terms of  p(x,

Ya:n) and of

X0 OF! FEOX_ O GF GROu,O @
4 B e HZDDY 0" %:1 e&%E
— %,—z W

Z
s s G,

in which W = (W) .
independent and independent of Z, . We aso assume that
W isGaussian and that Z, is Gaussian with mean z, and
variance-covariance matrix P,, which is denoted by
Z,~N(z,,R). Then Z is a Gaussian process and
consequently the p.d.f. p(Xp.i|Ynne) @d p(x,|y,,) ae
aso  Gaussian. For =01, let us  set

p(Xn+I yn:n+1) - N(Xn+l\n' n+|\n) and let

g A€ random zero-mean vectors,

- 1 A2
EWW)=Q,, G, = %@1 2, Foocl  ®
We shall also need the following notation : For n fixed,
let S"=(s,,...s,), and let 5" ={s’ }"_1 (e s, isthe
H|

n+l?

plh son of node s). For I,m0{1,2}, let F and

n+l?

v bethefollowing block-diagonal matrices:

n+1

n+1—dlag(F' WFL),
:duag(Hk ...,H;), 9)
n+1‘dlag(Q'm QM

in which
I C I C Aim C
s | %sﬁ[ ~ st 0
Fe =0 E,H =0.. L Q=0 C(10)
 C O ~m [
&i.c Hi g 00 s

The following result is an extension of the classical
Kaman filter

Proposition 2 (Kalman filter for PMT)

Let usassumethat Z isaPMT and that model (7) holds.
Supposethat Z, ~ N(Z,R,) and W, ~ N(0,Q,) .
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Then X and P

n+ljn+1

can be computed from X, and

n+lin+1

P, via:

nn

Time-update equations

)’Zn+1ln = Fr::-Jrl)’Zn‘n + Fr12+lyn ’ (ll)
qun =Qma * F&+1Pn\n(F&+1)T (12

Measurement-update eguations

Yo = Yo ~HoaXyn —HiaYa (13

Lo = QP + Hia Py (H1)' (14)

Kopgra = Q¥ * FraPn(HL) DL (19)

Xosgnst = Xnoapn + Kisgnia Vi (16)

P = Praan ~ Kn+qn+1Ln+1K:+qn+1 an
Remarks

- The dgorithm isvalid under the implicit assumption that
ead nock has at least one child, but can easily by adapted
to the general case where some node(s) have no child;

- If eath roat has exadly one dchild, then PMT reducesto a
paticular case of Parwise Markov Chain model
introduced in [5] (corollary 1, page 72), and the dgorithm
of the Propasition 2reduces to the dgorithm proposed for
the latter model ([5], egs. (13.56) and (13.57));

- The dgorithm in Propasition 2requires the inversion o
the square matrix L,,, defined in (13), the dimension o

which is propational to the number of variables in
generation n+1 of the tree However, this full-size matrix
inverson can be aoided by condtioning w.r.t. eah
variablein vy,,, one dter the other;

- In more general PMT which are neither linea nor
Gaussan, one would consider to propose ‘Particle
filtering’, which would extend this king d methods
propaosed in the cae of PMC [2] and TMC [3].

5. CONCLUSIONS

Recent PMT, strictly more general that HMT, can be used
in discrete or continuows hidden signal restoration, as well
in a supervised manner than in an ursupervised ore. Its
greder generality can lead to an improvement of the
results obtained with the dasscd HMT. As further
reseach we may mention the paosshiliti es of extending
PMT to Pairwise Markov Graphicd models, with the
asociated methods of hidden process restoration and
parameter estimation[14].

6. REFERENCES

[1] K. C. Chou, A. S. Willsky & A. Benveniste, Multiscde
reaursive etimation, data fusion, and regularizaion, IEEE tr.
Autom. Control, Vol. 39, N. 3, pp. 46478, March 1994

[2] F. Desbouwries and W. Piecz/nski, Particle Filtering with
Pairwise Markov Processs, International Conference on
Acoustics, Speed and Signal Processng (ICASSP03), Hong
Kong April 2003

[3] F. Desbowries and W. Piecznski, Particle Filtering in
Pairwise and Triplet Markov Chains, Proceadings of the IEEE —
EURASIP Workshop onNonlinea Signa and Image Processng
(NSIP 2003, Grado-Gorizia, Italy, June 8-11, 2003

[4] J.-M. Laferté, P. Pérez, and F. Heitz, Discrete Markov image
modeling and inference on the quadtree IEEE Trans. on Image
Procesdng, Vol. 9, No 3 pp. 390- 404, 200Q

[5] R. S. Lipster and A. N. Shiryaes, Statistics of Randam
Processs, Vol. 2 : Applicaions, chapter 13 : “Condtionally
Gausdan sequences : filtering and related problems”, Springer
Verlag, Berlin, 2001

[6] W. Piecynski and A.-N. Tebbade, Parwise Markov
random fields and segmentation o textured images, Machine
Graphicsand Vision, Vol. 9, No. 3, pp. 705718 200Q

[7] W. Piecz/nski, Arbres de Markov Coupe — Pairwise Markov
Trees, Comptes Rendus de |'Académie des Sciences —
Mathématique, Paris, Ser. | 335, pp. 79-82, 2002

[8] W. Piecznski, Arbres de Markov Triplet et fusion ce
Dempster-Shafer —Triplet Markov Trees and Dempster-Shafer
fusion, Comptes Rendus de I'Académie des Sciences —
Mathématique, Ser. | 336, pp. 869-872 2003

[9] W. Piecznski and F. Desbowries, Kaman Filtering using
Pairwise Gaussan Models, International Conference on
Acoustics, Speed and Signa Processng (ICASSP03), Hong
Kong April 2003

[10] W. Piecznski, Pairwise Markov Chains, IEEE Trans. on
Pattern Analysis and Madine Intélligence, Voal. 25, No. 5, pp.
634639 2003

[11] M. Sanjeev Arulampalam, S. Mascdl, N. Gordon, and T.
Clapp, A tutorial on particle filters for online nontlinea/non
gaussan bayesian tracing, IEEE Trans. Oon signal Processng,
Vol. 50, No. 2, pp. 174188 2002

[12] A. S. Willsky, Multiresolution Markov models for signal
and image processng, Procedalings of IEEE, Vol. 90, No. 8, pp.
13961458 2002

[13] J. Whittaker, Graphicd models in applied multivariate
statistics, Wiley, 1990



