
Multiscale Oil Slick Segmentation
with Markov Chain Model
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Abstract— A Markov chain model is applied for the segmen-
tation of oil slicks acquired by SAR sensors. Actually, oil slicks
have specific impact on ocean wave spectra. Initial wave spectra
may be characterized by three kinds of waves, big, medium
and small, which correspond physically to gravity and gravity-
capillary waves. The increase of viscosity due to the presence
of oil damps gravity-capillary waves. This induces a damping of
the backscattering to the sensor, but also a dampening of the
energy of the wave spectra. Thus, local segmentation of wave
spectra may be achieved by the segmentation of a multiscale
decomposition of the original SAR image.

In this work, the unsupervised segmentation is achieved by
using a vectorial extension of the Hidden Markov Chain (HMC)
model. Parameters estimation is performed using the general
Iterative Conditional Estimation (ICE) method. The problem
of estimating multi-dimensional and non-Gaussian densities is
solved by using a Principal Component Analysis (PCA). The
algorithm has been applied on an ERS-PRI image. It yields
interesting segmentation results with a very limited number of
false alarms. Also, the multiscale segmentation proved to be an
interesting alternative to classify marginal or degraded slicks.

I. INTRODUCTION

Oil slicks may be found all over the Ocean and play a
relevant role in large- and short-scale phenomena such as
Global Change by modifying the delicate air-sea balance
or the local pollution by the interaction with the marine
ecosystems. Detection and characterization of oil spills caused
by accidental or intentional emission may be achieved by
remote sensing, especially Synthetic Aperture Radar (SAR)
that can be used independently from the day-light and weather
conditions.

SAR is sensitive to sea surface thanks to the presence
of short-waves and wind is the most important generator of
waves. Capillary waves rise first when the wind blows over the
sea surface. Basically, the wavelength � of the capillary waves
are inferior to 5mm and satisfy the dispersion relationship�����
	�
��� where � is the surface tension, � the water density, �
the surface wavenumber and ��� ���� . If the wind still induces
excitation, the capillary waves transfer energy to waves of
longer wavelength and so on until an equilibrium with long
(several hundred meters length), intermediate (tens of meters
length) and short (less than a meter) waves. Gravity waves
obey the following dispersion equation � � ����� , where �

is the gravity acceleration. The classical dispersion relation
that describes the sea surface wave spectrum which may be
observed by remote sensing follows:

� � ������� �
�
� ���

The presence of oil on the water reduces air-sea interaction
and the main observable phenomena is the dampening of the
capillary waves. This reduces the backscattering of the slick
and then yields a darker area in the SAR image. Hence, most
of the algorithms dedicated to the detection of oil slicks are
based on contrast ratio [1].

Unfortunately, dark area may also be induced by several
phenomena such as lack of wind, upwellings... and it is
necessary to predict the effects of slicks on sea surface and
also SAR images [2]. According to the Marangoni theory,
dampening of the capillary waves induces a variation of
the surface spectrum for wavelength lower than 1m, due to
elasticity and viscosity of the oil. Moreover, non-linear wave-
wave interactions spread the energy in order to fill in dips of
the spectrum and reduce the energy of the peaks.

Finally, oil slicks induce on the one hand a dampening of
the capillary wave that is observable via darker area on SAR
images which is useful for detection. On the other hand, slicks
induce also a spreading of the sea surface wave spectrum.
In this study, we propose an algorithm for detecting local
variations of the wave spectrum. Actually, the algorithm is
based on a multiscale analysis to represent observation as a
local multiscale description of the oceanic waves, and on a
texture segmentation method that is based on the estimation
of mixtures of probability density functions (pdf) that are
observed over the multiscale representation.

II. MULTISCALE ANALYSIS

The remotely sensed observation ( � ) is first decomposed
into multiscale analysis in order to outline its local texture
characteristics at different wavelengthes.

Wavelets have been widely studied and characterized for
texture analysis. The choice of the mother wavelet has a major
impact on texture characterization [3]. It is required to use
symmetric filters with enough number of vanishing moments
and regularity in the critically sampled filter banks.
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For this multiscale analysis, the wavelet used has been
defined in [4]. The set of filters is built to guaranty a good
localization of multiscale edges. Only two wavelet filters are
required: ���������
	 � ������	������
	
 hori �������
	 ��� ���������
	� � and


 vert �������
	 ��� ����������	� � (1)

Where, the primitive
����� 	

is a cubic spline with Fourier
transform given by:���� � 	 ��������� � ���! 	���" # � � (2)

Note that the multiscale analysis of an image yield two sub-
bands of wavelet coefficients at each decomposition $&%('*) �,+.- .
Observation � is then decomposed, by iterative convolutions
with filters defined with

���/�0	
,

 hori ��� 	 and


 vert ��� 	 , to yield the
vector 1 ��2/354 �76 hori4�8:9 �76 vert4;8;9 � � � � �76 hori9 �76 vert9=<?> .

III. HIDDEN MARKOV CHAIN MODEL

In the context of HMC model, the remote sensing data is
considered as a noisy observation from which the segmentation
has to be found. The 2D observation is first transformed into
a 1D chain through a Hilbert-Peano scan on the image [5].
When this observation is of vector value, the Hilbert-Peano
scan is applied spatially in order to yield a chain that contains
each pixel (i.e. 2 3 4 �76 hori4;8;9 �@6 vert4�8;9 � � � � �76 hori9 �76 vert9A< > ) along the
scan.

A. Overview of the scalar case

It is considered that observations
�

, which are the pixels
of the image, are the noisy realizations of a random processB

that takes its values in C �ED � 9 � � � � � � � � �GFIH , J being
the number of classes expected for the segmentation. Several
methods may be considered when the link between observation
� and segmentation

B
(i.e. K � B � � 	 ) is known. If it is

not the case, K � B � � 	 has first to be estimated. Here, it
is supposed that

B
is a stationary Markovian process and

parameters estimation is achieved using ICE algorithm [6].
The ICE procedure is based on the conditional estimation
of some estimators from the complete data

��������	
. It is an

iterative method which produces a sequence of estimations�ML
of parameters

�
as follows: 1) initialize

�MN
; 2) compute� L/O 9 � E PRQ��� B � � 	RS � � �UT

, where Q�V� B � � 	 is an estimator of�
. Usually, ICE is stopped when

��L/O 9XW �ML
. The parameters�

to estimate are of two kinds:

1) the set Y that characterizes the stationary
Markov Chain X: the initial probability vectorZ � � K � B � ��9 	?� � � � � K � B � � F 	�	 � � Z�[�\ � � � � � Z�[U] 	
and the transition matrix ^ of componentsK � B � �`_ � B ����a 	 �cb�dVegf d�h ( )jilk � $&ilJ ).
In an ICE iteration, the expectation of those parameters
can be evaluated analytically along the Hilbert-Peano
chain by using the normalized Baum’s Forward and
Backward probabilities [7].

2) the mixture parameters set m that characterizes observa-
tion for each class � _ : K � � S B � � _ 	 of pdf n [ e . In the
Gaussian case, m is composed of means and variances;
by using the Pearson’s system of distributions [8], m
needs the four first moments for each pdf.
For those parameters,

�UL/O 9
is not tractable. But it can

be estimated by empirical mean of several estimations
according to

�UL/O 9 � 94polq Q�V��� q ���
	 , where
� q

is an a
posteriori realization of

B
conditionally on � .

B. Integration of multi-component observations

In the case of the segmentation of the multiscale analysis,
observation � is becoming a multi-dimensional random vari-
able 1 of dimension r �ts + � ) .

Then, pdf n [ e ��� 	 are becoming r -dimensional distributions
to be estimated. Although not independent, the wavelets coeffi-
cients are rather decorrelated along the scales and we consider
that they can be estimated by considering r estimation of
independent 1D pdf. Thus pdf n ��u`	 is considered as a r -
dimensional distribution with self-independent component, i.e.n ��u`	 � Y5vw�x 9 n w ��� w 	 . In order to estimate the mixture pdfn [ e ��uG	 , a Principal Component Analysis (PCA) is applied on
the data at each iteration of the ICE procedure. Although,
not rigorously independent since an ACP is applied, n [ e ��uG	
is also considered as a r -dimensional distribution with self-
independent component, i.e. n [ e ��uG	 � Y&vwyx 9 n w f [ e ��� w 	 .

It should be possible to apply Independent Component
Analysis (ICA) for each estimation of n [ e ��u`	 at each iteration
of the ICE algorithm; but ICA is a non-orthogonal projection
that tends to yield multi-modal distributions (actually, non-
gaussianity acts as an independence criteria) that makes ICA
procedure not converging.

Finally, the restoration is achieved by using the Maximum
a Posteriori Mode (MPM) Bayesian segmentation rule.

C. Pdf modelization

The image 354 is a coarse approximation of the initial
observation � , then its overall pdf is a smooth restitution of the
initial n ���
	 . The estimation of a generalized mixture of laws
included in this pdf may be achieved by considering distribu-
tions defined within the Pearson’s system of distributions [8]
which include Gaussian, Gamma and Beta distributions. The
four first moments have to be estimated in order to characterize
the laws and the parameters of the pdf of 3 4 .

The images
6 h or vq come from the wavelet decomposition

and experiments [9] show that a good pdf approximation for
the marginal density of wavelet coefficients at a given subband
may be achieved by the Generalized Gaussian Density (GGD)
defined by [10]. Then, mixture pdf n w f [ e ��� w 	 at a given scale
is defined by:z ����{�|.��}~���G	 � �s }��~� 9� 	�� 8 �!� �@���"�� 	/� �
where

|.��}~���
are the mean, scale and shape parameters that

are estimated by using maximum likelihood estimator.



The pdf of the transform observation 1 is considered
as a generalized mixture of multi-dimensional laws that are
characterized with the 4 first moments for 3 4 and the 3
parameters of GGD for the s + subbands

6 v or hq .

IV. EXPERIMENTS

Multi-component Markov chain model has been applied to
ERS-SAR image acquired over Mediterranean Sea during oil
spill. A first step may be applied to the original image in order
to achieve the detection of oil slicks. For detecting slicks, we
applied an algorithm that is modified from the one presented
earlier. Actually, the multi-scale analysis is replaced by a
multi-resolution analysis achieved by wavelet packet transform
with the � ��� mother wavelet. This multi-resolution analysis
allow to process images of large size. The result of detection
is presented on Fig. 1.

Let’s focus now on a small part of the image where oil slick
has been detected with no ambiguity in order to characterize
the dark area. Several comparison have been achieved and
shown in Fig. 2. On images -b- and -c-, a characterization by
a simple threshold or a Markov chain applied directly on the
image show a lot of false alarms and miss-detections. But the
segmentation that is given by the Markov chain applied on the
wavelet coefficients -d- is more interesting. First, the result is
regularized and greatly reduces the number of false alarms.
Also, it appears that the class on grey acts as an intermediate
between oil and water. It may be characteristic of mixture or
marginal slick area.

V. CONCLUSION

An oil slick segmentation procedure has been developed
in order to detect the spatial variations of the surface wave
spectra. The segmentation is based on a multiscale analysis of
the observed data and then a texture segmentation based on a
multi-component Markov chain. It appears that a segmentation
based on the behavior of the surface wave spectra allows to
characterize (by the parameters of the pdf found) each class
and then to better characterize the meaning of the dark area
on SAR images.

ERS SAR observation c
�

ESA Detection of slicks

Fig. 1. Original observation and detection of oil slicks based on a wavelet
packet analysis and a Markov chain model applied on the wavelet coefficients.

-a- Zoom -b- Threshold

-c- Markov Chain -d- Multiscale Markov Chain

Fig. 2. Zoom on a detected oil slick and results of segmentation.
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