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Technopôle Brest-Irôıse, BP 832, 29285 Brest Cedex, France

gregoire.mercier@enst-bretagne.fr

W. PIECZYNSKI

INT, CITI Department,

9, rue Charles Fourier, 91011 Evry Cedex, France

wojciech.pieczynski@int-evry.fr

In this work, we propose to use the Hidden Markov Chain (HMC) model

for fully automatic change detection in a temporal set of Synthetic Aper-

ture Radar (SAR) images. First, it is shown that this model can be used

as an alternative to the Hidden Markov Random Field (HMRF) model

in the image differencing context. We then propose a novel approach,

called joint characterization, whose principle is to consider that the ‘be-

fore’ and ‘after’ images are a unique realization of a bi-dimensional pro-

cess. Parameters estimation is performed from a multicomponent exten-

sion of the HMC model and thematic change can be detected according

to the joint statistics of the classes in the images. Preliminary experi-

ments show promising results.

1 Introduction

The recent developments in satellites and remote sensors, together with

the necessity for an efficient control of the environment (management of

natural resources, risk assessment, damage mapping, land use monitoring,

...), offer new challenging applications. Multitemporal change detection is

one of them and a number of methods has been designed the last few years

(e.g. [1–3]). Basically, change detection techniques rely on some clustering

schemes that identify the coordinates of pixels that have changed between

two dates. In this work, we are concerned with SAR images and we assume

that the images have been geometrically corrected and co-registered.
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(a) It1 - Feb. 6, 1994 (b) It2 - Feb. 16, 1994

(c) It3 - Mar. 6, 1994

Figure 1. Three co-registered ERS-1 images of a rice plantation in Java Island,

Indonesia (size: 512 × 512). A flood can be observed in the bottom-right part of

the (c) image.

An exemple is given with the three SAR images in figure 1. They show

a rice plantation in Semarang (Java Island) with mainly early rice, late rice

and other fields. The change that has to be automatically detected concerns

the impact of the flood in image It3 . These images contain major difficulties:

(i) speckle induced by the backscattering mechanisms is really strong; (ii)

errors from the geometric registrations can be expected; (iii) reflectivity

of plantations have been modified during the period of observation; (iv) a

flood appears on the second image and covers a part of the observed scene.
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There is loosely two main methods in the literature to detect changes

in a set of images : the image differencing and the post-classification com-

parison techniques :

– In the image differencing methods [3], the corresponding pixel values

are subtracted to produce a new image (noted DI for ‘Difference Image’)

that represents the radiometric change between the image before (Yb)

and the image after (Ya). Pixel exhibiting a significant radiometric

change can be expected to lie in the tail of the DI histogram, whereas

the remaining pixels should be grouped around the mean. Hence, the

histogram of a DI can be considered as a mixture of two classes repre-

senting ωc=‘change’ and ωc=‘no change’. The change detection chal-

lenge becomes a classification problem whose result can be directly

interpreted as a change detection map. Other representations than the

DI can be used, e.g. image ratioing which is considered more robust in

case of SAR images [4] or an image of mutual information [5].

– The principle of the post-classification comparison methods [2] is to,

first, classify independently the Ya and Yb images with a fixed number

of classes and, second, compare the class labels to detect and localize

changes. The class labels can be compared using hard or fuzzy logics.

One difficulty is to automatically determine the number of classes for

the two images.

In both kind of methods, the accuracy of change detection highly de-

pends on the classification strategy adopted, and a number of methods are

available. In this work, we propose to use the HMC model [6, 7] for fully au-

tomatic change detection in a temporal set of SAR images. Section 2 starts

with a presentation of the model and gives some detection results in the

image differencing context. We then propose in section 3 a novel approach,

called joint characterization, whose principle is to consider that Yb and Ya

are a unique realization of a bi-dimensional process. Parameters estima-

tion is performed from a multicomponent extension of the HMC model [8]

and thematic change can be detected according to the joint statistics of

the classes in the images. Preliminary results on the images in figure 1 are

presented. Conclusion and perspectives are drawn in section 4.

2 Scalar HMC based change detection method

As underlined in the introduction, the change detection problem can of-

ten be considered as a classification challenge. Per-pixels methods, such

as the k-means, the fuzzy c-means or, in a Bayesian context, the blind

Estimation-Maximization (EM) algorithm, are often inefficient due to the
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large amount of, possibly correlated, speckle in SAR images. Hence, spa-

tial context sensitive methods (contextual and global) seems to be more

suitable since they make use of the information about the neighborhood of

each pixel. Bayesian restoration in the framework of the Hidden Markov

Models (HMMs) is among the best known statistical methods.

This success is mainly due to the fact that when the unobservable pro-

cess X can be modeled by a finite Markov model, then X can be recovered

from the observed process Y using different Bayesian classification criteria

like Iterated Conditional Mode (ICM), Maximum A Posteriori (MAP) or

Maximum Posterior Mode (MPM). In an unsupervised context, the sta-

tistical properties of the classes are unknown and must first be estimated.

Iterative methods such as EM, Stochastic Estimation-Maximisation (SEM)

or Iterative Conditional Estimation (ICE) [9] can be used.

In the image differencing context, Bruzzone et al. [10, 3] report change

detection results based on the HMRF model, the EM estimation procedure

and the ICM criterion. However, the regularity parameters, that control the

homogeneity of the class ωc (and so the false and missed detection rates),

were set to a particular value fixed from experiments. These parameters

can also be estimated using the stochastic gradient algorithm proposed by

Younes [11]. But, according to our experience in RS image segmentation,

this algorithm can sometimes have difficulties to converge.

A substantially quicker and sometimes competitive alternative to the

HMRF model in SAR image segmentation is the HMC model. This model

can be adapted to a 2D analysis through a Hilbert-Peano scan of the im-

age [6, 7, 12]. In that model, the homogeneity of classes are tuned by a

stationary transition matrix whose estimation is much more robust than

the estimation of the regularity parameters in a HMRF model. Figure 2

reports the change detection maps obtained from the DIs It1−t2 and It2−t3 ,

with the ICE estimation and the MPM criterion. Clearly, St1−t2 shows only

small changed areas (0.5% of pixels) whereas St2−t3 shows large ones (25%

of pixels), which seems consistent (no ground-truth map is available).

In radar images, the distribution of noise is generally not Gaussian

and the mixture between the classes ωc and ωc was estimated within the

Pearson’ system of distributions [13, 14]. This system consists of mainly

eight families of distributions with mono-modal and possibly non symmet-

rical shapes (Gaussian, Gamma, Exponential and Beta distributions among

others). Each distribution in the Pearson’ system is uniquely determined

by its four first moments µ1, ..., µ4. Table 1 reports, for the two DIs, the

distributions selected after 70 ICE iterations.
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(a) It1−t2 (b) It2−t3

(c) St1−t2 (d) St2−t3

Figure 2. Two classes segmentation results St1−t2 and St2−t3 of the DIs It1−t2

and It2−t3 . In order to reduce the impact of the speckle and the geometric

registration errors, the value of each pixel in a DI is the difference between the

mean values computed on a small window centered on the pixel. The width of

the window was set to 5.

Table 1. Estimated noise parameters for the two DIs in Fig. 2.

Image
Four first moments

Law µ1 µ2 µ3 µ4

It1−t2

fωc
(y) Student’t -4.3 187.9 -89.7 125245

fωc
(y) Beta 1 50.6 63.7 555.0 14958

It2−t3

fωc
(y) Beta 1 -7.1 257.6 -2035.8 200021

fωc
(y) Beta 1 42.1 267.5 3510.7 226925
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3 Vectorial HMC based change detection method

When change detection is applied to SAR images, several behavior can be

expected:

– When the captors are different, the speckle noise does not have the

same behavior. Then, statistical parameterizations of noise may differ

from Yb and Ya.

– When the captors are identical, a difference of viewpoint (ascending or

descending orbit, several incidences, ...) yields a specific response for

the same area. Then, change detection has to be invariant from captor

modality.

Those remarks are prohibitive for DI-based approaches since a difference of

speckle characteristics may be interpreted as a change. We now propose a

novel approach , called joint characterization, whose principle is to consider

that Yb and Ya are a unique realization of a bi-dimensional process Yb,a =

{Yb,Ya}.

Parameters estimation and classification can be performed from the

multicomponent extension of the HMC model we have proposed recently

in [8]. The main difference between the ‘scalar’ and the ‘vectorial’ HMC

models lies in the estimation of a multidimensional mixture1, composed

by the multidimensional densities fω1
(ya, yb), ..., fωK

(ya, yb), with K the

number of classes. In fact, the multicomponent HMC model takes into

consideration the difference of modalities between Yb and Ya by means

of the multidimensional statistical characteristics of the classes. But non-

Gaussian multidimensional densities can be difficult to estimate. One solu-

tion is to use the two marginal densities fωk
(yb) and fωk

(ya) of fωk
(yb, ya).

Several strategies are possible. If independence between the layers is as-

sumed then fωk
(ya, yb) is the direct product of the marginals. However, in

the change detection context, such assumption is totally wrong. In order

to take care of the link between the ‘before’ and ‘after’ images, the solu-

tion we have adopted consists in combining the ICE estimation with an

Independent Component Analysis (ICA) approach.

Figure 3 reports the joint classifications St1,t2 , St2,t3 and St1,t2,t3 ob-

tained from the vectorial HMC model, with three classes (ω1=‘light gray’,

ω2=‘dark gray’ and ω3=‘black’). Note that the third result is an example

of a change detection with two ‘before’ and one ‘after’ image. The flooded

area is represented by the ω3 class in figures 3(b) and 3(c); such a class can

1 The dimension of the mixture equals the number of images in the multicom-

ponent process, e.g. two for a ‘simple’ (Yb, Ya) change detection problem.
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not be seen in figure 3(a). This class represents respectively 0.1%, 22.1%

and 21.8% of the total number of pixels (to be compared with the results

obtained on the DIs in section 2).

The classes representing a thematic change can be detected according

to the shape and the parameters of the marginal densities (each of them

belongs to the Pearson’ system of distributions). Indeed, one can expect

that a change modifies the shape of marginals considerably, so that differ-

ent families of distributions are selected. The computation of a distance

between distributions (e.g. the Kullback-Leibler divergence) can help to

automatically detect these modifications. Such a study has not been per-

formed yet and remains an interesting issue.

4 Conclusion

Change detection in multitemporal SAR images is a challenging problem

since thematic changes that have to be detected are hidden by several

sensor-inherent and application-dependent factors such as ascending or de-

scending orbit, several incidences, strong speckle noise, ... In this work,

the ‘joint characterization’ method do not consider pixel-based changes,

but rather thematic changes as a modification of both spatial and temporal

distributions of classes in the images. The proposed solution is founded

on the recent multicomponent HMC model and the ICE parameter estima-

tion procedure. The results we obtained are encouraging and the method

should be further tested by using data sets with ground truth data in order

to estimate the false and missed detection rates. We also plan to analyze

the families and the shapes of selected densities inside the Pearson’ system.

It is important to note that this technique remains valid for multidate (i.e.

more than two dates) change detection problems, and can even help to au-

tomatically decide when the change occurs in a sequence of ‘before’ and

‘after’ images.
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