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ABSTRACT

The estimation of an unobservable process x from an
observed process y is often performed in the frame-
work of Hidden Markov Models (HMM). In the linear
Gaussian case, the classical recursive solution is given
by the Kalman filter. On the other hand, particle fil-
ters provide approximate solutions in more complex
situations. In this paper, we propose two successive
generalizations of the classical HMM. We first con-
sider Pairwise Markov Models (PMM) by assuming
that the pair (x,y) is Markovian. We show that
this model is strictly more general than the HMM,
and yet still enables particle filtering. We next con-
sider Triplet Markov Models (TMM) by assuming
the Markovianity of a triplet (x, r,y), in which r is
some additional auxiliary process. We show that the
Triplet model is strictly more general than the Pair-
wise one, and yet still enables particle filtering.

1 INTRODUCTION

An important signal processing problem consists in
recursively estimating an unobservable process x =
{xn}n∈

� from an observed process y = {yn}n∈
� .

This is done classically in the framework of dy-
namic models. In particular, Hidden Markov Models
(HMM) are widely used to model the stochastic in-
teractions between x and y.

Let p(xn|y0:n) denote the probability density func-
tion (pdf) (w.r.t. Lebesgue measure) of xn given
y0:n = {yi}n

i=0. The filtering problem consists in re-
cursively computing p(xn|y0:n) as new observations
become available. The exact recursive solution is
difficult to compute in the general case, and con-
sequently many approximate techniques have been
developed. Among them, particle filters are sequen-
tial Monte Carlo methods which aim at propagating
an approximation of p(xn|y0:n).

Now, it is well known that if (x,y) is a classical
HMM, then the pair (x,y) itself is a Markov Chain

(MC). Conversely, starting from the assumption that
(x,y) is a MC, i.e. that (x,y) is a so-called Pair-
wise Markov Model (PMM), is an alternate (and
more general) point of view which nevertheless en-
ables the development of similar restoration algo-
rithms. More precisely, some of the Bayesian restora-
tion algorithms which are used classically in Hidden
Markov Fields (resp. in Hidden Markov Chains with
discrete state-space) have been generalized recently
to the more general framework of Pairwise Markov
Fields [1] (resp. of Pairwise Markov Chains [2]) and
then to that of Triplet Markov Fields [3] (resp. of
Triplet Markov Chains [4]).

This paper adresses the filtering problem in the
context of Pairwise and Triplet Markov Chains with
continuous state-space. In section 2 we recall the
classical HMM dynamical state-space model, as well
as the exact recursive solution and the particle filter
approximate solution for that model. In section 3 we
introduce the PMM and we derive the exact recursive
solution as well as the particle filter approximation
for this new model. In section 4 we show that PMM
are strictly more general than HMM. In particular,
we classify the different situations in a hierarchy of
embedded models : HMM with independent noise;
general HMM, in which the noise samples need not
be independent; and general PMM in which x is not
necessarily Markovian. Finally, section 5 is devoted
to Triplet Markov Models (TMM).

2 CLASSICAL HIDDEN MARKOV MOD-

ELS

Let us consider the following classical stochastic dy-
namical system :

{
xn+1 = gn(xn,un)
yn = hn(xn,vn)

, (1)

in which gn (resp. hn) is some (possibly nonlinear)
function from

�
m ×

�
p to

�
m (resp. from

�
m ×

�
q



to
�

q ), and u = {un}n∈
� and v = {vn}n∈

� are
zero-mean sequences which are independent, jointly
independent and independent of x0. Then one can
check that the following properties hold :

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n.(4)

So x is a MC, and since it is known only through
the observed process y, (1) is often refered to as an
HMM. In order to avoid possible confusion, and in
view of equation (3), model (1) will however be ref-
ered to in the sequel as a Hidden Markov Model with
Independent Noise (HMM-IN).

Let us now consider the so-called filtering problem,
which consists in recursively computing p(xn|y0:n)
from p(xn−1|y0:n−1). Bayes’s rule provides the gen-
eral relation :

p(x0:n|y0:n) =
p(xn|x0:n−1,y0:n−1)p(yn|x0:n,y0:n−1)

p(yn|y0:n−1)

× p(x0:n−1|y0:n−1). (5)

On the other hand, from (2) to (4) we get

p(xn|x0:n−1,y0:n−1) = p(xn|xn−1) , (6)

p(yn|x0:n,y0:n−1) = p(yn|xn) , (7)

so (5) reduces to

p(x0:n|y0:n) =
p(xn|xn−1)p(yn|xn)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1).

(8)
Consequently, the recursive propagation of the pos-
terior density of xn is given by :

p(xn|y0:n) =
p(yn|xn)

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1)
.

(9)
If (1) is linear and u and v are Gaussian, the pos-

terior densities of x given y are also Gaussian and are
thus described by their means and covariance matri-
ces. Propagating p(xn|y0:n) amounts to propagat-
ing these parameters, and (9) reduces to the well
known Kalman filter. However, in the general case,
computing equation (9) is difficult in practice. Con-
sequently, a number of approximate methods have
been derived. Among them, particle filters are a class
of sequential Monte Carlo methods which aim at re-
cursively computing an approximation of p(xn|y0:n).

Let us recall the principle of particle filtering
[5] [6] [7] [8] [9]. Assume that at time n − 1 we

have a discrete random measure which approximates
p(x0:n−1|y0:n−1) :

p(x0:n−1|y0:n−1) '
N∑

i=1

w
(i)
n−1δ(x0:n−1 − x

(i)
0:n−1) ,

in which w
(i)
n−1 ∝

p(x
(i)
0:n−1|y0:n−1)

q(x
(i)
0:n−1|y0:n−1)

,
∑N

i=1 w
(i)
n−1 = 1,

and {x
(i)
0:n−1}

N
i=1 are drawn from some importance

function q(x0:n−1|y0:n−1). Then in particular

p(xn−1|y0:n−1) '
N∑

i=1

w
(i)
n−1δ(xn−1 − x

(i)
n−1) .

Let us now further assume that the importance func-
tion factors as

q(x0:n|y0:n) = q(x0:n−1|y0:n−1)q(xn|x0:n−1,y0:n)
(10)

Let {x
(i)
n }N

i=1 ∼ q(xn|x
(i)
0:n−1,y0:n); then

{[x
(i)
0:n−1,x

(i)
n ]}N

i=1 are samples from q(x0:n|y0:n).
Furthermore, from (8) and (10) we get

p(x
(i)
0:n|y0:n)

q(x
(i)
0:n|y0:n)

=
p(x

(i)
n |x

(i)
n−1)p(yn|x

(i)
n )

p(yn|y0:n−1)q(x
(i)
n |x

(i)
0:n−1,y0:n)

×
p(x

(i)
0:n−1|y0:n−1)

q(x
(i)
0:n−1|y0:n−1)

∝
p(x

(i)
n |x

(i)
n−1)p(yn|x

(i)
n )

q(x
(i)
n |x

(i)
0:n−1,y0:n)

w
(i)
n−1

︸ ︷︷ ︸

w̃
(i)
n

.

Finally,
∑N

i=1 w
(i)
n δ(xn − x

(i)
n ), in which w

(i)
n =

w̃
(i)
n /

∑N
i=1 w̃

(i)
n , approximates p(xn|y0:n).

3 PAIRWISE MARKOV MODELS

Let us set zn = [xT
n ,yT

n−1]
T and let z0 = x0.

Throughout this section we shall now assume that
the random variables zn satisfy

zn+1 = Gn(zn,wn) (11)

for some function Gn, where the random variables
wn = [uT

n ,vT
n ]T are zero-mean, independent and in-

dependent of x0. As a consequence, the process z =
{zn}n∈

� is a MC, and for this reason this model
(which obviously is satisfied by any HMM-IN) is
called a PMM.

This model still enables to solve the filtering
problem, as we now see. Since z is a MC,



p(xn+1,yn|x0:n,y0:n−1) = p(xn+1,yn|xn,yn−1),
and thus (6) and (7) are generalized to

p(xn|x0:n−1,y0:n−1) = p(xn|xn−1,yn−1,yn−2)
(12)

and

p(yn|x0:n,y0:n−1) = p(yn|xn,yn−1) , (13)

respectively. So the recursive propagation of
p(x0:n|y0:n) under model (11) is now given by

p(x0:n|y0:n) =
p(xn|xn−1,yn−1,yn−2)p(yn|xn,yn−1)

p(yn|y0:n−1)

× p(x0:n−1|y0:n−1), (14)

and that of p(xn|y0:n) by

p(xn|y0:n) =
p(yn|xn,yn−1)

p(yn|y0:n−1)
×

∫

p(xn|xn−1,yn−1,yn−2)p(xn−1|y0:n−1)dxn−1.

(15)
Taking (14) into account, we see that the particle

filter for HMM-IN can be generalized to the PMM
case. The generic algorithm is as follows :

Particle filter for PMM.

For i = 1, · · · , N ,

Draw x(i)
n ∼ q(xn|x

(i−1)
0:n−1,y0:n), set x

(i)
0:n =[x

(i)
0:n−1,x

(i)
n ];

Compute the weights

w̃(i)
n =

p(x
(i)
n |x

(i)
n−1,yn−1,yn−2)p(yn|x

(i)
n ,yn−1)

q(x
(i)
n |x

(i)
0:n−1,y0:n)

w
(i)
n−1,

w(i)
n = w̃(i)

n /

N∑

i=1

w̃(i)
n .

Finally,
∑N

i=1 w
(i)
n δ(xn − x

(i)
n ) approximates

p(xn|y0:n).

Remarks.

Particle filtering algorithms have already been de-
veloped in the framework of some particular HMM
which are more general than the classical HMM-IN
[10] [11]. In these models, x is a MC, and next p(y|x)
is designed in such a way that z remains a MC. On
the other hand, our algorithm is valid for any PMM,
irrespective of the possible Markovianity of x.

On the other hand, our algorithm is only an out-
line of the general methodology; as in the HMM case,

work still needs to be done before it can be used in
a given application. In particular, in the HMM case
such issues as the choice of the importance function
or of a resampling strategy are well known to be im-
portant practical problems, see e.g. [5] [6] [12] [7] [8]
[13] [9] and the references therein. Similar consid-
erations of course also arise in the PMM case, and
they would deserve a full discussion; due to lack of
space, we rather chose in this paper to focus of the
embedding of the general models (HMM-IN, HMM,
PMM, TMM), and this is the aim of the next sec-
tions. Let us just give the following result, which is
a direct extension to the PMM case of [7, Prop. 2] :

Proposition 1 The so-called posterior importance
function :

q(xn|x
(i)
0:n−1,y0:n) = p(xn|x

(i)
0:n−1,y0:n) (16)

= p(xn|x
(i)
n−1,yn−2,yn−1,yn)

is the importance function which minimizes the vari-

ance of the weight w
(i)
n conditionally upon x

(i)
0:n−1 and

y0:n. In this case, the weight updating step (i.e., step
2) of the above general algorithm becomes

w̃(i)
n = p(yn|x

(i)
n−1,yn−1,yn−2) w

(i)
n−1,

w(i)
n = w̃(i)

n /
N∑

i=1

w̃(i)
n .

4 PAIRWISE MARKOV MODELS VS.

HIDDEN MARKOV MODELS

In this section, we aim at making relations between
HMM and PMM clearer. Recall that x = {xn}n∈

�

and that z = {zn = [xT
n ,yT

n−1]
T }n∈

� (with z0 = x0).
As above, a PMM will denote a model in which z =
(x,y) is a MC; an HMM, a model in which both z

and x are MC; and an HMM-IN, an HMM in which
(3) and (4) are satisfied.

We begin with the following observation. Let us
assume that z is a PMM. On the one hand, we have

p(z0:n) = p(y0:n−1|x0:n)p(x0:n) . (17)

On the other hand,

p(z0:n) =
p(z0, z1) · · · p(zn−1, zn)

p(z1) · · · p(zn−1)

=
p(y0|x0,x1) · · · p(yn−2,yn−1|xn−1,xn)

p(y0|x1) · · · p(yn−2|xn−1)
︸ ︷︷ ︸

A(x0:n,y0:n−1)

×
p(x0,x1) · · · p(xn−1,xn)

p(x1) · · · p(xn−1)
︸ ︷︷ ︸

B(x0:n)

. (18)



Comparing (17) to (18) should not be misleading :
though both equations always hold, B(x0:n) in (18)
is not necessarily equal to p(x0:n) in (17). This point
is crucial in this section because, as we will see below,
there exist PMM which are not HMM.

Let us now look for conditions under which a PMM
is also an HMM, i.e. under which the marginal pro-
cess x of a MC z = (x,y) is itself Markovian.

4.1 A sufficient condition and a necessary

condition

We first give a sufficient condition for a PMM to be
an HMM; this condition can be checked locally in
the framework of a dynamic stochastic model (11).

Proposition 2 Let zn = [xT
n ,yT

n−1]
T (with z0 =

x0) and z = {zn}n∈
� . Assume that z is a MC. Fur-

ther assume that either

for all n, p(yn|xn+1,xn+2) = p(yn|xn+1) , (19)

or

for all n, p(yn|xn+1,xn) = p(yn|xn+1) . (20)

Then {xn}n≥0 is a MC.

Proof. From (17) and (18), x is a MC if and
only if p(x0:n) = B(x0:n), i.e. if and only if
∫

A(x0:n,y0:n−1)dy0:n−1 = 1, which is ensured un-
der (19) or under (20).

We are now looking for local conditions implied if
x is Markovian. In the Gaussian case, the following
result holds [14] :

Proposition 3 Let zn = [xT
n ,yT

n−1]
T (with z0 =

x0) and z = {zn}n∈
� . Assume that z is a MC. Fur-

ther assume that z is zero-mean and Gaussian, and
that yn ∈

�
(i.e. that q = 1). If {xn}n≥0 is a MC,

then for all n, either p(yn|xn+1,xn+2) = p(yn|xn+1),
or p(yn|xn+1,xn) = p(yn|xn+1).

4.2 HMM-IN, General HMM, and PMM

As we see, PMM encompass different classes of em-
bedded models : classical HMM with independent
noise, HMM with more general noise profile, and
finally models in which the state process x is not
Markovian. More precisely:

• The sufficient condition of Proposition 2 tells
us that there exist HMM which are not HMM-
IN. Consider for instance a scalar model in
which p(y0:n−1|x0:n) is Gaussian with covari-
ance matrix Σ = (σi,j)

n−1
i,j=0, and in which for

each i, σi,i depends on xi+1 only, σi,i+1 is some

non-null constant, and σi,j = 0 for j 6= i − 1,
j 6= i or j 6= i+1. In this case each conditional
pdf in (18) is Gaussian and correlated :

p(yi−1, yi|x0:n) = p(yi−1, yi|xi, xi+1)

∼ N (0,

[
σi−1,i−1(xi) σi−1,i

σi,i−1 σi,i(xi+1)

]

) .

So (19) and (20) are satisfied, but (3) is not :
this PMM is an HMM, but is not an HMM-IN.

• The necessary condition of Proposition 3 tells
us that there exist PMM which are not HMM.
Consider for instance the model

zn+1=

[
.5 .1
1 0

]

zn+wn, p(wn) ∼ N (0,

[
1 .3
.3 1

]

),

and p(x0)∼N (0, 1). We check that p(y0|x1,x2)
6= p(y0|x1) and that p(y0|x1,x0) 6= p(y0|x1).
This shows that we can find PMM for which x

is not a MC, and thus that model (11) is strictly
more general than model (1). This wider gen-
erality of PMM with respect to HMM could be
of interest in some complex physical situations.

Remark.

Finally, let us make one last comment on the general
noise profile in a PMM model. As we have just seen,
conditionally on {xi}n

i=0, the variables {yi}
n−1
i=0 need

not be independent. However, they always form a
MC. The following result holds whether x is a MC
or not:

Proposition 4 Let z = {zn}n∈
� . Assume that z

is a MC. Then conditionally on x0:n, the variables
{yi}n

i=0 form a MC. Moreover, for 1 ≤ i ≤ n,

p(yi|y0:i−1,x0:n) = p(yi|yi−1,xi:n). (21)

5 TRIPLET MARKOV MODELS

In this final section we propose to extend the PMM
of section 3 to TMM.

Using a TMM consists in introducing a third pro-
cess r such that the joint Triplet process (x, r,y)
is a MC. More precisely, let x = {xn}n∈

� be the
hidden state process which one wishes to estimate,
y = {yn}n∈

� the observed process, and r = {rn}n∈
�

an additional (possibly artificial) process. Let also
t = {tn}n∈

� , with tn = [xT
n , rT

n ,yT
n−1]

T and t0 =
[xT

0 , rT
0 ]T , and let x? = {x?

n = [xT
n rT

n ]T }n∈
� . We as-

sume that the Triplet process t = (x, r,y) is a MC,
i.e. that the process (x?,y) is a PMM.

The interest of TMM stems from the following re-
sults :



• Since (x?,y) is a PMM, one can still recur-
sively compute as above an approximation of
p(xn, rn|y0:n), and thus an approximation of
p(xn|y0:n);

• On the other hand, TMM are strictly more gen-
eral than PMM. In fact, we have the following
result :

Proposition 5 Let t̃n = [zT
n , rT

n ]T (with t̃0 =
[xT

0 , rT
0 ]T ) and t̃ = {t̃n}n∈

� . Assume that t̃

is a MC. Further assume that t̃ is zero-mean
and Gaussian, and that rn takes its values in

�
. If {zn}n≥0 is a MC, then for all n, either

p(rn|zn, zn+1) = p(rn|zn), or p(rn|zn−1, zn) =
p(rn|zn).

So we see that we can consider a model where
t = (x, r,y) is Markovian, but where (x,y) is
not Markovian.

6 CONCLUDING REMARKS

Let us finally denote by [HMM-IN] (resp. [HMM],
[PMM], [TMM]) the set of HMM-IN (resp. HMM,
PMM, TMM). The results of this paper can be sum-
marized as follows :

• The inclusions [HMM-IN] ⊂ [HMM] ⊂ [PMM]
⊂ [TMM] are strict;

• the classical particle filtering solutions used
in [HMM-IN] and in some [HMM] can be ex-
tended to [PMM] and [TMM].
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tance function for particle filtering and its ap-
plication to blind detection in flat fading chan-
nels”, Proceedings of the International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), vol. II, pp. 1617-1620, Orlando,
Florida, May 2002.

[14] W. Pieczynski and F. Desbouvries, “Kalman
Filering using Pairwise Gaussian Models”,
Proceedings of the International Conference

on Acoustics, Speech and Signal Processing

(ICASSP), Hong-Kong, April 2003.


