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ABSTRACT

The estimation of an unobservable process x from an ob-
served process y is often performed in the framework of
Hidden Markov Models (HMM). In the linear Gaussian case,
the classical recursive solution is given by the Kalman fil-
ter. On the other hand, particle filters are Monte Carlo based
methods which provide approximate solutions in more com-
plex situations. In this paper, we consider Pairwise Markov
Models (PMM) by assuming that the pair (x,y) is Marko-
vian. We show that this model is strictly more general than
the HMM, and yet still enables particle filtering.

1. INTRODUCTION

An important problem in signal processing consists in recur-
sively estimating an unobservable process x = {xn}n∈IN

from an observed process y = {yn}n∈IN. HMM, which
means that the hidden process x is Markovian, are widely
used to model the stochastic interactions between x and y.

Let p(xn|y0:n) denote the probability density function
(pdf) of xn given y0:n = {yi}

n
i=0. In this paper we deal

with the so-called filtering problem, which consists in recur-
sively computing p(xn|y0:n) as new observations become
available. In the linear Gaussian case the solution is pro-
vided by the well known Kalman filter. However, the exact
recursive solution is difficult to compute in the general case,
and consequently many approximate techniques have been
developed. Among them, particle filters [1] [2] [3] [4] are
Monte Carlo methods which aim at propagating an approx-
imation of p(xn|y0:n); such methods have found many ap-
plications (see e.g. [5]) and have proven to be very efficient
in practice.

In this paper we propose to extend particle filtering by
using the general idea that enabled us to successfully gen-
eralize Hidden Markov Fields (HMF) to Pairwise Markov
Fields (PMF) [6], Hidden Markov Chains (with discrete hid-
den process) (HMC) to Pairwise Markov Chains (PMC) [7]
[8], and Hidden Markov Trees (HMT) to Pairwise Markov
Trees (PMT) [9]. More precisely, it is well known that if

(x,y) is a classical HMM, then the pair (x,y) itself is a
Markov Chain (MC). Conversely, starting from the assump-
tion that (x,y) is a MC is an alternate point of view which
we deal with in this work.

So in this paper, we directly assume that the pair (x,y)
is a MC, and we show : (i) that such a PMM is strictly more
general than the classical HMM, in which both x and (x,y)
are MC; and yet (ii) that a particle filter solution can still be
computed.

This paper is organized as follows. In section 2 we recall
the classical HMM dynamical state-space model, as well as
the exact recursive solution and the particle filter approxi-
mate solution for that model. In section 3 we introduce the
PMM and we derive the exact recursive solution as well as
the particle filter approximation for this new model. Finally
in section 4 we show that PMM are strictly more general
than HMM. In particular, we classify the different situations
in a hierarchy of embedded models : HMM with indepen-
dent noise; general HMM, in which the noise samples need
not be independent; and general PMM in which x is not
necessarily Markovian.

2. CLASSICAL HIDDEN MARKOV MODELS

Let us consider the following classical stochastic dynamical
system :

{
xn+1 = gn(xn,un)
yn = hn(xn,vn)

, (1)

in which gn(., .) is some (possibly nonlinear) function from
IRm × IRp to IRm, hn(., .) is some (possibly nonlinear)
function from IRm × IRq to IRq , and u = {un}n∈IN and
v = {vn}n∈IN are zero-mean sequences which are inde-
pendent, jointly independent and independent of x0.

Then one can check that the following properties hold :

p(xn+1|x0:n) = p(xn+1|xn) ; (2)

p(y0:n|x0:n) =

n∏

i=0

p(yi|x0:n) ; (3)

p(yi|x0:n) = p(yi|xi) for all i, 0 ≤ i ≤ n . (4)



In other words, x is a MC, and since it is known only through
the observed process y, (1) is often refered to as an HMM.
In order to avoid possible confusion, and in view of equation
(3), model (1) will however be refered to in the sequel as a
Hidden Markov Model with Independent Noise (HMM-IN).

Now, from (2) to (4) we get

p(xn|x0:n−1,y0:n−1) = p(xn|xn−1) , (5)

p(yn|x0:n,y0:n−1) = p(yn|xn) , (6)

and so

p(x0:n|y0:n) =
p(xn|xn−1)p(yn|xn)

p(yn|y0:n−1)
p(x0:n−1|y0:n−1).

(7)
Consequently, the recursive propagation of the posterior den-
sity of xn (i.e., the computing from p(x0:n−1|y0:n−1) to
p(x0:n|y0:n)) under model (1) is given by

p(xn|y0:n) =
p(yn|xn)

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1

p(yn|y0:n−1)
(8)

If (1) is linear and u and v are Gaussian, the posterior
densities of x are also Gaussian and are thus described by
their means and covariance matrices. Propagatingp(xn|y0:n)
amounts to propagating these parameters, and in this case
equation (8) reduces to the Kalman filter. However, in the
general case, computing equation (8) is difficult in practice.
Consequently a number of approximate, Monte Carlo based
methods have been derived. Among them, particle filtering
is a sequential Monte Carlo method which aims at recur-
sively computing an approximation of p(xn|y0:n).

Let us recall the principle of particle filtering [1] [2] [3]
[4]. Assume that at time n we have a discrete random mea-
sure which approximates p(x0:n−1|y0:n−1) :

p(x0:n−1|y0:n−1) '
N∑

i=1

w
(i)
n−1δ(x0:n−1 − x

(i)
0:n−1) ,

in which w
(i)
n−1 ∝

p(x
(i)
0:n−1|y0:n−1)

q(x
(i)
0:n−1|y0:n−1)

,
∑N

i=1 w
(i)
n−1 = 1, and

{x
(i)
0:n−1}

N
i=1 are samples drawn from the importance func-

tion q(x0:n−1|y0:n−1). Then in particular

p(xn−1|y0:n−1) '
N∑

i=1

w
(i)
n−1δ(xn−1 − x

(i)
n−1) .

Let us now further assume that the importance function fac-
tors as

q(x0:n|y0:n) = q(x0:n−1|y0:n−1)q(xn|x0:n−1,y0:n), (9)

i.e. that q(x0:n|y0:n) admits q(x0:n−1|y0:n−1) as marginal.

Let {x(i)
n }N

i=1 ∼ q(xn|x
(i)
0:n−1,y0:n); then {[x(i)

0:n−1,x
(i)
n ]}N

i=1

are samples from q(x0:n|y0:n). Furthermore, from (7) and
(9) we get

p(x
(i)
0:n|y0:n)

q(x
(i)
0:n|y0:n)

=
p(x

(i)
n |x

(i)
n−1)p(yn|x

(i)
n )

p(yn|y0:n−1)q(x
(i)
n |x

(i)
0:n−1,y0:n)

×

p(x
(i)
0:n−1|y0:n−1)

q(x
(i)
0:n−1|y0:n−1)

∝
p(x

(i)
n |x

(i)
n−1)p(yn|x

(i)
n )

q(x
(i)
n |x

(i)
0:n−1,y0:n)

w
(i)
n−1

︸ ︷︷ ︸

w̃
(i)
n

.

Finally,
∑N

i=1 w
(i)
n δ(xn−x

(i)
n ), in which w

(i)
n =

w̃(i)
n�

N

i=1 w̃
(i)
n

,

approximates p(xn|y0:n).

3. PAIRWISE MARKOV MODELS

Let us turn back to model (1). Let zn = [xT
n ,yT

n−1]
T and

let z0 = x0. zn satisfy

zn+1 = Gn(zn,wn) (10)

for some function Gn(., .), where the random variables wn =
[uT

n ,vT
n ]T are zero-mean, independent and independent of

x0. As a consequence, the process z = {zn}n∈IN is also a
MC.

Throughout this section we will thus consider the gen-
eral PMM (10). As we now see, this model still enables to
solve the filtering problem. Since z is a MC,

p(xn+1,yn|x0:n,y0:n−1) = p(xn+1,yn|xn,yn−1). (11)

So (5) and (6) respectively become

p(xn|x0:n−1,y0:n−1) = p(xn|xn−1,yn−1,yn−2) , (12)

p(yn|x0:n,y0:n−1) = p(yn|xn,yn−1) . (13)

Consequently, the recursive propagation of p(x0:n|y0:n) un-
der model (10) is now given by

p(x0:n|y0:n) =
p(xn|xn−1,yn−1,yn−2)p(yn|xn,yn−1)

p(yn|y0:n−1)

× p(x0:n−1|y0:n−1). (14)

Taking (14) into account, we see that the particle filter
for HMM-IN can be easily generalized to the PMM case :

Particle filter for PMM.

For i = 1, · · · , N ,

• Draw x
(i)
n ∼ q(xn|x

(i−1)
0:n−1,y0:n),

set x(i)
0:n = [x

(i)
0:n−1,x

(i)
n ];



• Compute the weights

w̃(i)
n =

p(x
(i)
n |x

(i)
n−1,yn−1,yn−2)p(yn|x

(i)
n ,yn−1)

q(x
(i)
n |x

(i)
0:n−1,y0:n)

× w
(i)
n−1,

w(i)
n =

w̃
(i)
n

∑N

i=0 w̃
(i)
n

.

Finally,
∑N

i=1 w
(i)
n δ(xn − x

(i)
n ) approximates p(xn|y0:n).

Remarks.

Particle filtering algorithms have already been devel-
oped in the framework of some particular HMM which are
more general than the classical HMM-IN [10] [11]. In these
models, x is a MC, and next p(y|x) is designed in such a
way that z remains a MC. On the other hand, our algorithm
is valid for any PMM, irrespective of the possible Marko-
vianity of x. Note that for this algorithm such problems
as the choice of the importance function or of a resampling
strategy are not adressed here due to lack of space. In fact
in this paper, we rather choose to focus on the embedding of
the different models, and this is the topic of the next section.

4. PAIRWISE MARKOV MODELS VS. HIDDEN
MARKOV MODELS

In this section, we aim at making relations between HMM
and PMM clearer. As above, a PMM will denote a model in
which z = (x,y) is a MC, and an HMM a model in which
both z and x are MC. As we will see from

p(z0:n) = p(y0:n−1|x0:n)p(x0:n) , (15)

in a PMM the distribution p(y0:n−1|x0:n) is Markovian,
but x is not necessarily a MC. So, PMM are strictly more
general than general HMM, which are strictly more general
than HMM-IN.

Let us thus look for conditions under which the marginal
process x of a MC z = (x,y) is itself Markovian.

4.1. a global characterization

Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) be a MC. Then

p(z0:n) =
p(z0, z1) · · · p(zn−1, zn)

p(z1) · · · p(zn−1)

=
p(y0|x0,x1) · · · p(yn−2,yn−1|xn−1,xn)

p(y0|x1) · · · p(yn−2|xn−1)
︸ ︷︷ ︸

A

×
p(x0,x1) · · · p(xn−1,xn)

p(x1) · · · p(xn−1)
︸ ︷︷ ︸

B

. (16)

Note that the presence of B in (16) should not be mislead-
ing : though (16) always holds, B is not always equal to
p(x0:n). Indeed, comparing (16) with (15), we get the fol-
lowing result :

Proposition 1 Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) and

z = {zn}n∈IN. Assume that z is a MC. Then x = {xn}n∈IN

is a MC if and only if for all n > 1,

p(y0:n−1|x0:n) = (17)

p(y0|x0,x1)p(y0,y1|x1,x2) · · · p(yn−2,yn−1|xn−1,xn)

p(y0|x1) · · · p(yn−2|xn−1)
.

On the other hand, as we sill see in the following, (17) does
not always hold.

4.2. local necessary and sufficient conditions

Proposition 1 provides a necessary and sufficient condition
ensuring that x is a MC. However, the condition is given in
terms of p(y0:n−1|x0:n) and is thus difficult to handle. On
the other hand, z is a MC, so for all n the pdf of z0:n is
given in terms of {p(zi, zi+1)}

n−1
i=0 . We are thus looking for

a condition expressed in terms of these local pdf. The fol-
lowing proposition provides sufficient conditions which can
be checked locally in the framework of a dynamic stochastic
model (10).

Proposition 2 Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) and

z = {zn}n∈IN. Assume that z is a MC. Further assume that
either

for all n, p(yn|xn+1,xn+2) = p(yn|xn+1) , (18)

or

for all n, p(yn|xn+1,xn) = p(yn|xn+1) . (19)

Then {xn}n≥0 is a MC.

Proof. From (16), x is a MC if and only if
∫

Ady0:n−1 = 1,
which is ensured under (18) or under (19).

Conversely, we are now looking for local conditions im-
plied if x is Markovian. In the Gaussian case, the following
result holds (the proof is omitted for want of space) :

Proposition 3 Let zn = [xT
n ,yT

n−1]
T (with z0 = x0) and

z = {zn}n∈IN. Assume that z is a MC. Further assume
that z is zero-mean and Gaussian, and that yn ∈ IR (i.e.
that q = 1). If {xn}n≥0 is a MC, then for all n, either
p(yn|xn+1,xn+2) = p(yn|xn+1), or p(yn|xn+1,xn) =
p(yn|xn+1).



4.3. HMM-IN, General HMM, and PMM

Though p(x0:n) is not necessarily Markovian, let us first re-
mark that if z is a MC, p(y0:n−1|x0:n) is always Markovian.
The following result holds whether x is a MC or not:

Proposition 4 Let z = {zn}n∈IN. Assume that z is a MC.
Then conditionally on x0:n, the variables {yi}n

i=0 form a
MC. Moreover, for 1 ≤ i ≤ n,

p(yi|y0:i−1,x0:n) = p(yi|yi−1,xi:n).

Proof. Since z is a MC,

p(yi|y0:i−1,x0:n) =

∫
p(z0:n)dyi+1:n−1
∫

p(z0:n)dyi:n−1

=

p(z0,z1)···p(zi−1,zi)
p(z1)···p(zi)

∫
p(zi:n)dyi+1:n−1

p(z0,z1)···p(zi−1,zi)
p(z1)···p(zi)

∫
p(zi:n)dyi:n−1

= p(yi|yi−1,xi:n) .

We are now ready to classify the different models. As
we see, PMM encompass different classes of embedded mod-
els : classical HMM with independent noise, HMM with
more general noise profile, and finally models in which the
state process x is not Markovian. More precisely:

• Let x be Markovian, and let further (3) and (4) hold.
Then one can show that p(y0|x0,x1) = p(y0|x0),
and p(yi−1,yi|xi,xi+1) = p(yi−1|xi)p(yi|xi) for
1 ≤ i ≤ n − 1. Injecting these equations into (3) and
(4), we check that (17) is satisfied, as expected.

• On the other hand, there exist models in which x and
z are Markovian, but (3) and (4) are not satisfied :
conditionally on {xi}n

i=0, the variables {yi}
n−1
i=0 form

a MC (see Proposition 4), but they need not be inde-
pendent, and the conditional pdf p(yi|x0:n) need not
depend on xi only.

• Finally, there exist models for which the necessary
condition of Proposition 3 is not satisfied (consider
for instance the model

zn+1=

[
.5 .1
1 0

]

zn + wn, p(wn) ∼ N (0,

[
1 .3
.3 1

]

)

and p(x0) ∼ N (0, 1)). This shows that we can find
PMM for which x is not a MC, and thus that model
(10) is strictly more general than model (1). This
wider generality of PMM with respect to HMM could
be of interest in some complex physical situations.
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