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ABSTRACT

An important problem in signal processing consists in recur-
sively estimating an unobservable process x = {x, }new
from an observed process y = {y» }nemw. This is done clas-
sically in the framework of Hidden Markov Models (HMM).
In the linear Gaussian case, the classical recursive solution
is given by the well-known Kalman filter. In this paper, we
consider Pairwise Gaussian Models by assuming that the
pair (x,y) is Markovian and Gaussian. We show that this
model is strictly more general than the HMM, and yet still
enables Kalman-like filtering.

1. INTRODUCTION

Since its introduction in the 1960s in the control engineer-
ing community the Kalman filter has become a major tool in
signal processing and automatic control. In Kalman filter-
ing we wish to estimate samples of an unobserved process
x, given samples of some observed process y and a (state-
space) dynamic stochastic model for processes x and y.

Now, it is well known (see e.g. [1] [2]) that the state-
space model which underlies the Kalman filter is indeed an
HMM (with continuous state process).

In this paper, we propose to extend the Kalman filter by
using the general idea that enabled us to successfully gen-
eralize Hidden Markov Fields (HMF) to Pairwise Markov
Fields (PMF) [3], Hidden Markov Chains (with discrete hid-
den process) (HMC) to Pairwise Markov Chains (PMC) [4]
[5], and Hidden Markov Trees (HMT) to Pairwise Markov
Trees (PMT) [6]. More precisely, it is well known that
if (x,y) is a classical HMM, then the pair (x,y) itself is
Markovian. Our aim is to study the converse proposition :
what can be said if the pair (x,y) is a Markov Chain (MC)?

In this paper, we thus directly assume that the pair (x,y)
isa MC, and we show : (i) that a Kalman-like filter can still
be computed; and (ii) that such a “Pairwise Markov Model”
(PMM) is strictly more general than the classical HMM.

This paper is organized as follows. In section 2 we re-
call the classical dynamical state-space model, as well as the
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properties which underly the derivation of the Kalman filter.
In section 3 we introduce a generalized stochastic dynami-
cal model in which the pair (x,y) is Markovian. We derive
the general time-update and measurement-update equations
for this model, as well as the associated Kalman-like filter
which holds in the particular case of a linear and Gaussian
PMM. In section 4 we show that Gaussian PMM are strictly
more general than Gaussian HMM.

2. CLASSICAL HIDDEN MARKQOV MODELS

2.1. General HMM

Let us consider the following classical stochastic dynamical
system :
Xn+1 =

Gn(Xn, Uy)
1

hn (Xn ) Vn)

inwhich g, (., .) is a (possibly nonlinear) function from IR™¥ x
IR? to RY, h,(.,.) is a (possibly nonlinear) function from
RY x R?to R?, and u = {u, }pew and v = {v, bnen
are zero-mean sequences which are independent, jointly in-
dependent and independent of x.

Let xp., = {x;}1~y and yo., = {yi}/,. Let also
p(Xn), P(X0:r) aNd p(Xn|yo:n), SaY, denote the probabil-
ity density function (pdf) of x,,, the pdf of x¢.,,, and the pdf
of x,,, conditional on yy.,, respectively; the other pdf are
defined similarly. Then one can check that the following
properties hold :

P(Xnt1lX0m) = p(Xnt1lXn); (2

p(YO:n|XO:n) = Hp(Yi|X0:n) ) (3)
i=0

p(yilxom) = plyilx;) foralli, 0 <i<n.(4)

In other words, x is a MC, and since it is known only through
the observed process y, (1) is an HMM.
Now, from (2) to (4) we get

p(xn+1|xn) ) %)
p(Ynt1[xn41).  (6)

p(xn+1 |Xna yO:n)
p(yn+1|xn+lay0:n) =



As a consequence, the recursive propagation of the poste-
rior density (i.e., the computing of p(x,+1|yo:n+1) from
(X, |¥0:x)) under model (1) is given by the following “time-
update” and “measurement-update” equations :

p(Xn+l|yO:n) = /p(Xn+l|Xn)p(Xn|yO:n)dxn 3 (7)

P(Yn+1[Xn+1)P(Xn+1[yom)
p(Yn+1lyo:n)

_ p(yn+1|xn+1)p(xn+l|y0:n) (8)

fp(YH+1 [Xn+1)P(Xn+1 |y0:n)dxn+\l

p(x77,+1 |YO:n+1) =

2.2. Linear Gaussan HMM

Let us now consider the important particular case in which
(1) reduces to the linear, stochastic dynamical model

{ Xn+1 -
Yn =
in which F,,, G,, and H,, are matrices of dimensions N x
N, N x pand g x N, respectively. Let w,, = [ul vI]T
andz, =[x, yZ]7. If furthermore x, and w,, are Gaus-
sian variables, the process z = {z, },cn is Gaussian. So
the posterior densities are also Gaussian and are thus de-
scribed by their means and covariance matrices. Propagat-
ing p(x,|yo.») amounts to propagating these parameters,
and in this case equations (7) and (8) reduce to the well
known Kalman filter [7]. On the other hand, if the Gaus-
sian assumption does not hold, or if (9) is replaced by the
general, nonlinear model (1), then computing equations (7)
and (8) often becomes difficult in practice. Consequently, a
number of approximate, Monte Carlo based methods have
been derived; see e.g. the recent books [8] [9] or tutorial
[10].

F'ILXTL + GTL u'IL

H,x, +v, ’ ®)

3. PAIRWISE MARKQOV MODELS

3.1. General PMM

Let us now turn back to model (1). Let z,, = [x,yT |7
and let zg = xq. z,, satisfies

Zpy+1 = Gn (Zna Wn) (10)

for some function G,,(.,.), where w,, = [ul ,vI]T is a
zero-mean process which is independent and independent
of xg. As a consequence (and as is well known), the pro-
cess z = {z, }nemw IS also a MC.

Throughout this section we will thus consider model
(10). As we now see, this model still enables to solve the
filtering problem. One can show that equations (5) and (6)

are replaced respectively by

p(Xn+1|Xnay0:n) = p(xn+1|xna}’nv}’n—1)7(11)
p(Yn+l|Xn+layO:n) = p(yn+1|xn+layn)~ (12)

Consequently, (7) and (8) are replaced respectively by the
new relations

p(Xn+l|yO:n) = /p(Xn+l|Xnaynaynfl)p(xn|y0:n)dxn7
(13)
P(Ynt1Xnt1, ¥n)P(Xn+1]Y0:n)

PXn+11Y0:n+1) = )
( nt | nr ) fp(YTL+1|Xn+1aY7L)p(X7L+1|YO:n)an+1
14

which enable to compute p(x,, |yo. ) recursively under model
(10).

3.2. Linear Gaussian PMM

We now consider the important particular case where G, (., .)
is a linear function. Let us consider the following model :

Xnt1| [ FL F21[x, Gl G2 1[ u,
o=l ] (S G v
—_——— —-— — —_———— A ——

Zn+1 Fn Gn Wn

(15)
in which {w,, = [uZ,vI]T}, -, are random vectors which
are zero-mean, independent and independent of x,. Matri-
ces FL, F2, H! and H? are of dimensions N x N, N x q,
gx N and g xgq,and G, GI2, G2! and G22 of dimensions
N xp, N x q,q x pand g x g, respectively. This model
is a particular case of model (10), and a generalization of
the classical linear HMM (1), which is obtained by setting
F} = 0nxg H = 0gxg, G2 = Onxg, GI = 0y and
G2 =1,y

Let us further assume that the process w = {w,, }nem
is Gaussian and that p(x¢) ~ N(%Xo,Po). Then z is a
Gaussian process and consequently the pdf p(x.,|yo.») and
p(Xn+1|yo:n) are also Gaussian. Let us set

~ N(&n+1\nvpn+l|n) ) 17)

p(Xn|YO:n)
p(x77,+1 |YO:n)

and let

E(w,wl) =

l: Qn Sn :| 5n,m - Qn 5n,ma (18)
arar] _al apra, s.rey ol
G2 G2 | ST R, || G G2

= Gn. (19)

The following result is an extension to model (15) of the
classical Kalman filter :

Proposition 1 (Pairwise Kalman Filter) Letus assume that
model (15) holds. Suppose that p(xq) ~ N (%o, Po) and
that p(w,,) ~ N(0,Q,). Then X, 1,41 and Pp gy



can be computed from x,,,, et P, ,, via :

nitln = =GR (G2) T H &+ G2 (G2) 7y

+ [F) — G2(GY) 'H, yna (20)
P, = (G = GGG
+[F), - G2 (GY) 'Hy] Py,

[F, — G2 (G) 'Hy)" (21)
Y+l = Ynil — H711+15<n+1\n - H$L+1Yn (22)
Loy = G2, +H) P (HY )T (23)
Koiijng1 = Prgan(Hy 1) Loy (24)
Xnt1jntl = Xntin + Kngijnt1 Ynt1 (25)
P7L+1|n+1 = Pn+1\n - Kn+1|n+1Ln+1K3;+1\n+1 (26)

Proof. From (15) and (19), we get

] e

By combining (13), (14), (16), (17) and (27), we compute
P(Xn+1,Xn|Yo:n) aNd (X1 1, Yn+1|yo:n), fromwhich equa-
tions (20) to (26) are deduced. [ |

We check that if F2 = Onwg, H2 = 045, GL2 =
Onxg G2' = 04xp et G2 = 1., then (15) reduces to
the classical model (9), and equations (20) to (26) reduce to
classical Kalman filter equations (for example, (20), (21),
(25) and (26) coincide respectively with [11, eq. (5.5) p.
115], [11, eq. (5.12) p. 117], [11, eq. (5.6) p. 116] and [11,
eg. (5.11) p. 117]).

Remarks.

X
p(xn+1aYn|Xn7Yn71) ~ N(}—N |:

The introduction of Pairwise Models in the context of Kalman
filtering is not entirely new. A closely related model was in-
troduded independently in the Gaussian case [12] (see also
[13, Corollary 1 p. 72]). In this model, the pair z,, =
[xZ' yTT satisfies a linear equation similar to (15) and thus
is Markovian. Optimal filtering equations for this model
have also been derived [13, egs. (13.56) et (13.57)] (in fact,
due to the difference in times indices, these equations ex-
tend the classical Kalman one-step ahead prediction algo-
rithm ()A(n\n—laPn\n—l) - ()A(7L+1|naPn+1\n))- However,
to our best knowledge, equations (20) to (26) of Proposi-
tion 1 (which form the optimal filter for model (15) in the
Gaussian case); equations (13) and (14), which generalize
(7) and (8), on the one hand, and (20) to (26), on the other
hand; and section 4, which specifies relationships between
PMM and classical HMM, are original.

4. PAIRWISE MARKOV MODELSVS. HIDDEN
MARKOV MODELS

In section 3, we introduced models (10) and (15), which
are generalizations of (1) and (9), respectively. The aim of

this section is to make relations between HMM and PMM
clearer. To that end, we are looking for conditions under
which the marginal process x of a Markovian process z =
(x,y) is itself Markovian.

Proposition 2 Let z,, = [x1,yI ;]T (with zy = x¢) and
z = {2y }ne. Assume that z is a MC. Further assume that
either

foralln, p(y.|xn+1,Xnt+2) = p(yalXns1) ,  (28)

or
foralln, p(yn|xn+1,%n) = p(¥n|Xnt1) - (29)

Then {x,, } >0 isa MC.

Proof. Since z is a MC,

p(20,21) - P(Zn—1,%n)

p(z1) - p(Zn-1)
p(yolxo,x1) - p(Yn—2,Yn—1[Xn_1,%n)

p(yolx1) -+ p(Yn-2[%n-1)
A

p(Xn—1,%n)
'p(xn—l)
B

p(ZO:n) =

p(x0,%1) - -
T ) -

x isaMC ifand only if [ Adyo.,—1 = 1, which is ensured
under (28) or under (29). ]

Conversely, we are now looking for local conditions im-
plied if x is Markovian. In the Gaussian case, the following
result holds :

Proposition 3 Let z,, = [x1,yI ,]T (with zy = x¢) and
z = {Zn}new. Assume that z is a MC. Further assume
that z is zero-mean and Gaussian, and that y, € IR (i.e.
that ¢ = 1). If {x,,}n>0 is @ MC, then for all n, either
p(yn|xn+1,xn+2) = p(yn|Xn+1). or p(yn|xn+1axn) =
P(Yn|Xnt1).

Proof. SincezisaMC, forall n [x7, y,,—1]” and [x2 o, yn+1]”
are independent conditionally on [x2, 1, y,] " Consequently
x,, et x,, 42 are also independent conditionally on [x”, ;, y,,] 7.
Let

Xpi1 A, BT cI D7
Yn Ty Bn €n Fz; GZ
Xn+2 Dn Gn Jn Kn

Conditionally on [xLl,yn]T the pdf of [x7,xI ,]7 is

Gaussian with covariance matrix

H, J] [C, F,][A, BI]'[Ccl DI,
J. K, D, G, ||B. e, Fl Gl |



the variables x,, et x,,o are independent conditionnally on
(x|, y,)" if and only if this matrix is block-diagonal, i.e.
if and only if

(i) Onxny = (J, —D,A'CT) - (G, - D,A,'BY)
x (e, — B, A B Y FT —B,AICT).

Now, further assume that x,, is a MC. Then for all n, x,,
and x,, - are independent conditionally on x,,11, which is
equivalent to

(i) J,—D,A'CT =0y .
Consequently, under condition (i), (ii) holds if and only if

(G,—D,A,'B;) (e,—B,A,'B;) ' (F, -B,A,'C})

Nx1 1x1 IxXN

isequal to Oy« v, i.€., since ¢ = 1, if and only if
G,—-D,A "B =0y, or FI -B,A;'CT =0,y .

As we see from (30), this condition means that x,, > and
yr, are independent conditionally on x,,.1, or that x,, and
yrn, are independent conditionally on x,.1, which can be
written as

P(Yn|Xni1) oF
P(Yn|Xnt1) -

p(yn|xn+1a Xn+2) =
p(yn|xn+1 ) Xn) =

Remarks

The sufficient condition of Proposition 2 is local and
can thus easily be checked in the framework of a dynamic
stochastic model. For instance, let us come back to the Pair-
wise linear model (15). We check that if F2 = 0, then
P(Xn+1|Xn, Yn-1) = p(Xn+1|%») and so the process x is
a MC. Note that the case F2 = 0, H2 # 0 provides a
model which is more general than (9), and in which x re-
mains Markovian.

On the other hand, we can easily verify that there exist
models for which the necessary condition of Proposition 3
is not satisfied (consider for instance the model

Zn+1= |:15 .(:)l:|zn+wn7 Qn: |:é f:| 7p(X0)NN(O: 1))

This shows that we can find PMM for which x is not a MC,
and thus that model (10) is strictly more general than model

(D).
5. REFERENCES
[1] P. E. Caines, Linear Stochastic Systems, Wiley se-

ries in Probability and Mathematical Statistics. Wiley,
New York, 1988.

[2] R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden
Markov Models, Estimation and Control, vol. 29 of
Applications of mathematics - Stochastic Modelling
and Applied Probability, Springer-verlag, New York,
1995.

[3] W. Pieczynski and A. N. Tebbache, “Pairwise markov
random fields and segmentation of textured images,”
Machine Graphics and Vision, vol. 9, no. 3, pp. 705—
718, 2000.

[4] W. Pieczynski, “Pairwise markov chains,” Accepted
for publication, IEEE Tr. Pattern Analysis and Ma-
chine Intelligence, 2002.

[5] S. Derrode and W. Pieczynski, “Sar image segmen-
tation using generalized pairwise markov chains,” in
Proceedings of SPIE International Symposium on Re-
mote Sensing, Crete, Greece, September 22-27, 2002.

[6] W. Pieczynski, “Arbres de markov couple - pairwise
markov trees,” Comptes Rendus de I’Académie des
Sciences - Mathématiques, vol. 335, pp. 79-82, 2002,
Ser. | (in French).

[7] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” J. Basic Eng., Trans. ASME,
Series D, vol. 82, no. 1, pp. 35-45, 1960.

[8] H. Tanizaki, Nonlinear Filters, Estimation and Appli-
cations, Springer, Berlin, 2nd edition, 1996.

[9] A. Doucet, N. de Freitas, and N. Gordon, Eds., Se-
quential Monte Carlo Methods in Practice, Statistics
for Engineering and Information Science. Springer
Verlag, New York, 2001.

[10] M. Sanjeev Arulampalam, S. Maskell, N. Gordon, and
T. Clapp, “A tutorial on particle filters for online non-
linear / non-gaussian bayesian tracking,” IEEE Trans-
actions on Signal Processing, vol. 50, no. 2, pp. 174-
188, February 2002.

[11] B.D. O. Andersonand J. B. Moore, Optimal Filtering,
Prentice Hall, Englewood Cliffs, New Jersey, 1979.

[12] R. S. Lipster and A. N. Shiryaev, “Statistics of condi-
tionally gaussian random sequences,” in Sixth Berke-
ley Symposium on Mathematics, Statistics and Proba-
bility. 1972, vol. 2, pp. 389-422, University of Cali-
fornia Press.

[13] R.S. Lipster and A. N. Shiryaev, Statistics of Random
Processes, Vol. 2 : Applications, chapter 13 : "Con-
ditionally Gaussian Sequences : Filtering and Related
Problems”, Springer Verlag, Berlin, 2001.



