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ABSTRACT

Hidden Markov Chain (HMC) models are widely used in various sgnal or image restoration problems. In such models,
one onsiders that the hidden process X = (X,,...,X,) welook for isaMarkov chain, and the distribution p(y|x) of

the observed process Y =(Y,,....Y,), condtional on X, is given by p(yjx)=[]p(y|x). The "a posteriori"

distribution p(xly) of X given Y =y isthen a Markov chain dstribution, which makes possble the use of different

Bayesian restoration methods. Furthermore, all parameters can be etimated by the general "Expedation
Maximizaion" algorithm, which renders Bayesian restoration ursupervised.

This paper is devoted to an extension d the HMC model to a "Triplet Markov Chain" (TMC) model, in which a third
auxiliary process U is introduced and the triplet (X,U,Y) is considered as a Markov chain. Then a more general
mode! is obtained, in which X can still be restored from Y =y . Moreover, the model parameters can be estimated
with Expedation-Maximizaion (EM) or Iterative Condtional Estimation (ICE), making the TMC based restoration
methods unsupervised. We present a short simulation study o image segmentation, where the bi- dimensional set of
pixels is transformed into a mono-dimensional set via aHilbert-Peano scan, that shows that using TMC can improve
the results obtained with HMC.

Keywords. Hidden Markov chains, Pairwise Markov chains, Triplet Markov chains, parameter estimation, Bayesian
restoration, statisticad signal segmentation, statistical image segmentation, theory of evidence, Dempster-Shafer fusion,
EM algorithm

1. INTRODUCTION

The modeling by hidden Markov chains (HMC) is widely used in various problems [1, 3, 5, 7], among dhers. It
consists of considering two stochastic processes X =(X, )¢y and Y =(Y,) gy » Where X is a Markov chain. The

unolservable redizaions X = x are of interest and have to be estimated from the observed Y = y . The distribution o
(X,Y) that models the stochastic interadions between what is ®en and what is wanted is then gven by a Markov
distribution p(x) of X and the distributions p(y|x) of Y condtional on X = X. When the latter are smple enough
the pair (X,Y) keeps the same Markovian form of distribution, and it is the same for the distribution p(x|y) of X
condtional on Y =y. The Markovianity of p(x|y) is crucial because it alows one to estimate the unolservable
X =X fromthe observed Y =y by some Bayesian methods, even in the cae of very large number of observations.

However, the simplicity of p(y|x) , which is frequently taken of the form p(y|x) = I_J p(y;|x ), is often difficult to
justify. To remedy the latter, the HMC model has been recently generalized to “Pai rwis;a Markov Chains’ (PMC [27]),
in which ore diredly asaumes the Markovianity of the pairwise model Z =(X,Y); it is to say, the process

(Z.)on =(X,,Y,)on is @ Markov chain. A HMC is then a PMC, but a PMC is not necessarily a HMC and thus one
obtains a strictly more general model. This larger generality all ows one to take into aceount more cmplex ditributions
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p(y|x) , the latter being very useful to better model complex red situations. Of course, PMC are of interest with resped

to HMC becaise dl Bayesian processng pasble in HMC context remain pcssble in the PMC one. Let us natice that
an analogous generdizaion has been previously performed in the mntext of Markov fields, whase gplicaions in
image processng are well known. In faa, the Hidden Markov Fields (HMF [17, 19, 20]) model has been generalized to
Pairwise Markov Fields (PMF) models [26], and dfferent experiments in an ursupervised context has been presented
in[32].

In this paper we will ded with “Triplet Markov Chain” (TMC) model, which has been propased in [25] in french, and
which generalizes the PMC model. More predsely, our aim isto present some further comments, spedfy some further
properties, and present some first experiments sowing hov TMC alows one to improve the results obtained with
PMC, espedally in statisticd image segmentation.

2. TRIPLET MARKOV CHAINS

2.1 General Properties
Let X =(X,), oy bethe seached processand Y =(Y, ),y the observed ore. The problem isto estimate X from Y .

We asaumethat for eath nON , thevariables X, and Y, take their valuesin Q :{wl,...,a)k} and R, respedively.

Definition 3.1
The model considered is caled a Triplet Markov Chain if there exists a stochastic processU = (U,,) - » With eady U |

takingitsvaluesinaset A :{Al,...,)\m} ,suchthat T =(X,U,Y) =((X,,U,,Y,)).on isaMarkov chain.

Let usinsist on the fad that only X and Y have physicd existence and the auxiliary process U is only a tod for
different cdculus. So, the ideaof TMC isto consider the distribution o (X,Y) , which models the interadions between
the observed and the searched processes, as a margina distribution o a Markov chain T =(X,U,Y). The Pairwise
Markov Chain (PMC [10, 11, 27]) model, in which Z = (X,Y) isasuumed to be aMarkov chain, is then a particular
case of the TMC because the former is obtained by taking Q =A and U = X . Furthermore, TMC is drictly more
general than PMC, the latter being strictly more general than classcd HMC, in that there eist Markov chains
T =(X,U,Y) suchthat Z =(X,Y) arenot Markov chains.

Let us pedfy how the Bayesian Maximum Posterior Mode (MPM) can be performed in the frame of TMC. Let us
consider afinite number of variables T = (T,,....T,) = ((X;,U,Y,),....(X,,,U,.Y,)) . According to the general Bayesian

theory, the MPM restoration xM™ = ("™ ,...,x™™) is such that for eah 1<i<n
p(x"™ |y) = maxp(x = ajy) 21

So, the problem isto caculate the posterior marginal probabiliti es p(xi|y) . Let us consider the variables Z, = (X;,,Y;),
V. =(X,,U;),and Z, V the orrespondng proceses. Given that T is Markovian, the process (V,Y) isaPMC and
so we can write the distribution o (V,,Y) as p(v,,y)=a'(v)B'(v,), with a'(v;) (« Forward» probabiliti es) and
B'(v) («Bakward »  probabiliti es) defined by a'(v) = p(Yy,- ¥, ¥i%)  ad B (%) = P(Yiageenr Vol Vi W) -

Furthermore, a'(v,) and B'(v,) are cmputable by the following «Forward » and «Badckward » procedures [10, 27]

al(Vl) = p(Y;, V), et ai+l(vi+1) = gai (Vi)p(yi+l’vi+l| yi,v) for 0<i<n-1 (2.2)
v; L

XA\

B"(v,) =1, et B ()= ﬁi+l(vi+l)p(yi+livi+l| y,,v;) for Osi<n-1 (2.3)

Vi g QXA
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Having cdculated p(v;,y) =a'(v,)B'(v;), wethen can cdculate p(x., y) by

p(%,Yy) = ;p(xi Ui, Y) = ; p(vi,y), (2.4

which gves p(x|y) . Finally, the marginals p(x|y) are cmputable, which makes possble the use of the Bayesian
MPM restoration method gven by (2.1).

Remark 2.1

When the TMC isaPMC, itisto say when X =U ,wehave X =V andso p(x,y) =a'(x)B'(x) isgiven by (2.2),
(2.3) and (2.4) is not nealed. This means that we obtain the PMC « Forward » and «Badkward » formulas.
Furthermore, a PMC is defined by the distributions p(z,z,,) and when the latter are of the form

P(Z,Z.1) = P(X 2 Xi11) P(Y; %) P(Yia|X.y) » the PMC isaHMC. In such a cae, the PMC « Forward » and «Badkward »
formulas (2.2), (2.3) beacome the dasscd HMC « Forward » and «Badkward » formulas [27].
The following result, extraded from [25], showsthat TMC model is grictly more general that the PMC one.

Proposition 2.1

Let T =(X,U,Y) aTMC verifying:

(H) FOf e\/ery I D N ’ z| = Zi+2 Imp“es p(ui+1 Zi!zi+1) = p(ui+l Zi+1'Zi+2) (recal that Z = (X’Y) )
Then Z =(X,Y) isaPMCif and ory if foreah iON, p(U.4|Z,Z.;) = P(U4]Z.,) -

Proof
Letus diow that Z = (X,Y) isaPMCif and orly if

p(ui+l|zi ’ Zi:l) p(ui+l|zi+l’ Zi+2) —
p(ui+l Zi+1)
Infad, Z,, ..., Z, isaMarkov chainif and orly if for every i 21 thedistribution o (Z;,Z

Forevery i ON and z,z,,, Z,,, ; 1 (2.5

Z,,,) iswritten

i+1y

P(Z.2.1) P(Z.1:Z.2) (2.6)

p('! i+11 ‘+):
BB Bz p(Z.,)

Otherwise, the distribution o (Z,,Z,,,,Z;,,) isthe marginal distribution o (T.,T.,,,T.,,) =U,,Z,,U.,;,Z,,Uis0,Z,ss)
The latter being a Markov dstribution, we have

t"ti+ ti+ ’ti+ — 'Yuii i+ ’ui+ i+ 1ui+ ' S+ 1ui+ -
p(z| vzi+112i+2) - z p(t| vti+11ti+2) - z p( i 1) p( 1 2) - z p(Z| Z| 1 1) p(Z| 1 1 Z| 2 2) -

U, Uiy, Up o OA U Uiy, Uiy OA p(ti+1) Uy, U, Uiy CA p(zi+l’ui+1)

z p(Z| ’ Zi+1)(ui 'ui+l|zi 'Zi+1) p(zi+l’ Zi+2) p(ui+l’ui+2| Zi, Zi+2) —
Uy Uiy, Uy 0N p(z|+1) p(ui+l Zi+1)

D(Zi,ZHl) D(Zi+1,Zi+2) z p(ui’ui+l|ziizi+1) p(ui+l'ui+2| Zi+l’Zi+2) -
p(zi+1) Up U, Uy CA p(ui+1 Zi+1)

P(Z,2.1) P(Z11,Z1) P(U|Z 2 Z1) P(Uisa| 11, Z10)
p( zi+1) u%/\ p( ui+1 Zi+1)

thus
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7 7 Uia|Z 0 Zisy) P(Uia| Zisa s 24
p(zi,ZHl,ZHz): p(Z|'Z|+l) p(z|+l’Z|+2) Z p( i+1| % l)p( 1 1 2) (27)
p( Zi+1) U, LA p(ui+1 Zi+1)
which showsthat (2.5) is equivalent to (2.6).
Let us how that (2.5) isequivalent to p(U,,|Z,z.,) = P(Uia|Z.) -
; . . K k a;b;
For z, fixed, let us consider the scdar product defined on R* by (a,b>:Z—. Let
G p(u =w;|z,)

ajz = p(Upy = wj|zi =2,2,)=pU,, = W,

Z.1,Z., = 2), the guality coming from the hypahesis (H). So, acording
to (3.3), we have afamily of vedors a* =(a/,...a;) verifying <az,az'>:1 for every z, Z'. Thisimpliesthat a* does
az _ a.z'

) 2 2 D2 . . . ‘
not depend on z ; in fad, :<az,az> +<az,az> —2<az,az>:0,wh|ch|mpl|es a‘=a’.So, &’ do nd

depend on z, which means p(u, = |z, = z,2,) = p(u, = W|2z,,2, = 2) = p(u, = w|z,) , which ends the proof.

Example 2.1

Let U be aMarkov chain and let us assume the random variables (Z;) independent condtionaly to U , with
p(z]u) = p(z|u). The distribution o T is then gven by p(t,) = p(u) P(z/w) and P(t.af) = P(Ualt) P(ZalUia) -
So T isaMarkov chain and thus, acordingly to what precedes, such a model can be used to estimate X from Y.
However, this model is nat, in general, neither a HMC model nor a PMC model : neither X nor (X,Y) are Markov
chainsin general.

2.2 Evidential Context
The Dempster-Shafer theory of evidence can be seen, in some situations, as an useful extension d the probability

theory [2, 6, 15, 22, 29, 30, 31, 35]. In particular, the cdculus of the “pasterior” distribution p(x|y) needed in
Bayesian processng can be seen as a particular case of the so-cdled “ Dempster-Shafer fusion rule”. The usefulness of
Markov models in Bayesian signal processng tkeing well known, the problem of generalizing them to some
“evidential” contexts is of interest. Until now, very few papers consider the problem of signa processng sing
simultaneously hidden Markov modeling and Dempster-Shafer one. Considering the dasscd Hidden Markov Model

(HMM), which can be HMC or HMF, p(x) is a Markov dstribution and the distributions p(y|x) are of the simple

form p(y[x) = I_J p(y;|x ) - Kegping p(x) asaMarkov probability distribution, it isthen pessble to generalize p(y|x)

to some “evidential measure” in such a way that the Dempster-Shafer fusion d p(x) with the latter “evidential
measure” gives a Markov distribution, which generalizes the dasscd posterior distribution p(x|y) [4, 12, 33]. When

wishing to generalize HMM to situations in which the prior Markov dstribution p(x) is replaced by some prior

“Markov evidential measure” things become more difficult becaise, rougHy spe&ing, the Dempster-Shafer fusion
destroys the Markovianity (particular cases of this problem are studied in [13, 21]). Following [25], we establish below
aformal link between hidden “evidential” Markov chains and TMC ones. So, in spite of the ladk of Markovianity of the
fused distribution, Bayesian MPM segmentation can be performed using (2.1)-(2.4).

Let usconsider afinite set Q :{wl,...,wk} of clases and its power set P(Q) :{ALAJ with q = 2% A function M
from P(Q) to [0,]] iscdled a« massfunction» if M(dJ)=0 and M (A) =1. A massfunction M definesthen a
Q)
plausibility function Pl from P(Q) to [0,1] by PI(A) = ZM(B) , and a « credibility » function Cr from P(Q) to
AnBz0O

[0,]] by Cr(A) = z M (B) . We seehow a massfunction generalizes a probability function: when M is null except

BUA
on a partition d Q, then the correspondng Pl and Cr functions are equal and are aprobability distribution. For
example, if we have afamily of possble probability distribution (p,), . the following «upmr» and <dower»
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probabiliti es p(A) =supp, (A) , r)(A)zigrlef9 P, (A) are Pl and Cr functions associated with the mass function M
606

defined by M (A) = g (-1 B Cr(B), the latter formulabeing valid orce Cr  isdefined by M .
A

Such models can be useful in numerous, even very simple, situations. For example, let us imagine aremote sensing
image of a part of aregionin which there ae forest and water. A half of the region is known and it is establi shed that
the propation d water is 0.25; the other half is not known and nahing can be said abou the propartion o the water.
Furthermore, it is not known in what part of the region the image has been taken. How to model such a prior

knowledge?In astrictly probabili stic framework ore wuld say that on ead pixel p°(W) =0.25 and p°(F) =0.75. In
a evidential framework, it is possble to take whoe the information available by taking M 0({W}) =0.125,
M°{F}) =0.375,and M°w,F}) = 05.

When two massfunctions M,, M, represent two pieces of evidence, we can combine — o fuse - them using the so
cdled « Dempster-Shafer combinationrule ». Theresult M =M, O M, isdefined by:

M(A) =M, OM)(AD ) M (B)M,(B,) (29

B,nB,=A

We will say that a massfunction M is « probabili stic » when, being nul outside singletons, it defines a probability.
One can then seethat when either M, or M, is probabili stic, then the fusion result M is probabili stic. In particular,

one may seethat cdculus of the posterior probability is a Dempster-Shafer fusion (DS fusion) of two probabili stic mass
functions. For example, let X =(X,..X,), Y=(Y,..Y,) be the dasscd hidden Markov chain, with
P(X, Y) = P(X,) P(X,|%,) .. P(X, X, ) p(y1|x1)(y2|x2)...p(yn|xn) . The posterior distribution p(Xy) of X can then be
seen as the DS fuson o the probabilisic masses Ml(x):p(xl)p(x2|x1)...p(xn|xn_l) and

POYE[X) (Va]%) - P(Ya[%,)

> POAX)(ValXz) o POV [X)
Xt

possbly take into acount problems in which the strictly probabili stic models are difficult to apply. For example, let us
consider the problem of image segmentation into two classes “water” and “forest” mentioned above. Working “pixel by
pixel” we have to dedde, from the gray level y,, whether there is “water” or “forest” on s. Let us assuime that vy, is
distributed acoording to f,, ( fx respedively) when there is water (forest, respedively) on s. In the probabili stic
framework, we cdculate the posterior probability

. This means that the DS fusion is more general and can

M, () =My (%,.0%,) =

P° (W) fu (vs)
P°(W) fu, (ya) + P (F) fr (¥5)

» P(F|ys) = 0 0
POEYe) = o) () P (F) 2 ()

p(Wly,) =

In the evidential framework, the DS fusion (2.8) applied to M° defined above by M°{w}) =0.125,
M°{Fh=0375, M°W,F)=05, and the “probebilisic’ mass function M! defined by

Ll = Tw(Ye) el = Te(Y) 1 —0 o _ :
M {w} TR M ({F})—m, M*{W,F}) =0 gives M =M, O M, defined by

(M °dwh + M dw, Fh) T (v)
(MOwh +MOdw, Fh) fy (vo) + (MO {FH + MW, Fh) f- (ye)

HE
(2.10)

M°dFh + M dw, Fh) fe (vo)
(MW + MW, FD) fy (vo) + (MO {FH + MW, FD) T, (v.)

M{F}) =
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we see that probability (2.10) is the dassca posterior probability (2.9) when the “evidential” priors M° becme
“probabili stic” priors p°, it isto say when M°¢w,F}) =0.
The am of what followsisto propase aworkable “evidential Markovian” model for priors.

Definition 2.2

A massfunction M defined on P(Q") will be cdled «evidential Markov chain » (EMC) if it is null outside [P(Q)]"
andif it can be written

M(ALA,...A) =M(AM(A]A),...M(AA,,) (211

Let us remark that a probabilisic EMC (which is null outside A=(A,A,,....,A,) such that al A,A,...,A ae

singletons) isa dasscd Markov chain.
Following [25] we can then state

Proposition 2.2
Let M° be an EMC on [P(Q)]", and M* a probability on P(Q") defined from the observed process Y = yOOR" by

M* (X, %,) O P(Ya[X) - P(Ya[X,) -

Then the probability distribution M =M° O M* isaTMC, with A =P(Q) and T Markov chain whase distribution is
defined by

p(tl) U l[xlmul] M 0(“1) p(y1|X:L) ’ and p(ti+l|ti) U ]'[xDu‘]l[xﬂEu,ﬂ] M O(ui+l|ui) p(yi+1|xi+1) (212)

Proof
Let x=(x,..,x,)0Q". The DS fusion is written (in the two first sums x=(x,...,X,) is fixed and u=(uj,...,u,)

variesin [P(Q)]" in such away that x, O u,...,x, Ou,) :

(M°OMY(x) O SM (U, u )M Y(x) O g M °(u)M ° (Uuy) ..M (U, |u, )M (X) =

> g A M UM (Uy[U) .MU u, IMP) =5 p(t) P(tafts) - P(toftes) = Y Pltyety)

uoP@))" uoh@))" uoP@))"
which ends the proof.
Remark 2.2
The TMC  of the  Proposition 22, defined by p(ty) 0,0, M °(uy) p(Yi|%) and
P(tiaft) O Ly M (Ung]u) P(Yia|X,s) - is @ particular case of the TMC specified in Example 2.1 ; infact, U is

aMarkov chain and p(z|u;) = (X, i |u;) O, M °(U) p(Yi|X) - As aresult, we can state that (X,Y) isnot a PMC.
In other words, the DS fusion destroys the Markovianity but, the result being a TMC, Bayesian restorations are feasible.

3. EXPERIMENTS

We propose in this section two series of experiments. In the first series we consider data Y = y simulated according to

a simple TMC and they are then restored according to the correct TMC model on the one hand, and according to a
classical HMC model, on the other hand. Of course, the very Bayesian theory indicates that the TMC based restoration
will give better results; however, it is interesting to look at how large the difference can be. Furthermore, both TMC
and HMC based restorations are made in supervised (parameters estimated from the complete data (X,U,Y)) and
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unsupervised (parameters estimated from the observed data Y) manner. In the latter case, the parameters can be
estimated by adaptations of some general methods like Expedation-Maximizaion (EM) [9] or Iterative Condtional
estimation (ICE) [23]. These two methods have been compared in the mntext of HMC with Gaussan ndse and it turns
out that their efficiencies are equivalent [5]. As here we use Gausian ndse and gven that EM is faster than ICE, we
propose here the use of an original variant of EM (atheoreticd comparison between EM and ICE can be seen in [8]).
The seaond series concerns the image segmentation. In fad, transforming the pixels st into a monodmensional set
using some Hil bert-Peano scan al ows one to succesSully use HMC, or PMC, in ursupervised image segmentation [5,
10, 11, 14] and so it is of interest to look at how TMC work in such context.

3.1TMCand HMC
Let us consider a TMC T =(X,U,Y), with Q :{wl,w2} and A ={)\1,A2}. So, we have two red classes and two

auxiliary ores. Let the distribution d T =(X,U,Y) be defined by a Markov dstribution d U , and the distributions
p(xu) = [ p(x lu) and p(ylu,x) = [ p(Y;|u;, %) . So, the whale distribution p(t) = p(x,u,y) is given by the

I<isn I<isn

distribution p(u,,u,) on A*, two dstributions p(x|u; =A;), p(x|u; =A,) on Q, and four Gausdan dstributions

p(yl|(U1,X1) =(wy, M), p(y1|(ulvxi) =(w,A,)), p(y1|(ulvxi) =(w,,4,)) . and p(yl|(ul,x1) =(w,,4,)) -
We performed numerous smulations and threeof them are presented in Tab. 1-3. These diff erent experiments all ow us
to pu forth the following general conclusions:

(i) TMC based MPM aways gives smaller error ration that the HMP based ore; however, the difference can be
significant, asin Tab. 1, or negligible, asin Tab. 3;

(i) the goodefficiency of EM in the dasscd Gaussan HMC remains in the Gausdan TMC studied here; in fad, the
supervised and ursupervised TMC based restorations are generally close enoughto ead ather;

(iii') the degradation o efficiency, when passng from supervised restoration to ursupervised ore, is more significant
when using HMC that when using TMC.

Finally, important conclusion for pradicd applications is that when data suit a TMC model and the parameters are not
known, the use of TMC and EM based ursupervised MPM restoration can be significantly better that the HMC and EM
based ore.

p(x, = w1|U1 =A)=

p(x, = w2|u1 =A;)

p(% =wl|ul =A,)=

p(x, = w2|u1 =A)

p(u, =AU, =A) =
p(u, = A,,U, =A,)

p(u; =AU, =A,) =
p(u; =A,,u, =Ay)

0.7 0.3 0.49 0.01

p(y1|(u1, X)) = (@i, A)) p(Y1|(U1’ %) = (@w,A,)) p(y1|(U1’ X) = (@,,4,)) p(y1|(U1’ %) = (@,,A,))
Mean=0, Var=1 Mean=2.5, Var=1 Mean=2.5, Var=1 Mean=5, Var=1
TMCMPM HMC MPM TMC MPM EM HMC MPM EM

9.7% 17.7% 12.9% 29.2%

Tab. 1 ; Parameters and error ratios of supervised (red parameters) and ursupervised (parameters estimated with EM)

Bayesian MPM restorations

p(x, = w1|u1 =A)=

p(x, = w2|u1 =A;)

P(X, :w1|u1 =A;) =

p(x, = w2|u1 =A)

p(u; =AU, =A)) =
p(u; =A,,u, = Ay)

p(u; =AU, =A,) =
p(u; =A,,u, = Ay)

0.7 0.3 0.49 0.01

p(y1|(u1, X)) = (@i, A)) p(Y1|(U1’ %) = (@,A,)) p(y1|(U1’ %) = (@,,4,)) p(y1|(U1’ X) = (@,,4,))
Mean=0, Var=1 Mean=0.4, Var=1 Mean=1.6, Var=1 Mean=2, Var=1
TMCMPM HMC MPM TMC MPM EM HMC MPM EM

15.8% 17.38% 21.48% 27.63%

Tab. 2 ; Parameters and error ratios of supervised (red parameters) and ursupervised (parameters estimated with EM)

Bayesian MPM restorations
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p(x, = w1|u1 =A)=

p(x, = w2|u1 =A;)

p(x = (’-’1|u1 =A,)=
p(x, = 0.)2|u1 =A)

p(u, =AU, =A)) =
p(u, =AU, =A,)

p(u; =AU, =A,) =
p(u; =A,,u, =Ay)

0.8 0.2 0.49 0.01

p(y1|(u1, X)) = (@i, A)) p(Y1|(U1’ %) = (@, A,)) p(y1|(U1’ %) = (@,,4,)) p(y1|(U1’ X) = (@,,4,))
Mean=0, Var=1 Mean=0.8, Var=1 Mean=1.2, Var=1 Mean=2, Var=1
TMCMPM HMC MPM TMC MPM EM HMC MPM EM

18.0% 18.6% 18.4% 20.0%

Tab. 3 ; Parameters and error ratios of supervised (red parameters) and ursupervised (parameters estimated with EM)
Bayesian MPM restorations

3.2 Unsupervised image segmentation using TMC

The dasscd HMC have drealy been used in ursupervised image segmentation, in supervised or unsupervised manner,
on monasensor or multisensor images [5, 14], and it is the same for the recent PMC model [10, 12]. So, we propase
here an analogows work, using TMC instead of HMC and PMC. To do so, the bidimensional set of pixels has to be
transformed into a monodmensional sequence, which is made throughthe Hil bert-Peano scan presented in Fig. 1. We
will consider aTMC T =(X,U,Y), with two red clases Q ={wl,w2} and two auxiliary classes A :{Al,)\z}. Let the
distribution o T =(X,U,Y) be defined by a Markov dstribution o V = (X,U), and p(yu,x) = [y |u,x). We

I<isn

naticethat such amodel is dightly more general than the model used in the previous sdion. So, the whale distribution
p(t) = p(x,u,y) here is given by the distribution p(u,,x;,u,,%,) on (AxQ)? and four Gaussan dstributions

p(yl|(U1,X1) =(wy, M), p(y1|(ulvxi) =(w, ), p(y1|(ulvxi) =(w,,4,)) . and p(y1|(u11 %) = (w,,A,)) -

We present below two supervised segmentation results. The four classimages (first imagesin Fig. 1 and 2 are hand-
written, which also givesthered two classimages (seandimagesin Fig. 1 and 2. The four classimages are crrupted
with Gaussan ndses whose parameters are spedfied in Tab. 6. The distribution p(u;,%;,U,,X,) on (AxQ)? is

estimated, from the chains obtained from the four classes images via Hilbert-Peano scan, by the dasscd empiricd
frequencies. The estimates obtained are spedfied in Tab. 4 and 5

We natice that TMC based MPM restoration works better than the HMC based ore; however, its advantage is less
striking than in the previous sibsedion.

Remark 3.1
Let us natice that here the auxiliary classes can possbly have the red following significaion. If we assume that in a

remote sensed image the red classes Q = {wl,a)z} are “ vegetation” and " urban area”, there can be some subclasss (a

vegetation classcan contain “trees’ and “bushes’, urban area ca contain “roofs’ and “stre€s’). So, we muld consider
that the red class w, isan urion d two subclasss v, = (w;,A,), V, =(w;,A,) .and the red class w, is an urion o

two subclasses v, = (w,,A,), v, =(w,,A,).

R

step 1

step 2

Fig. 1 Construction d the Hilbert-Peano scan
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Casel
A A A Vv,
A 0.201 | 0.004 | 0.001 | 0.003
A 0.005 | 0.459 | 0.002 | 0.003
V, 0.001 | 0.002 | 0.140 | 0.001
c 0.003 | 0.003 | 0.001 | 0.169

Tab. 4 : Estimated p(u,, X;,U,, X,)

Case 2
A A Vv, Vv,
v, 0.243 | 0.005 | 0.001 | 0.007
A 0.005 | 0.190 | 0.000 | 0.003
A 0.001 | 0.000 |0.186 | 0.006
v, 0.007 | 0.003 | 0.006 | 0.338
Tab. 5: Estimated p(u,, X;,U,,X,)

Casel

p( y1|(u11 ) = (@A)

p(y1|(u1, X)) = (w1, 4,))

POYL|(Ur %) = (@2,4,))

p( y1|(u1, X) = (@,,4,))

Mean=0, Var=1 Mea=0.25, Var=1 Mean=0.75, Var=1 |Mea=1, Var=1
Case 2
(YU, X)) = (@1, A,)) (VLU %) = (@1,4,)) P(Y:|(Uy, %) = (@A) P(Y1|(Ug, %) = (@,.45))

Mean=0, Var=1

Mean=0.5, Var=1

Mean=0.25, Var=1

Mean=0.75, Var=1

Tab. 6 : Parameters of the Gausdan densities p(yl|(ul,x1) intwo TMC studied.

g

g

(X,U) =(xu)

Real classesimage

Noisy image

TMC MPM:7.26%

HMC MPM: 8.23%

Fig. 2 : Case 1, Supervised segmentation using TMC based MPM and HMC based one. Parameters specified in Tab. 4,

and Tab. 6.

(X,U) =(xu)

9o 04

Real classesimage

Noisy image

TMC MPM:11.87%

HMC MPM: 13.06%

Fig. 3 : Case 2, Supervised segmentation using TMC based MPM and HMC based one. Parameters specified in Tab. 5

and Tab. 6.

Remark 3.2

We have tried to use the EM to perform unsupervised segmentation from the noisy images above but the results are not
good. This is undoubtedly due to the high level of the noise; in fact, the introduction of the auxiliary classes has as
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effed to increase the noise level. Further studies are needed to determinate in what kind o situations the TMC and EM
based MPM unsupervised image segmentation is of interest with resped to HMC based ore.

4. CONCLUSIONS

The @m of this paper was to propcse some further developments and some first experiments related to arecent Triplet
Markov Chain (TMC) mode [25], which generalize the Pairwise Markov Chain model [10, 11], the latter generalizing
the dasdcd Hidden Markov Chain (HMC) model. We showed, via simulation study, that when the data suit a TMC the
Bayesian TMC based restoration is more dficient than the HMC based ore. Furthermore, the same is true in an
unsupervised restoration, where parameters are estimated by a variant of the general Expedation-Maximization (EM)
method Likely to HMC and PMC, TMC can be used in image segmentation. We studied some simple examples and
TMC Bayesian MPM segmentation method still works better s than the HMC based ore; however, the diff erences are
less $riking and further studies are neaded to understand in which situations TMC are to be used instead of HMC or
PMC.

Let us mention some possble diredions of further investigations.

(i) The two TMC used in ou simulations are relatively simple; in particular, the possble crrelation o the variables
Y,, ..., Y, condtionaly on (X,U) has not been considered. More amplex cases, with correlated and passbly non

Gausdan ndse muld be mnsidered. We have used here the EM method, well suited to the Gausgan case. When the
noise is not Gausdan, the Iterative Condtional Estimation (ICE) method [23], which is more flexible than the EM
method [8, 20] and which has been succesfully used in Pairwise Markov Chains (PMC [10, 11]), which are a
particular case of TMC, could be used;

(i) the links with the Dempster-Shafer theory of evidence discussed here in a simple mono sensor case ould be
complicated by considering the Dempster-Shafer fusion o numerous, posshly “evidential”, sensors with possbly
“evidentia” priors, in the cmntext of Markov modeling;

(i) in an analogows way Triplet Markov Fields (TMF) model is propased in [28] and first experiments sow its interest
in image segmentation. So, the generalization o some further Markov models like Markov trees [16, 24], or more
complex grahicd models[34], to Triplet Markov Models could passbly be of interest.
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