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Triplet Markov Chains in hidden signal restoration
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ABSTRACT

Hidden Markov Chain (HMC) models are widely used in various signal or image restoration problems. In such models,
one considers that the hidden process )...,,( 1 nXXX =  we look for is a Markov chain, and the distribution )( xyp  of

the observed process )...,,( 1 nYYY = , conditional on X , is given by ∏
=

=
n

i
ii xypxyp

1

)()( . The "a posteriori"

distribution )( yxp  of X  given yY =  is then a Markov chain distribution, which makes possible the use of different

Bayesian restoration methods. Furthermore, all parameters can be estimated by the general "Expectation-
Maximization" algorithm, which renders Bayesian restoration unsupervised.
This paper is devoted to an extension of the HMC model to a "Triplet Markov Chain" (TMC) model, in which a third
auxili ary process U  is introduced and the triplet ),,( YUX  is considered as a Markov chain. Then a more general

model is obtained, in which X  can still be restored from yY = . Moreover, the model parameters can be estimated

with Expectation-Maximization (EM) or Iterative Conditional Estimation (ICE), making the TMC based restoration
methods unsupervised. We present a short simulation study of image segmentation, where the bi- dimensional set of
pixels is transformed into a mono-dimensional set via a Hilbert-Peano scan, that shows that using TMC can improve
the results obtained with HMC.

Keywords: Hidden Markov chains, Pairwise Markov chains, Triplet Markov chains, parameter estimation, Bayesian
restoration, statistical signal segmentation, statistical image segmentation, theory of evidence, Dempster-Shafer fusion,
EM algorithm

1. INTRODUCTION

The modeling by hidden Markov chains (HMC) is widely used in various problems [1, 3, 5, 7], among others. It
consists of considering two stochastic processes NsnXX ∈= )(  and NsnYY ∈= )( , where X  is a Markov chain. The

unobservable realizations xX =  are of interest and have to be estimated from the observed yY = . The distribution of

),( YX  that models the stochastic interactions between what is seen and what is wanted is then given by a Markov

distribution )(xp  of X  and the distributions )( xyp  of Y  conditional on xX = . When the latter are simple enough,

the pair ),( YX  keeps the same Markovian form of distribution, and it is the same for the distribution )( yxp  of X

conditional on yY = . The Markovianity of )( yxp  is crucial because it allows one to estimate the unobservable

xX =  from the observed yY =  by some Bayesian methods, even in the case of very large number of observations.

However, the simplicity of )( xyp , which is frequently taken of the form ∏
=

=
n

i
ii xypxyp

1

)()( , is often diff icult to

justify. To remedy the latter, the HMC model has been recently generalized to “Pairwise Markov Chains” (PMC [27]),
in which one directly assumes the Markovianity of the pairwise model ),( YXZ = ; it is to say, the process

NnnnNnn YXZ ∈∈ = ),()(  is a Markov chain. A HMC is then a PMC, but a PMC is not necessarily a HMC and thus one

obtains a strictly more general model. This larger generality allows one to take into account more complex ditributions
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)( xyp , the latter being very useful to better model complex real situations. Of course, PMC are of interest with respect

to HMC because all Bayesian processing possible in HMC context remain possible in the PMC one. Let us notice that
an analogous generalization has been previously performed in the context of Markov fields, whose applications in
image processing are well known. In fact, the Hidden Markov Fields (HMF [17, 19, 20]) model has been generalized to
Pairwise Markov Fields (PMF) models [26], and different experiments in an unsupervised context has been presented
in [32].
In this paper we will deal with “Triplet Markov Chain” (TMC) model, which has been proposed in [25] in french, and
which generalizes the PMC model. More precisely, our aim is to present some further comments, specify some further
properties, and present some first experiments showing how TMC allows one to improve the results obtained with
PMC, especially in statistical image segmentation.

2. TRIPLET MARKOV CHAINS

2.1 General Properties
Let NnnXX ∈= )(  be the searched process and NnnYY ∈= )(  the observed one. The problem is to estimate X  from Y .

We assume that for each Nn ∈ , the variables nX  and nY  take their values in { }kωω ...,,1=Ω  and R , respectively.

Definition 3.1

The model considered is called a Triplet Markov Chain if there exists a stochastic process NnnUU ∈= )( , with each nU
taking its values in a set { }mλλ ...,,1=Λ , such that Nnnnn YUXYUXT ∈== )),,((),,(  is a Markov chain.

Let us insist on the fact that only X  and Y  have physical existence and the auxili ary process U is only a tool for
different calculus. So, the idea of TMC is to consider the distribution of ),( YX , which models the interactions between

the observed and the searched processes, as a marginal distribution of a Markov chain ),,( YUXT = . The Pairwise

Markov Chain (PMC [10, 11, 27]) model, in which ),( YXZ =  is assumed to be a Markov chain, is then a particular

case of the TMC because the former is obtained by taking Λ=Ω  and XU = . Furthermore, TMC is strictly more
general than PMC, the latter being strictly more general than classical HMC, in that there exist Markov chains

),,( YUXT =  such that ),( YXZ =  are not Markov chains.

Let us specify how the Bayesian Maximum Posterior Mode (MPM) can be performed in the frame of TMC. Let us
consider a finite number of variables )),,(...,),,,(()...,,( 1111 nnnn YUXYUXTTT == . According to the general Bayesian

theory, the MPM restoration )ˆ...,,ˆ(ˆ 1
MPM
n

MPMMPM xxx =  is such that for each ni ≤≤1

)(max)ˆ( yxpyxp i
MPM
i ω

ω
==

Ω∈
(2.1)

So, the problem is to calculate the posterior marginal probabiliti es )( yxp i . Let us consider the variables ),( iii YXZ = ,

),( iii UXV = , and Z , V  the corresponding processes. Given that T  is Markovian, the process ),( YV  is a PMC and

so we can write the distribution of ),( YVi  as )()(),( i
i

i
i

i vvyvp βα= , with )( i
i vα  (« Forward » probabiliti es) and

)( i
i vβ (« Bakward » probabiliti es) defined by ),,...,,()( 11 iiii

i vyyypv −=α  and ),...,,()( 1 iinii
i yvyypv +=β .

Furthermore, )( i
i vα  and )( i

i vβ  are computable by the following « Forward » and « Backward » procedures [10, 27]

),()( 111
1 vypv =α , et ),,()()( 111

1
iiii

v
i

i
i

i vyvypvv
i

++
Λ×Ω∈

+
+ ∑= αα  for 10 −≤≤ ni (2.2)

1)( =n
n vβ , et ),,()()( 111

1

1

iiii
v

i
i

i
i vyvypvv

i

++
Λ×Ω∈

+
+∑

+

= ββ  for 10 −≤≤ ni (2.3)
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Having calculated )()(),( i
i

i
i

i vvyvp βα= , we then can calculate ),( yxp i  by

∑∑
Λ∈Λ∈

==
ii u

i
u

iii yvpyuxpyxp ),(),,(),( , (2.4)

which gives )( yxp i . Finally, the marginals )( yxp i  are computable, which makes possible the use of the Bayesian

MPM restoration method given by (2.1).

Remark 2.1

When the TMC is a PMC, it is to say when UX = , we have VX =  and so )()(),( i
i

i
i

i xxyxp βα=  is given by (2.2),

(2.3) and (2.4) is not needed. This means that we obtain the PMC « Forward » and « Backward » formulas.
Furthermore, a PMC is defined by the distributions ),( 1+ii zzp  and when the latter are of the form

)()(),(),( 1111 ++++ = iiiiiiii xypxypxxpzzp , the PMC is a HMC. In such a case, the PMC « Forward » and « Backward »

formulas (2.2), (2.3) become the classical HMC « Forward » and « Backward » formulas [27].
The following result, extracted from [25], shows that TMC model is strictly more general that the PMC one.

Proposition 2.1
Let ),,( YUXT =  a TMC verifying :

(H) For every Ni ∈ , 2+= ii zz  implies ),(),( 21111 +++++ = iiiiii zzupzzup  (recall that ),( YXZ = ).

Then ),( YXZ =  is a PMC if and only if for each Ni ∈ , )(),( 1111 ++++ = iiiii zupzzup .

Proof
Let us show that ),( YXZ =  is a PMC if and only if

For every Ni ∈  and 21,, ++ iii zzz , 1
)(

),(),(

1 11

21111 =∑
Ω∈ ++

+++=+

+iu ii

iiiiii

zup

zzupzzup
(2.5)

In fact, 1Z , …, nZ  is a Markov chain if and only if for every 1≥i  the distribution of ),,( 21 ++ iii ZZZ  is written

)(

),(),(
),,(

1

211
21

+

+++
++ =

i

iiii
iii zp

zzpzzp
zzzp (2.6)

Otherwise, the distribution of ),,( 21 ++ iii ZZZ  is the marginal distribution of ),,,,,(),,( 221121 ++++++ = iiiiiiiii ZUZUZUTTT .

The latter being a Markov distribution, we have

=== ∑∑
Λ∈ +

+++

Λ∈
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++++ 2121 ,, 1
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,,
2121 )(

),(),(
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∑
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+++
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zzzp (2.7)

which shows that (2.5) is equivalent to (2.6).
Let us show that (2.5) is equivalent to )(),( 1111 ++++ = iiiii zupzzup .

For 1+iz  fixed, let us consider the scalar product defined on kR  by ∑
= +=

=
k

j iji

jj

zup

ba
ba

1 1)(
,

ω
. Let

),(),( 21111 zzzupzzzupa iijiiiji
z
j ====== +++++ ωω , the equality coming from the hypothesis (H). So, according

to (3.3), we have a family of vectors )...,( 1
z
k

zz aaa =  verifying 1, ' =zz aa  for every z , 'z . This implies that za  does

not depend on z  ; in fact, 0,2,, '2''22' =−+=− zzzzzzzz aaaaaaaa , which implies 'zz aa = . So, z
ia  do not

depend on z , which means )(),(),( 22322212 zupzzzupzzzup iii ωωω ======= , which ends the proof.

Example 2.1
Let U  be a Markov chain and let us assume the random variables )( iZ  independent conditionally to U , with

)()( iii uzpuzp = . The distribution of T  is then given by )()()( 1111 uzpuptp =  and )()()( 1111 ++++ = iiiiii uzpuupttp .

So T  is a Markov chain and thus, accordingly to what precedes, such a model can be used to estimate X  from Y .
However, this model is not, in general, neither a HMC model nor a PMC model : neither X  nor ),( YX  are Markov

chains in general.

2.2 Evidential Context
The Dempster-Shafer theory of evidence can be seen, in some situations, as an useful extension of the probabilit y
theory [2, 6, 15, 22, 29, 30, 31, 35]. In particular, the calculus of the “posterior” distribution )( yxp  needed in

Bayesian processing can be seen as a particular case of the so-called “ Dempster-Shafer fusion rule”. The usefulness of
Markov models in Bayesian signal processing being well known, the problem of generalizing them to some
“evidential” contexts is of interest. Until now, very few papers consider the problem of signal processing using
simultaneously hidden Markov modeling and Dempster-Shafer one. Considering the classical Hidden Markov Model
(HMM), which can be HMC or HMF, )(xp  is a Markov distribution and the distributions )( xyp  are of the simple

form ∏
=

=
n

i
ii xypxyp

1

)()( . Keeping )(xp  as a Markov probabilit y distribution, it is then possible to generalize )( xyp

to some “evidential measure” in such a way that the Dempster-Shafer fusion of )(xp  with the latter “evidential

measure” gives a Markov distribution, which generalizes the classical posterior distribution )( yxp  [4, 12, 33]. When

wishing to generalize HMM to situations in which the prior Markov distribution )(xp  is replaced by some prior

“Markov evidential measure” things become more diff icult because, roughly speaking, the Dempster-Shafer fusion
destroys the Markovianity (particular cases of this problem are studied in [13, 21]). Following [25], we establish below
a formal li nk between hidden “evidential” Markov chains and TMC ones. So, in spite of the lack of Markovianity of the
fused distribution, Bayesian MPM segmentation can be performed using (2.1)-(2.4).

Let us consider a finite set { }kωω ...,,1=Ω  of classes and its power set { }qAA ...,,)( 1=ΩΡ , with kq 2= . A function M

from )(ΩΡ  to ]1,0[  is called a « mass function » if 0)( =∅M  and 1)(
)(

=∑
ΩΡ∈A

AM . A mass function M  defines then a

plausibilit y function Pl  from )(ΩΡ  to ]1,0[  by ∑
∅≠∩

=
BA

BMAPl )()( , and a « credibilit y » function Cr  from )(ΩΡ  to

]1,0[  by ∑
⊂

=
AB

BMACr )()( . We see how a mass function generalizes a probabilit y function : when M  is null except

on a partition of Ω , then the corresponding Pl  and Cr  functions are equal and are a probabilit y distribution. For
example, if we have a family of possible probabilit y distribution Θ∈θθ )( p , the following «upper» and «lower»
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probabiliti es )(sup)( ApAp θ
θ Θ∈

=
�

, )(inf)( ApAp θθ Θ∈
=

�

 are Pl  and Cr  functions associated with the mass function M

defined by ∑
⊂

−−=
AB

BACard BCrAM )()1()( )( , the latter formula being valid once Cr   is defined by M .

Such models can be useful in numerous, even very simple, situations. For example, let us imagine a remote sensing
image of a part of a region in which there are forest and water. A half of the region is known and it is established that
the proportion of water is 25.0 ; the other half is not known and nothing can be said about the proportion of the water.
Furthermore, it is not known in what part of the region the image has been taken. How to model such a prior

knowledge? In a strictly probabili stic framework one could say that on each pixel 25.0)(0 =Wp  and 75.0)(0 =Fp . In

a evidential framework, it is possible to take whole the information available by taking { } 125.0)(0 =WM ,

{ } 375.0)(0 =FM , and { } 5.0),(0 =FWM .

When two mass functions 1M , 2M  represent two pieces of evidence, we can combine – or fuse - them using the so

called « Dempster-Shafer combination rule ». The result 21 MMM ⊕=  is defined by :

∑
=∩

∝⊕=
ABB

BMBMAMMAM
21

)()())(()( 221121 (2.8)

We will say that a mass function M  is « probabili stic » when, being null outside singletons, it defines a probabilit y.
One can then see that when either 1M  or 2M  is probabili stic, then the fusion result M  is probabili stic. In particular,

one may see that calculus of the posterior probabilit y is a Dempster-Shafer fusion (DS fusion) of two probabili stic mass
functions. For example, let )..,,( 1 nXXX = , )..,,( 1 nYYY =  be the classical hidden Markov chain, with

)(...)()()(...)()(),( 22111121 nnnn xypxyxypxxpxxpxpyxp −= . The posterior distribution )( yxp of X  can then be

seen as the DS fusion of the probabili stic masses )(...)()()( 11211 −= nn xxpxxpxpxM  and

∑
+Ω∈

==
1'

2211

2211

122
)'(...)'()'(

)(...)()(
)...,,()(

nx
nn

nn

n
xypxyxyp

xypxyxyp
xxMxM . This means that the DS fusion is more general and can

possibly take into account problems in which the strictly probabili stic models are diff icult to apply. For example, let us
consider the problem of image segmentation into two classes “water” and “ forest” mentioned above. Working “pixel by
pixel” we have to decide, from the gray level sy , whether there is “water” or “ forest” on s . Let us assume that sy  is

distributed according to Wf  ( Ff  respectively) when there is water (forest, respectively) on s . In the probabili stic

framework, we calculate the posterior probabilit y

)()()()(

)()(
)(

00

0

sFsW

sW
s

yfFpyfWp

yfWp
yWp

+
= , 

)()()()(

)()(
)(

00

0

sFsW

sF
s

yfFpyfWp

yfFp
yFp

+
= (2.9)

In the evidential framework, the DS fusion (2.8) applied to 0M  defined above by { } 125.0)(0 =WM ,

{ } 375.0)(0 =FM , { } 5.0),(0 =FWM , and the “probabili stic” mass function 1M  defined by

{ }
)()(

)(
)(1

sFsW

sW

yfyf

yf
WM

+
= , { }

)()(

)(
)(1

sFsW

sF

yfyf

yf
FM

+
= , { } 0),(1 =FWM  gives 21 MMM ⊕=  defined by

{ } { } { }
{ } { } { } { } )()),()(()()),()((

)()),()((
)(

0000

00

sFsW

sW

yfFWMFMyfFWMWM

yfFWMWM
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+++
+

= ,

(2.10)
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{ } { } { } { } )()),()(()()),()((

)()),()((
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yfFWMFM
FM

+++
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we see that probabilit y (2.10) is the classical posterior probabilit y (2.9) when the “evidential” priors 0M  become

“probabili stic” priors 0p , it is to say when { } 0),(0 =FWM .

The aim of what follows is to propose a workable “evidential Markovian” model for priors.

Definition 2.2

A mass function M  defined on )( nΩΡ  will be called « evidential Markov chain » (EMC) if it is null outside n)]([ ΩΡ
and if it can be written

)(...,),()()...,,,( 112121 −= nnn AAMAAMAMAAAM (2.11)

Let us remark that a probabili stic EMC (which is null outside )...,,,( 21 nAAAA =  such that all nAAA ...,,, 21  are

singletons) is a classical Markov chain.
Following [25] we can then state

Proposition 2.2

Let 0M  be an EMC on n)]([ ΩΡ , and 1M  a probabilit y on )( nΩΡ  defined from the observed process nRyY ∈=  by

)(...)()...,,( 111
1

nnn xypxypxxM ∝ .

Then the probabilit y distribution 10 MMM ⊕=  is a TMC, with )(ΩΡ=Λ  and T  Markov chain whose distribution is

defined by

)()(1)( 111
0

][1 11
xypuMtp ux ∈∝ , and )()(11)( 111

0
][][1 11 +++∈∈+ ++

∝ iiiiuxuxii xypuuMttp
iiii

(2.12)

Proof

Let n
nxxx Ω∈= ),...,( 1 . The DS fusion is written (in the two first sums ),...,( 1 nxxx =  is fixed and ),...,( 1 nuuu =

varies in n)]([ ΩΡ  in such a way that ),...,11 nn uxux ∈∈  :

∝∝⊕ ∑
∈ux

n xMuuMxMM )()...,,())(( 1
1

010 =∑
∈

−
ux

nn xMuuMuuMuM )()(...)()( 1
1

0
12

0
1

0

=∑
∈

−∈∈
n

nn

(
�

u
nnuxux xMuuMuuMuM

))P

1
1

0
12

0
1

0
][][ )()(...)()(1...1

11 ∑∑
∈

−
∈

=
nn ( �u

nn
( �u

n ttpttpttptp
))P

11
))P

121 )...,,()(...)()(

which ends the proof.

Remark 2.2

The TMC of the Proposition 2.2, defined by )()(1)( 111
0

][1 11
xypuMtp ux ∈∝  and

)()(11)( 111
0

][][1 11 +++∈∈+ ++
∝ iiiiuxuxii xypuuMttp

iiii
, is a particular case of the TMC specified in Example 2.1 ; in fact, U  is

a Markov chain and )()(1),()( 0
][ iiiuxiiiii xypuMuyxpuzp

ii∈
∝= . As a result, we can state that ),( YX  is not a PMC.

In other words, the DS fusion destroys the Markovianity but, the result being a TMC, Bayesian restorations are feasible.

3. EXPERIMENTS

We propose in this section two series of experiments. In the first series we consider data yY =  simulated according to

a simple TMC and they are then restored according to the correct TMC model on the one hand, and according to a
classical HMC model, on the other hand. Of course, the very Bayesian theory indicates that the TMC based restoration
will give better results; however, it is interesting to look at how large the difference can be. Furthermore, both TMC
and HMC based restorations are made in supervised (parameters estimated from the complete data ),,( YUX ) and
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unsupervised (parameters estimated from the observed data Y ) manner. In the latter case, the parameters can be
estimated by adaptations of some general methods like Expectation-Maximization (EM) [9] or Iterative Conditional
estimation (ICE) [23]. These two methods have been compared in the context of HMC with Gaussian noise and it turns
out that their eff iciencies are equivalent [5]. As here we use Gausian noise and given that EM is faster than ICE, we
propose here the use of an original variant of EM (a theoretical comparison between EM and ICE can be seen in [8]).
The second series concerns the image segmentation. In fact, transforming the pixels set into a monodimensional set
using some Hilbert-Peano scan allows one to successfully use HMC, or PMC, in unsupervised image segmentation [5,
10, 11, 14] and so it is of interest to look at how TMC work in such context.

3.1 TMC and HMC
Let us consider a TMC ),,( YUXT = , with { }21,ωω=Ω  and { }21,λλ=Λ . So, we have two real classes and two

auxili ary ones. Let the distribution of ),,( YUXT =  be defined by a Markov distribution of U , and the distributions

∏
≤≤

=
ni

ii uxpuxp
1

)()(  and ∏
≤≤

=
ni

iii xuypxuyp
1

),(),( . So, the whole distribution ),,()( yuxptp =  is given by the

distribution ),( 21 uup  on 2Λ , two distributions )( 111 λ=uxp , )( 211 λ=uxp  on Ω , and four Gaussian distributions

)),(),(( 11111 λω=xuyp , )),(),(( 21111 λω=xuyp , )),(),(( 12111 λω=xuyp , and )),(),(( 22111 λω=xuyp .

We performed numerous simulations and three of them are presented in Tab. 1-3. These different experiments allow us
to put forth the following general conclusions:
(i) TMC based MPM always gives smaller error ration that the HMP based one; however, the difference can be
significant, as in Tab. 1, or negligible, as in Tab. 3;
(ii ) the good eff iciency of EM in the classical Gaussian HMC remains in the Gaussian TMC studied here; in fact, the
supervised and unsupervised TMC based restorations are generally close enough to each other;
(iii ) the degradation of eff iciency, when passing from supervised restoration to unsupervised one, is more significant
when using HMC that when using TMC.
Finally, important conclusion for practical applications is that when data suit a TMC model and the parameters are not
known, the use of TMC and EM based unsupervised MPM restoration can be significantly better that the HMC and EM
based one.
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Mean=0, Var=1 Mean=2.5, Var=1 Mean=2.5, Var=1 Mean=5, Var=1
TMC MPM HMC MPM TMC MPM EM HMC MPM EM
9.7% 17.7% 12.9% 29.2%

Tab. 1 ; Parameters and error ratios of supervised (real parameters) and unsupervised (parameters estimated with EM)
Bayesian MPM restorations
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Tab. 2 ; Parameters and error ratios of supervised (real parameters) and unsupervised (parameters estimated with EM)
Bayesian MPM restorations
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18.0% 18.6% 18.4% 20.0%

Tab. 3 ; Parameters and error ratios of supervised (real parameters) and unsupervised (parameters estimated with EM)
Bayesian MPM restorations

3.2 Unsupervised image segmentation using TMC
The classical HMC have already been used in unsupervised image segmentation, in supervised or unsupervised manner,
on monosensor or multisensor images [5, 14], and it is the same for the recent PMC model [10, 12]. So, we propose
here an analogous work, using TMC instead of HMC and PMC. To do so, the bidimensional set of pixels has to be
transformed into a monodimensional sequence, which is made through the Hilbert-Peano scan presented in Fig. 1. We
will consider a TMC ),,( YUXT = , with two real classes { }21,ωω=Ω  and two auxili ary classes { }21,λλ=Λ . Let the

distribution of ),,( YUXT =  be defined by a Markov distribution of ),( UXV = , and ∏
≤≤

=
ni

iii xuypxuyp
1

),(),( . We

notice that such a model is slightly more general than the model used in the previous section. So, the whole distribution

),,()( yuxptp =  here is given by the distribution ),,,( 2211 xuxup  on 2)( Ω×Λ  and four Gaussian distributions

)),(),(( 11111 λω=xuyp , )),(),(( 21111 λω=xuyp , )),(),(( 12111 λω=xuyp , and )),(),(( 22111 λω=xuyp .

We present below two supervised segmentation results. The four class images (first images in Fig. 1 and 2) are hand-
written, which also gives the real two class images (second images in Fig. 1 and 2). The four class images are corrupted

with Gaussian noises whose parameters are specified in Tab. 6. The distribution ),,,( 2211 xuxup  on 2)( Ω×Λ  is

estimated, from the chains obtained from the four classes images via Hilbert-Peano scan, by the classical empirical
frequencies. The estimates obtained are specified in Tab. 4 and 5.
We notice that TMC based MPM restoration works better than the HMC based one; however, its advantage is less
striking than in the previous subsection.

Remark 3.1
Let us notice that here the auxili ary classes can possibly have the real following signification. If we assume that in a
remote sensed image the real classes { }21,ωω=Ω  are “ vegetation” and “urban area”, there can be some subclasses (a

vegetation class can contain “ trees” and “bushes” , urban area can contain “ roofs” and “streets” ). So, we could consider
that the real class 1ω  is an union of two subclasses ),( 111 λω=v , ),( 212 λω=v .and the real class 2ω  is an union of

two subclasses ),( 123 λω=v , ),( 224 λω=v .

                step 1              step 2              step 3

Fig. 1 Construction of the Hilbert-Peano scan
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Case 1 Case 2

1v 2v 3v 4v 1v 2v 3v 4v

1v 0.201 0.004 0.001 0.003
1v 0.243 0.005 0.001 0.007

2v 0.005 0.459 0.002 0.003
2v 0.005 0.190 0.000 0.003

3v 0.001 0.002 0.140 0.001
3v 0.001 0.000 0.186 0.006

c 0.003 0.003 0.001 0.169
4v 0.007 0.003 0.006 0.338

Tab. 4 : Estimated ),,,( 2211 xuxup Tab. 5 : Estimated ),,,( 2211 xuxup

Case 1
)),(),(( 11111 λω=xuyp )),(),(( 21111 λω=xuyp )),(),(( 12111 λω=xuyp )),(),(( 22111 λω=xuyp

Mean=0, Var=1 Mean=0.25, Var=1 Mean=0.75, Var=1 Mean=1, Var=1
Case 2

)),(),(( 11111 λω=xuyp )),(),(( 21111 λω=xuyp )),(),(( 12111 λω=xuyp )),(),(( 22111 λω=xuyp

Mean=0, Var=1 Mean=0.25, Var=1 Mean=0.5, Var=1 Mean=0.75, Var=1

Tab. 6 : Parameters of the Gaussian densities ),(( 111 xuyp  in two TMC studied.

),(),( uxUX = Real classes image Noisy image TMC MPM:7.26% HMC MPM: 8.23%

Fig. 2 : Case 1, Supervised segmentation using TMC based MPM and HMC based one. Parameters specified in Tab. 4,
and Tab. 6.

),(),( uxUX = Real classes image Noisy image TMC MPM:11.87% HMC MPM: 13.06%

Fig. 3 : Case 2, Supervised segmentation using TMC based MPM and HMC based one. Parameters specified in Tab. 5
and Tab. 6.

Remark 3.2
We have tried to use the EM to perform unsupervised segmentation from the noisy images above but the results are not
good. This is undoubtedly due to the high level of the noise; in fact, the introduction of the auxiliary classes has as



SPIE’s International Symposium on Remote Sensing, September 22-27, Crete, Greece, 2002

effect to increase the noise level. Further studies are needed to determinate in what kind of situations the TMC and EM
based MPM unsupervised image segmentation is of interest with respect to HMC based one.

4. CONCLUSIONS

The aim of this paper was to propose some further developments and some first experiments related to a recent Triplet
Markov Chain (TMC) model [25], which generalize the Pairwise Markov Chain model [10, 11], the latter generalizing
the classical Hidden Markov Chain (HMC) model. We showed, via simulation study, that when the data suit a TMC the
Bayesian TMC based restoration is more eff icient than the HMC based one. Furthermore, the same is true in an
unsupervised restoration, where parameters are estimated by a variant of the general Expectation-Maximization (EM)
method. Likely to HMC and PMC, TMC can be used in image segmentation. We studied some simple examples and
TMC Bayesian MPM segmentation method still works better s than the HMC based one; however, the differences are
less striking and further studies are needed to understand in which situations TMC are to be used instead of HMC or
PMC.
Let us mention some possible directions of further investigations.
(i) The two TMC used in our simulations are relatively simple; in particular, the possible correlation of the variables

1Y , …, nY  conditionally on ),( UX  has not been considered. More complex cases, with correlated and possibly non

Gaussian noise could be considered. We have used here the EM method, well suited to the Gaussian case. When the
noise is not Gaussian, the Iterative Conditional Estimation (ICE) method [23], which is more flexible than the EM
method [8, 20] and which has been successfully used in Pairwise Markov Chains (PMC [10, 11]), which are a
particular case of TMC, could be used;
(ii ) the links with the Dempster-Shafer theory of evidence, discussed here in a simple mono sensor case could be
complicated by considering the Dempster-Shafer fusion of numerous, possibly “evidential” , sensors with possibly
“evidential” priors, in the context of Markov modeling;
(iii ) in an analogous way Triplet Markov Fields (TMF) model is proposed in [28] and first experiments show its interest
in image segmentation. So, the generalization of some further Markov models like Markov trees [16, 24], or more
complex grahical models [34], to Triplet Markov Models could possibly be of interest.
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