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ABSTRACT

The efficiency of Markov models in the context of SAR image segmentation mainly relies on their spatial
regularity constraint. However, a pixel may have a rather different visual aspect when it is located near a
boundary or inside a large set of pixels of the same class. According to the classical hypothesis in Hidden
Markov Chain (HMC) models, this fact can not be taken into consideration. This is the very reason of the
recent Pairwise Markov Chains (PMC) model which relies on the hypothesis that the pairwise process (X,Y )
is Markovian and stationary, but not necessarily X. The main interest of the PMC model in SAR image
segmentation is to not assume that the speckle is spatially uncorrelated. Hence, it is possible to take into
account the difference between two successive pixels that belong to the same region or that overlap a boundary.
Both PMC and HMC parameters are learnt from a variant of the Iterative Conditional Estimation method. This
allows to apply the Bayesian Maximum Posterior Marginal criterion for the restoration of X in an unsupervised
manner. We will compare the PMC model with respect to the HMC one for the unsupervised segmentation of
SAR images, for both Gaussian distributions and Pearson system of distributions.

Keywords: Unsupervised classification, Bayesian restoration, Markov chain, pairwise Markov chain, iterative
conditional estimation, generalized mixture estimation, Pearson system, SAR image segmentation.

1. INTRODUCTION

In the only image processing area, the field of applications of Hidden Markov Chains (HMC) is extremely vast.
HMC can be used in image segmentation1, hand-written word recognition2, vehicle detection3, or even gesture
recognition4. Multisensor and multiresolution images can still be segmented using HMC5, 6. The success of
HMC models is mainly due to the fact that when the unobservable process X can be modeled by a finite
Markov chain and when the noise is not too complex, then X can be recovered from the observed process Y

using different Bayesian classification techniques like Maximum A Posteriori (MAP) or Maximal Posterior Mode
(MPM)7, 8.

The efficiency of Markov models in the context of Synthetic Aperture Radar (SAR) image segmentation
mainly relies on their spatial regularity constraint. This is justified by the fact that for many natural scenes,
neighboring pixels are more likely to belong to the same class than pixels that are farther away from each other.
However, a pixel may have a rather different visual aspect when it is located near a boundary or inside a large
set of pixels of the same class. According to the classical hypothesis in Markov models, this fact can not be taken
into consideration. This is the very reason of the recent Pairwise Markov Field (PMF9) and Pairwise Markov
Chain (PMC10, 11) models in which the pairwise process (X,Y ) is supposed to be Markovian. In this paper, we
deal with PMC. Such model is strictly more general than HMC since the (single) process X is not necessarily
a Markov one. In the SAR image segmentation context, the main interest of the PMC model is to not assume
that the speckle is spatially uncorrelated. Hence, unlike the HMC model, it is therefore possible to take into
account the difference between two consecutive pixels that belong to the same region and two consecutive pixels
that overlap a boundary between two regions.
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It has been shown that, similar to HMC, the PMC model allows one to perform Bayesian MAP or MPM
restorations10. Since we are concerned with unsupervised classification, the statistical properties of the different
classes are unknown and must first be estimated. In this work, all of the parameters are learnt from a variant
of the general Iterative Conditional Estimation (ICE) method12. ICE is an alternative to the Expectation-
Minimization (EM) procedure and has been successfully applied in several unsupervised image segmentation
applications: sonar13 and medical14 images, spatio-temporal video1, radar15 and multiresolution16, 17 images,
among others. The only image dependant parameters that must be entered by the user is the number of classes.
All other parameters are computed automatically.

The main issue of this work is to test and compare the PMC model with respect to the HMC one for
the unsupervised segmentation of SAR images. This article is organized as follows: In the next section, the
PMC model and the ICE principle are recalled. Sections 3 and 4 are devoted to the parameters estimation
problem. In particular, we specify how the original ICE based method works in the Gaussian case and how
it can be extended to the generalized mixture estimation case. Sections 5 and 6 compare the segmentation
results obtained from the HMC and PMC based restoration algorithms on two noisy simulated images and a
real JERS1 image of rice plantation in Indonesia. Finally, conclusions and further work are drawn in section 7.

2. PAIRWISE MARKOV CHAIN

Since we are concerned with the restoration of images, one have first to transform the bi-dimensional data
into a one-dimensional chain. A solution consists in traversing the image line by line or column by column.
Nevertheless, only horizontal or vertical neighbourhoods are taken into account. Another alternative is to use
a Hilbert-Peano scan which alternates horizontal and vertical transition, as illustrated in figure 1. Generalized
Hilbert-Peano scan18 can be applied to image whose height and width are even.

2.1. Pairwise Markov Chain distribution

Let X = (X1, . . . , XN ), and Y = (Y1, . . . , YN ) be two sequences of random variables, corresponding respectively
to the unknown class image and the observed image, according to the Hilbert-Peano scan. Each Xn, 1 ≤ n ≤ N

takes its values in a finite set Ω = {1, . . . ,K} of classes and each Yn takes its values in the set of real numbers
R. Considering Zn = (Xn, Yn), the process Z = (Z1, . . . , ZN ) is called a “pairwise” process associated to X

and Y . Realizations of such processes will be denoted by lowercase letters. To simplify notations, we will write
p(xn) for p(Xn = xn) and we will denote different distributions by the same letter p, except for distributions
on R and R

2 where f will be used.

The process Z is then called a “pairwise Markov chain” associated with X and Y if its distribution can be
expressed as p(z) = p(z1) p (z2 |z1 ) . . . p (zN |zN−1 ) . In this paper, we only consider the “stationary PMC” in
which p(zn, zn+1) does not depend on n. The process Z is then a Markov chain whose distribution is defined
by

p(z1, z2) = p(i, j) fi,j(y1, y2), (1)

where p(i, j) is a probability on Ω2, and fi,j(y1, y2) = p (y1, y2 |i, j ) is a distribution density on R
2. Hence,

p(z1, z2) is a probability distribution on Ω2 × R
2. The distribution of the Markov chain Z will equivalently be

determined by the initial probabilities p(z1), using (1):

p(z1) =
K∑

j=1

p(i, j)

∫
R

fi,j(y1, y2) dy2 =
K∑

j=1

p(i, j) fi,j(y1), (2)

and the transition matrix p(z2|z1), using (1) and (2):

p(z2|z1) =
p(z1, z2)

p(z1)
=

p(i, j) fi,j(y1, y2)
K∑

j=1

p(i, j) fi,j(y1)

. (3)
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Figure 1. Construction of a Hilbert-Peano scan for a 8× 8 image (initialisation, intermediate stage and result).

2.2. Relations to Hidden Markov Chain

It has been shown (see Ref. 10) that (i) fi,j(y1) = fi(y1) implies that X is a Markov chain and, (ii) reciprocally
the markovianity of X implies fi,j(y1) = fi(y1). These properties state a necessary and sufficient condition that
a PMC be an HMC and show that a PMC is strictly more general than a HMC. Furthermore, the distribution
of a classical stationary HMC, in which X is Markovian, can be written as

p(z) = p(x, y) = p (x1) fx1
(y1) p (x2 |x1 ) fx2

(y2) . . . p (xN |xN−1 ) fxN
(yN ) .

This is a particular PMC defined by p(z1, z2) = p(i, j) fi (y1) fj (y2). This illustrates the classical hypotheses
according to which the random variables Y1, . . . , YN are independent conditionally on X, and the distribution
of each Yn conditional to X is equal to its distribution conditional to Xn. The classical HMC cannot take into
account situations in which fi,j (y1) does depend on j. This can be a serious drawback since such dependencies
may occur. For example, following Ref. 10, consider the problem of restoring a two classes image with “Forest”
and “Water”: Ω = {F,W}. For i = F , the random variable Yn models the natural variability of the forest and,
possibly, other “noise” which is not considered here. Considering (F, F ) and (F,W ) as two possibilities for (i, j),
it seems quite natural that fF,F (y1) and fF,W (y1) can be different. In fact, the second case can appear when
some trees are near the water, giving them a different visual aspect. More generally, the possible dependence
of fi,j (y1) on j allows one to easily model the fact that the visual aspect of a given class can be different near
a boundary than inside a large set of pixels of a same class. Hence, a kind of “non stationary”, which models
the fact that the noise can be different close to boundaries, is taken into account in the context of a stationary
PMC model. Regarding the problem of restoring SAR images, the main interest of PMC is to allow to take
into account spatially correlated speckle noise, which can not be done in the HMC case.

2.3. ICE principle and segmentation algorithm overview

As specified above, the distribution of a PMC Z is given by the distribution p(z1, z2). From Eq. 1, the set θ

of parameters is made up of the K2 probabilities p(i, j), and the parameters that describe the K2 densities
fi,j (y1, y2). In the case of unsupervised classification, these parameters are unknown and must be estimated
from the observed data Y = y. We use here the ICE procedure whose principle is the following. Let P θ

Z be
the distribution of Z = (X,Y ), depending on a parameter θ ∈ Θ. The problem is to estimate θ from a sample
y = (y1, . . . , yN ). The ICE procedure is based on the following assumptions:

1. There exists an estimator of θ from the complete data: θ̂ = θ̂(z);

2. For each θ ∈ Θ, either the conditional expectation Eθ

[

θ̂(Z) |Y = y
]

is computable or simulation of X

according to its distribution conditional to Y = y is feasible.

The ICE procedure is an iterative method which runs as follows: Initialize θ = θ0; For q > 0,

• if the conditional expectation is computable, put θq+1 = Eθq

[

θ̂(Z) |Y = y
]

,

• if not, simulate L realizations x1, . . . , xL of X (each xl is here a sequence) according to its distribution

conditional on Y = y and based on θq, and put θq+1 = 1

L

∑L

l=1
θ̂(xl, y).
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Figure 2. Diagram of the complete ICE based restoration algorithm.

When unsupervised restoration is concerned, the ICE procedure can be incorporated into the algorithm
sketched in figure 2. Given the original sequence y (the Hilbert-Peano scan of the image), the first stage allows

to obtain an initial estimation θ̂0 of the set of parameters θ describing the model. Then the ICE procedure is
applied iteratively until convergence or until a given number of iterations is reached. The estimated parameters
θ̂P are then used for Bayesian restoration, and an inverse Hilbert-Peano scan allows to recover the segmented
image x.

The next two sections show how the ICE can be used to perform the estimation of the two sets of PMC
parameters from the observed data Y = y. For later use, let Ai,j denotes the set of indices 1 ≤ n ≤ N − 1 for
which (xn, xn+1) = (i, j).

3. MODEL PARAMETERS ESTIMATION

Similar to HMC, to estimate the PMC parameters p(i, j), we need the following distributions :

- “Forward” and “backward” probabilities

αn(j) = p(y1, . . . , yn, xn = i), 1 ≤ n ≤ N,

βn(j) = p(yn+1, . . . , yN |xn = j), 1 ≤ n ≤ N.

The “forward” and “backward” probabilities can be computed recursively, using Baum’s algorithm7. However,
the original algorithm is subject to serious numerical problems and we use its “normalized” variant19, which
can be iteratively calculated by:

α1(i) =
p(x1 = i, y1)∑

ω∈Ω

p(x1 = ω, y1)
, αn+1(i) =

∑

ω∈Ω

αn(ω) p(xn+1 = i, yn+1|xn = ω, yn)

∑

(ω1,ω2)∈Ω2

αn(ω1) p(xn+1 = ω2, yn+1|xn = ω1, yn)
, (4)

and

βN (j) = 1, βn(j) =

∑

ω∈Ω

βn+1(ω) p(xn+1 = ω, yn+1|xn = j, yn)

∑

(ω1,ω2)∈Ω2

αn(ω1) p(xn+1 = ω2, yn+1|xn = ω1, yn)
. (5)
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- Joint a posteriori probabilities The “joint a posteriori probability” of two subsequent classes given all
the observations can be expressed as

Ψn (i, j) = p(xn = i, xn+1 = j |y ),

=
αn(i)p (xn+1 = j, yn+1 |xn = i, yn) βi+1(j)∑

(ω1,ω2)∈Ω2

αn(ω1)p (xn+1 = ω2, yn+1 |xn = ω1, yn) βn+1(ω2)
, 1 ≤ n ≤ N − 1. (6)

- Marginal a posteriori probabilities The “marginal a posteriori probability” of two subsequent classes
given all the observations can be expressed as

Φn (i) = p(xn = i |y ),

=
αn(i)βn(i)∑

ω∈Ω

αn(ω)βn(ω)
, 1 ≤ n ≤ N. (7)

Similar to HMC, the last equation allows the Bayesian MPM restoration of the hidden sequence X. Let us also
notice that equations (4) to (7) give the classical HMC formulas when the PMC is an HMC.

Otherwise, the joint a priori probabilities p(i, j) can be estimated from X by using the following stan-

dard estimation p̂(i, j) =
Card(Ai,j )

N−1 . Applying ICE, the conditional expectation of p̂(i, j) at iteration q + 1 is
computable and gives

p̂q+1(i, j) = Eθq
[p̂(i, j) |Y = y ] =

1

N − 1

N−1∑

n=1

pq (xn = i, xn+1 = j |y ), (8)

where pq (xn = i, xn+1 = j |y ) are calculated from (6), at iteration q.

Let us notice that, similar to the HMC case, it is possible to simulate X according to its distribution
conditional on Y = y. Indeed, the a posteriori distribution of X, i.e. p(x |y ), is that of a non stationary Markov
chain11 with transition matrix:

tn+1(i, j) = p (xn+1 = i |xn = j, y ) =
Ψn(i, j)

Φn(i)
, 1 ≤ n ≤ N − 1. (9)

4. MIXTURE PARAMETERS ESTIMATION

The parameters of the K2 possibly correlated bi-dimensional densities fi,j (y1, y2) are not known and must be
estimated from the observation Y = y. In radar image segmentation, the choice for the family of distributions is
crucial since it models our a priori knowledge on the nature and shape of the noise, induced by the backscattering
mechanisms. One simple choice is to consider that all distributions are bi-dimensional Gaussian and we first
present the classic mixture estimation algorithm. However, on the first hand, it is well known that Gaussian
densities are not suited to the segmentation of SAR images. On the other hand, non Gaussian bivariate
distributions can sometimes be difficult to obtain explicitly∗. Hence, in section 4.2, we propose a method that
reduces the problem into the estimation of two 1D independent distributions, each of them belonging to a finite
set of possible shapes. Finally, the Pearson system of distributions is introduced and its use in the generalized

mixture estimation algorithm is presented.

∗see Ref. 20 for a synthesis on continuous multivariate distributions.
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4.1. ICE in Gaussian PMC

A PMC is called Gaussian if all densities fi,j (y1, y2) in (1) are Gaussian. Denoting by µi,j the mean vector and
by Γi,j the variance-covariance matrix of fi,j (y1, y2), we may use the following estimates from (X,Y ):

µ̂i,j(z) =
1

Card(Ai,j )

N−1∑

n=1

1Ai,j

(
yn

yn+1

)

, (10)

and

Γ̂i,j(z) =
1

Card(Ai,j )

N−1∑

n=1

1Ai,j

((
yn

yn+1

)

− µ̂i,j(z)

)t ((
yn

yn+1

)

− µ̂i,j(z)

)

. (11)

The conditional expectations of µ̂i,j and Γ̂i,j are not computable and thus we must perform simulations by
using (9). In practice, just one realization of X = xq is sampled according to its distribution conditional to

Y = y and based on θ̂q. Thus the next µ̂
q+1
i,j and Γ̂

q+1
i,j are estimated using (10) and (11), with xq instead of x

for the computation of Ai,j .

4.2. ICE in generalized PMC

When the nature of the K2 densities fi,j (y1, y2) on R
2 is not known, but each of them belongs to a fixed set Hi,j

of possible shapes, the problem of finding them is called “generalized mixture estimation”. Let us notice that
when each set Hi,j is reduced to one element, the generalized mixture becomes a classical mixture. Furthermore,
when all elements are Gaussian families, we find a Gaussian mixture and the generalized ICE becomes a classical
ICE in PMC as specified previously. In some situations, fi,j (y1, y2) may be difficult to obtain explicitly. For
example, we have an idea about fi,j (y1) and fi,j (y2), and we have their correlation. Of course, this does not
give us the density fi,j (y1, y2) which is needed in generalized ICE iterations. We can then use the following
method, inspired from the method successfully applied to bi-sensor image segmentation in Ref. 6.

Let denote σ1 and σ2 the standard deviations of Y1 and Y2, and ρ their correlation coefficient. Considering

(
U1

U2

)

=
|ρ|

w v

(
1 w σ2−σ1

ρ σ2

w σ1−σ2

ρ σ1

1

)

︸ ︷︷ ︸

A

(
Y1

Y2

)

, (12)

with w =
√

1 − ρ2 and v =
√

σ2
1 + σ2

2 − 2 σ1 σ2 w, we have: (i) V ar(U1) = V ar(U2) = 1, (ii) Cov(U1, U2) = 0,
and (iii) Cov(U1, Y1) = Cov(U2, Y2). The condition (iii) makes the choice for (U1, U2) unique. This ensures
that the general PMC condition according to which the marginals of p(z1, z2) are equal. Such condition was
not needed in Ref. 6.

As the random variables (U1, U2) with densities g1 and g2 are not correlated, we simplify things by assuming
that they are independent, and g (u1, u2) = g1(u1) g2(u2). At each iteration of the generalized ICE and for each
(i, j) ∈ Ω2, we seek g1 and g2. Since they are densities on R, this is much simpler than to seek a density on R

2.
The density f of the distribution of (Y1, Y2) is then linked to g1 and g2 by the relation

fi,j (y1, y2) = |det (A)| g1(u1) g2(u2). (13)

Hence, the mixture parameters that have to be estimated is first σ1, σ2 and ρ and, second, depend on the
family of the candidate distributions g1 and g2. If both g1 and g2 belong to the Gaussian family, we then find
again the classical PMC-ICE algorithm. Let us now examine the more general case where the families of g1 and
g2 belong to the Pearson system.
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Figure 3. Pearson’s diagram in term of skewness β1 and kurtosis β2. Note that the β2 axis is reversed.

4.3. ICE in Pearson PMC

The problem is now reduced to the search for one-dimensional densities. In order to take into account theoretical
results in the modelling of backscattering mechanisms, a number of candidate families has been proposed, such
as Gamma, K and Beta densities21, 22. The interest in these distributions comes essentially from the large
variety of possible shapes that can be obtained by modifying a limited number of parameters. In particular, all
of them can take into account the dissymmetry of class densities, which is not the case of Gaussian distributions.
Another interesting point is that some of them have a finite or semi-finite support, which is of great interest in
SAR image processing. In order to enlarge the set of available shapes, one solution is to consider, not only one
of the families cited above, but all of them in a unified way with the help of the Pearson system of distributions.
Comprehensive introduction and detailed statements on the Pearson system are given in Ref. 23.

This system consists of mainly eight families of distributions of various types with mono-modal and possibly
non symmetrical shapes (Gamma, Exponential and Beta distributions among others) and has shown to be
efficient in HMC in the context of radar image segmentation5, 24. Let µ2, µ3 and µ4 denote the centered
moments of order 2, 3 and 4. All the families can be expressed in terms of the mean (µ1), variance (µ2),
skewness (β1 = µ2

3/µ
3
2) and kurtosis (β2 = µ4/µ2) and located in the so-called Pearsons diagram, cf. Fig. 3.

Gaussian distributions are located in (β1 = 0, β2 = 3). Type II and Student’t distributions are respectively
situated according to (β1 = 0, 1 < β2 < 3) and (β1 = 0, 3 < β2 < 4.5). Gamma distributions are located on the
straight line, and inverse Gamma distributions are located according to the second curve†. Beta distributions
of the first kind are situated between the lower limit and the Gamma line, Beta distributions of the second kind
are located between the Gamma and the inverse Gamma distributions, and Type IV distributions are located
between the inverse Gamma distribution and the upper limit.

We thus seek both the family of the distribution and the parameters that best describe its samples. From
a realization x of X by using (9), one can estimate the empirical moments using classical estimators (or more
sophisticated estimators as the ones proposed in Ref. 25) and compute (β1,β2). Given the Pearson’s diagram,
it becomes possible to select the corresponding member family and recover the parameters, which precisely
identify the distribution, from the estimated moments.

†Gamma line : β2 = 1.5 β1 + 3, inverse Gamma curve: 3

32−β1

(

13β1 + 16 + 2 (β1 + 4)1.5
)

for 0 ≤ β1 ≤
96

25
.
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5. EXPERIMENTS ON NOISY SIMULATED IMAGES

In this section, we present a set of experiments concerning the segmentation of a noisy simulated image corrupted
with some correlated noise and then restored by HMC and PMC based Bayesian segmentation methods. The
question is whether PMC have to be used instead of HMC or not, in such situation. Fig. 4 shows the original
image and the two noisy image with correlated noise generated according to : (1) the two classes have been
corrupted with two independent noises (parameters are reported in Tab. 1); (2) the correlation is obtained by
performing the following filtering on the entire image :

1

3.8





0 0.7 0
0.7 1 0.7
0 0.7 0



 .

In this way, the test images are corrupted with two correlated noises. Note that such images neither represent
a HMC nor a PMC process. However, they are segmented in an unsupervised manner by HMC and PMC based
MPM restoration methods, with all parameters estimated by ICE algorithm, as specified in Sections 3 and 4.
We test HMC and PMC classical mixture estimation (Gaussian densities) on the first noisy image and HMC
and PMC generalized mixture estimation (Pearson system) on the second noisy image. The number of ICE
iterations is set to 100, and we compute only one a posteriori realization per iteration for the estimation of the
mixture parameters.

(a) (b) (c)

Figure 4. Original image and noisy simulated images (128 × 128). Ω = {Black, White}. The “noise parameters” are
reported in Table 1.

Table 1. Noise parameters used for the two experiments.

Image
Noise parameter values

Law µ1 µ2 µ3 µ4 β1 β2

(b)
fBlack Gaussian 120.0 49.0 0.0 7203.0 0.0 3.0

fWhite Gaussian 125.0 75.0 0.0 16875.0 0.0 3.0

(c)
fBlack Gamma 120.0 49.0 343.0 10804.5 1.0 4.5

fWhite Inv. Gamma 125.0 75.0 918.6 40159.1 2.0 7.1

The segmentation results are reported in Fig. 5. Both the error rates and a visual inspection show that
ICE-PMC based segmentations using classical and generalized mixture estimation [images (b) and (d)] give
better results than the corresponding ICE-HMC ones [image (a) and (c)]. We can also note that the error rates
are a little bit bigger in the case of generalized mixture. One reason is that the mixture is much more difficult
to estimate since the “degree of freedom” is greater than in the Gaussian case. Table 2 gives the estimated
parameters found with PMC-ICE and generalized mixture estimation. Most of the 1D densities selected among
the Pearson system are Beta of the first kind. In order to illustrate the approximation presented in section 4.2,
we also reported in Fig. 6 the bi-dimensional density obtained from equation (13), for (i, j) = (0, 0).
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(a) G-HMC - 13.98% (b) G-PMC - 6.66% (c) P-HMC - 15.34% (d) P-PMC - 8.36%

Figure 5. Segmentation results obtained with ICE estimation and MPM classification for both HMC et PMC models. ‘G’
and ‘P’ stand respectively for Gaussian and Pearson. The percentages give the error rates of misclassification according
to the original image in Fig. 4.

Table 2. Parameter values estimated using Pearson PMC based ICE algorithm.

p̂ (i, j) =

(

0.3399 0.0086
0.0086 0.6428

)

,

fi,j
Estimated parameters for the 1D densities

ρ 1D Law µ1 µ2 µ3 µ4 β1 β2

f0,0 0.53
g
0,0

1
Type IV 24.69 1.00 0.44 3.40 0.20 3.40

g
0,0

2
Beta 1 26.52 1.00 0.37 3.18 0.14 3.18

f0,1 0.60
g
0,1

1
Beta 1 37.21 0.99 0.85 2.93 0.74 2.97

g
0,1

2
Beta 1 -22.50 0.99 0.72 3.13 0.52 3.18
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Figure 7. ERS-1 SAR image of a rice plantation in Java Island (Indonesia) and histogram. Image size : 512 × 512.
Date : 1994, 10 february.

6. EXPERIMENTS ON A REAL SAR IMAGE

Figure 7 shows an extract of a JERS image of rice growing in Semarang (Java island) with mainly early rice,
late rice and other cultivations26. It was decided to classify the image into four classes with again 100 ICE
iterations and one realization per iteration. We only test the generalized mixture case for both HMC and PMC
models. The MPM classification results are reported in figure 8, together with the normalized histogram of
each class. It is clear that the PMC based segmentation is much more regular than the HMC one and rice plots
seem to be better extracted. Note also that only three classes have been detected with the HMC model (four
attempted), and the configurations of class histograms are quite different for the two models.

The computation time between the two algorithms is quite different. The program based on HMC spent
about 35 minutes on a PC with Pentium IV 1.3 GHz processor running Linux, whereas the program based on
PMC needs 2 hours and 40 minutes. The complexity of the PMC-ICE algorithm is more important since not
only K = 4 densities have to be estimated (HMC case), but 2 K2 = 32 one-dimensional densities (PMC case).
Another time consuming point of the algorithm comes from the estimation of fi,j(y1) =

∫
fi,j(y1, y2) dy2 which

happens in the computation of p(zn) and p(zn+1 |zn ). In the generalized mixture case, no analytic calculation
can be made and numerical integration must be used.

7. CONCLUSIONS AND FURTHER WORK

This article describes unsupervised classification of SAR images in the framework of the recent model called
“Pairwise Markov Chain”. The method is based on a variant of the general Iterative Conditional Estimation
(ICE) and Bayesian Maximum a Posteriori Mode (MPM). As the PMC model is more general – and more
complex – than the HMC one, the aim of our work was to examine whether the use of PMC instead of HMC is
justified in this context. Numerous experiments, the results of some of them are presented in the paper, show
that the use of PMC is of interest and can significantly improve the segmentation obtained using HMC. Methods
based on PMC constitute an interesting alternative mainly because the spatial correlated speckle noise can be
directly taken into account in the model. This generally gives more regular class in the segmented images.
However, compared to ICE-HMC, the parameters estimation is time consuming since the complexity of the
ICE-PMC algorithm is more important.

As perspectives for further work, we may mention the extension of PMC to multisensor image processing.
Both spatial and inter-sensor correlation should be taken into account at the same time. The extension of PMC
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Figure 8. Segmentation results and classes histograms for both ICE and HMC classification (up) and ICE and PMC
classification (down). The class values (1, ..., 4) has been changed to the mean values of the classes to facilitate visual
comparison with the original image.

to the family of models called “Hidden Markov Tree”, described in Ref. 27, would also possibly be of interest for
multiresolution image processing. Another direction concerns the new model called “Triplet Markov Chain”28

and its application in unsupervised image segmentation.
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