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 ABSTRACT

Due to the enormous quantity of radar images acquired by satellites and through shuttle missions, there is an evident need
for efficient automatic analysis tools. This article describes unsupervised classification of radar images in the framework of
hidden Markov models and generalised mixture estimation. In particular, we show that hidden Markov chains, based on a
Hilbert-Peano scan of the radar image, are a fast and efficient alternative to hidden Markov random fields for parameter
estimation and unsupervised classification. We also describe how the distribution families and parameters of classes with
homogeneous or textured radar reflectivity can be determined through generalised mixture estimation. Sample results
obtained on real and simulated radar images are presented.
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1. INTRODUCTION

Both visual interpretation and automatic analysis of data from imaging radars are complicated by a fading effect called
speckle, which manifests itself as a strong granularity in detected (amplitude or intensity) images. For example, simple
classification methods based on thresholding of grey-levels are generally inefficient when applied to speckled images, due
to the high degree of overlap between the distributions of the different classes. Speckle is caused by the constructive and
destructive interferences between the backscattered waves from each resolution cell. It is generally modelled as a
multiplicative random noise. At full resolution (single-look images), the standard deviation of the intensity is equal to the
local mean reflectivity, corresponding to a signal to noise ratio of 0 dB. To overcome this problem, we must exploit spatial
dependencies, e.g. the fact that, for most natural scenes, neighbouring pixels are more likely to belong to the same class than
pixels that are farther away from each other.

Markov random fields are frequently used to impose a spatial regularity constraint on the classes and to allow a global
Bayesian optimisation of the classification result, according to criteria such as the maximum a posteriori (MAP) or the
maximum posterior marginal (MPM). However, the computing time is considerable and often prohibitive with this
approach. A substantially quicker alternative is to use Markov chains, which can be adapted to two-dimensional analysis
through a Hilbert-Peano scan of the image1, 2, 3, 4.

In the case of unsupervised classification, the statistical properties of the different classes are unknown and must be
estimated. For each of the Markov models cited above, we can estimate characteristic parameters with iterative methods
such as estimation-maximisation (EM)5, stochastic estimation-maximisation (SEM)6, or iterative conditional estimation
(ICE)7, 8. Classical mixture estimation consists in identifying the parameters of a set of Gaussian distributions corresponding
to the different classes of the image. The weighted sum (or mixture) of the distributions of the different classes should
approach the overall distribution of the image. In generalised mixture estimation we are not limited to Gaussian
distributions, but to a finite set of distribution families9, 4. For each class we thus seek both the distribution family and the

                                                          
∗Correspondence: Roger Fjørtoft, E-mail: Roger.Fjortoft@nr.no, Phone: (+47) 22 85 26 98, Fax: (+47) 22 69 76 60, or
Wojciech Pieczynski, E-mail: Wojciech.Pieczynski@int-evry.fr, Phone: (+33) 1 60 76 44 25, Fax: (+33) 1 60 76 44 33.



2

parameters that best describe its samples. We have chosen distribution families that are well adapted to single- or multi-look
amplitude radar images and to classes with or without texture10.

In this study, we limit ourselves to the ICE estimation method and the MPM classification criterion. When analysing an
image, the only input entered by the user is the number of classes and the list of distribution families that are allowed in the
generalised mixture. The estimation and classification schemes are described separately for the two Markov models. We
compare their performances and show in particular that the Markov chain method can compete with the Markov random
field method in terms of classification accuracy for multi-look images, while being much faster. The impact of the number
of classes and the composition of distribution families is examined. Tests have been effectuated on both real and simulated
synthetic aperture radar (SAR) data.

The article is organised as follows: In section 2 we introduce the hidden Markov random fields and hidden Markov chains
models, as well as the different probabilities that will be needed for parameter estimation and classification. For simplicity,
we first describe MPM classification in section 3, assuming known parameters for both Markov models. The ICE parameter
estimation methods are presented in section 4, first in the framework of classic mixture estimation (only Gaussian
distributions), and then for generalised mixture estimation (several possible distribution families). Specific adaptations to
radar images are also mentioned. Estimation and classification results obtained on SAR images are reported in section 5.
Our preliminary conclusions are given in section 6.

2. MODELS

Let S  be a finite set corresponding to the N  pixels of an image. We consider two random processes SssY ∈= )(Y  and

SssX ∈= )(X . Y  represents the observed image and X  the unknown class image.# Each random variable sX  takes its
values from the finite set of classes { }Kωω ,,1 K=Ω , whereas each sY  is a real value. We denote realisations of X  and Y
by Sssx ∈= )(x  and Sssy ∈= )(y , respectively.
We here suppose that the random variables SssY ∈= )(Y  are independent conditionally on X , and that the distribution of
each sY  conditional on X  is equal to its distribution conditional on sX .§ Hence, all the distributions of Y conditional on
X  are determined by the K  distributions of sY  with respect to Kss XX ωω == ,,1 K , which will be denoted Kff ,,1 K :

)()|()|( s
Ss

xssss
Ss

yfxXyYPP
s

∏===∏===
∈∈

xXyY  (1)

X  is in many cases well described by a Markov model. We generally refer to it as a hidden Markov model, as X  is not
directly observable. The classification problem consists in estimating xX =  from the observation yY = .

2.1 Hidden Markov Random Fields

Let sV denote a neighbourhood of the pixel s  whose geometric shape is independent of Ss ∈ . X  is a Markov random field
if and only if

( ) ( )
sVtttssstStttss xXxXPxXxXP ∈≠∈ ===== )()( , , (2)

i.e., if the probability that the pixel s  belongs to a certain class sx  conditional on the classes attributed to the pixels in the
rest of the image is equal to the probability of sx  conditional on the classes of the pixels in the neighbourhood sV .

On certain conditions, which are generally verified in digital imagery, the Hammersley-Clifford theorem11 establishes the
equivalence between a Markov field, defined with respect to a neighbourhood structure V , and a Gibbs field whose
potentials are associated with V . The elementary relationships within the neighbourhood V  are given by the system of
clicks C . Figure 1 shows the neighbourhood and the associated clicks in the case of 4-connectivity.

                                                          
#As a practical example, consider a radar image Y  covering an area with agricultural fields. We can imagine a corresponding class image
X , where the different crops are identified by discrete labels. Each observed pixel amplitude depends on several factors, including the
characteristic mean radar reflectivity and texture of the underlying class, the speckle phenomenon, the transfer function of the imaging
system, and thermal noise.
§In the case of radar images, this means that we suppose uncorrelated speckle.
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Figure 1 Pixel neighbourhood and associated click families 1C  and 2C  in the case of 4-connectivity.

For a Gibbs field

( ))(exp
1

)( xxX U
Z

P −== , (3)

where ∑= ∈Cc cUU )()( xx  is the energy of X  and ( )∑ −= Ω∈ N UZ x x)(exp  is a normalising factor. The latter is in practise

impossible to compute due to the very high number of possible configurations )( NK . The Hammersley-Clifford theorem
makes it possible to relate local and global probabilities. Indeed, the local conditional probabilities can be written:

( ) ( )( )
ss Vttss

s
Vtttss xxU

Z
xXxXP ∈∈ −=== )(,exp

1
)( , (4)

where ( )
sVttss xxU ∈)(,  is the local energy function and ( )∑= Ω∈ ∈i sVttiss xUZ ω ω )(,  is a normalising factor. There are several

ways of computing sU . For simplicity, we shall restrict ourselves to Potts model, 4-connectivity and clicks of type 2C , in
which case ( )

sVttss xxU ∈)(,  is the number of pixels sVt ∈  for which st xx ≠ , minus the number of pixels sVt ∈  for which

st xx = , multiplied by a regularity parameter λ . The energy U in (3) is computed in a similar way, except that we sum the
potentials over all vertical and horizontal 2C  clicks in the image. As will be explained later, it can be advantageous to have
different regularity parameters xλ  and yλ  horizontally and vertically.

Bayes’ rule and the conditional independence of the samples (1) allow us to write the a posteriori probability as
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and the corresponding local conditional distributions as

( ) ( )( ))(log)(,exp
'

1
)(, sxVttss
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Z
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sss
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where 'Z  and 'sZ  are normalizing factors obtained by summing over all possible nominators, similar to Z  and sZ .
Substituting ∑−= ∈Ss sx yfUxU

s
)(log)()(' x  into (5), we see that X  conditional on Y  is a Gibbs field (3).

It is not possible to create a posteriori realisations of X  according to (5) directly, but they can be approximated iteratively
with the Metropolis algorithm12 or Gibbs sampler13. We shall here only consider Gibbs sampler, which includes the
following steps:

• We start from a random class image 0x .
• The image is traversed repeatedly£ until convergence. For each iteration q  and for each pixel s ,

o the local a posteriori distribution given by (6) is computed, and
o the pixel is attributed to a class drawn randomly according to this distribution.$

In a similar way, a priori realisations of X  obeying (3) can be computed iteratively using (4).

                                                          
£For each iteration, the pixels should ideally be visited in random order, but it is generally done line by line.
$Random sampling of a class according to a distribution can be done in the following way: We consider the interval 1] [0,  and attribute to
each class a subinterval whose width is equal to the probability of that class. A uniformly distributed random number in 1] [0,  is
generated, and the class is finally selected according to the subinterval in which this random number falls.
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(a)                                                     (b)                                                     (c)

Figure 2 Construction of a Hilbert-Peano scan for an 8x8 image: (a) initialisation, (b) intermediate stage and (c) result.

2.2 Hidden Markov Chains

A 2D image can easily be transformed into a 1D chain, e.g. by traversing the image line by line or column by column.
Another alternative is to use a Hilbert-Peano scan1, as illustrated in Figure 2. Generalised Hilbert-Peano scans2 can be
applied to images whose length and width are not powers of 2. In a slightly different sense than above, let now

),,( 1 NXX K=X  and ),,( 1 NYY K=Y  be the vectors of random variables ordered according to such a transformation of
the class image and the observed image, respectively. Their realisations will consequently be denoted ),,( 1 Nxx K=x  and

),,( 1 Nyy K=y . According to the definition, X  is a Markov chain if

)|()...,,|( 111111 −−−− ====== nnnnnnnn xXxXPxXxXxXP  (7)

for Nn ≤<1 . The distribution of X  will consequently be determined by the distribution of 1X , denoted by π , and the set

of transition matrices Nn
n

<≤1)(A , whose elements are )|( 1 injn
n
ij XXPa ωω === + . We will in the following assume that

the probabilities

),( 1 jninij XXPc ωω === +  (8)

are independent of n . The initial distribution then becomes

∑===
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and the stationary transition matrix A is given by
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Hence, the a priori distribution of X  is entirely determined by the 2K  parameters KjKiijc ≤≤≤≤ 1,1)( , and we can write

.)...,,()(
121111 NNN iiiiiiNi aaXXPP
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===== LπωωxX  (11)

The so-called forward and backward probabilities

)...,,,()( 111 nnin yYyYXPi ==== ωα  (12)
and

)|...,,()( 11 inNNnnn XyYyYPi ωβ ==== ++  (13)

can be calculated recursively. Unfortunately, the original forward-backward recursions derived from (12) and (13) are
subject to serious numerical problems15, 3. Devijver et al.15 have proposed to replace the joint probabilities by a posteriori
probabilities:

)...,,|()( 111 nnin yYyYXPi ===≈ ωα  (14)
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In the following we use the numerically stable forward-backward recursions resulting from this approximation:
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• Initialisation: 1)( =iNβ  for Ki ≤≤1      (18)
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The joint probability of two subsequent classes given all the observations

)|,(),( 1 yY ====Ψ + jninn XXPji ωω  (20)

can be written as a function of the forward-backward probabilities:
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The marginal a posteriori probability, i.e., the probability of having class iω in element number i  given all the observations
Y , can also be expressed in terms of the forward-backward probabilities:
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It can be shown that the a posteriori distribution of X , i.e., )|( yYxX ==p , is that of a non stationary Markov chain, with
transition matrix
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We can therefore simulate a posteriori realisations of X  directly, i.e. without iterative procedures as in the case of hidden
Markov fields, using (23) recursively. The class of the first pixel is drawn randomly according to the marginal a posteriori
distribution )(1 iξ  (22). Subsequently, for each new pixel, the transition probabilities (23) are computed, the class of the
precedent pixel iω  being fixed, and the class jω  is obtained by random sampling according to this distribution.

3. CLASSIFICATION

Let us first assume that we know the distribution if  and the associated parameters iΘ  of each class iω , as well as the
regularity parameters of the underlying Markov model ( λ  or ijt ). In a Bayesian framework, the goal of the classification is

to determine the realisation xX =  that “best” explains the observation yY = , in the sense that it minimises a certain cost
function. Several cost functions can be envisaged, leading to different estimators, such as the MAP, which aims at
maximising the global a posteriori probability )|( YXP , and the MPM, which consists in maximising the posterior
marginal distribution )|( YsXP  for each pixel. We here only consider MPM classification, as the computing time for the
MAP solution is much higher, in particular when simulated annealing13 is used for hidden Markov random fields.
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3.1 Hidden Markov Random Fields

In the case of hidden Markov random fields, the MPM14 is computed as follows:
• A series of independent a posteriori realisations of X  are computed iteratively, using Gibbs sampler (or the

Metropolis algorithm) based on the local a posteriori  probability function (6).
• For each pixel we retain the class that has occurred the most frequently there.

The required number of a posteriori realisations and iterations per realisation will be discussed in section 5.

3.2 Hidden Markov Chains

The MPM solution can be calculated directly for hidden Markov chains, based on one forward-backward computation:
• For every element n  in the chain, and for every possible class iω , we compute

o the forward probabilities )(inα  (17),
o the backward probabilities )(inβ  (19) and
o the marginal a posteriori probabilities )(inξ  (22).

• Each pixel n  is attributed to the class 
niω  that maximises nξ .

4. MIXTURE ESTIMATION

In practise, the regularity parameters and the parameters of the distributions of the classes are often unknown and must be
estimated from the observation yY = . The problem is then double: we do not know the characteristics of the classes, and
we do not know which pixels are representative for each class. We first present classic mixture estimation, where all classes
are supposed to be Gaussian, and then introduce generalised mixture estimation, where several distribution families are
possible for each class. There are several iterative methods for mixture estimation, including EM5, SEM6 and ICE7, 8. We
will only consider the latter here. Moreover, we will only present what is necessary for the implementation, and not the
underlying theory.

4.1 Hidden Markov Random Fields

The ICE algorithm iteratively creates a posteriori realisations and recalculates the class and regularity parameters. In the
framework of classic mixture estimation, the following computation steps are carried out for each iteration q :

• A certain number of a posteriori realisations (with index r ) are computed with Gibbs sampler, using (6) and the
parameters 1−Θq

i (defining 1−q
if ) obtained in the previous iteration.

• The class parameters rq
i

,Θ  (which are the mean value and the variance for a scalar Gaussian distribution) are

estimated for each realisation and then averaged to obtain q
iΘ .

• We have chosen to estimate the regularity parameter qλ  in each ICE iteration with a stochastic gradient approach,
realised through a series of a priori realisations computed with Gibbs sampler using (4).

In order to reduce the computation time, we generally compute only one a posteriori realisation for each iteration of the ICE
and only one a priori realisation for each iteration of the stochastic gradient. This simplification does not imply any
significant performance loss.

We use a coarse approximation of the stochastic gradient equation. Let q
posterioriaU be the energy of the current a posteriori

realisation and rq
prioriaU , the energy of the a priori realisation in iteration number r  of the stochastic gradient. Setting 0,qλ  to

the value obtained in the precedent ICE iteration 1−qλ , we repeatedly compute until convergence:

q
posterioria

q
posterioria

rq
prioriarqrq

U

UU

r

−
+= −

,
1,, 1

λλ  (24)

The ICE algorithm needs an initial class image from which the initial parameters of the classes are computed. We have used
the K-means algorithm, which subdivides the grey-levels in K  distinct classes iteratively. The initial class centres are
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uniformly distributed over the range of grey-levels. The image is traversed repeatedly until stability, attributing each pixel to
the class with the closest centre, and recomputing the class centres from all the attributed samples at the end of each
iteration. It should be noted that this method only can be used to initiate classes with different mean values. It is, for
example, not suited when classes with the same mean values but different textures must be distinguished. K-means is
basically a thresholding method, so if there is much overlap between the true class distributions, as for radar images, the
resulting class image will be quite irregular and the initial class statistics will not be very representative. The consequences
of this, and a possible remedy, will be commented on in section 5. The initial value of λ  is predefined (typically 5.0=λ ).

4.2 Hidden Markov Chains

We initiate the ICE algorithm in a similar way for hidden Markov chains, using K-means to define the class parameters
0
iΘ and thus the marginal conditional distributions 0

if , uniformly distributed a priori probabilities 0
iπ  and a generic

transition matrix }{ 00
ija=A  where 5.00 =ija  when ji =  and )1/(5.00 −= Kaij  when ji ≠ . Each ICE iteration q  is based

on one forward-backward computation and includes the following steps:
• For every element n  in the chain, and for every possible class iω , we compute

o the forward probabilities )(iq
nα  (17) based on 1−q

ija , 1−q
iπ and 1−q

if  (i.e. 1−Θq
i ),

o the backward probabilities )(iq
nβ  (19) based on 1−q

ija , 1−q
iπ and 1−q

if  (i.e. 1−Θq
i ), and

o the marginal a posteriori probabilities )(iq
nξ  (22).

• This allows us to compute
o the new joint conditional probabilities ),( jiq

nΨ  (21),
o the new elements of the stationary transition matrix

∑

∑ Ψ
=

≤≤

≤≤

Nn

q
n

Nn

q
n

q
ij

i

ji
a

1

1

)(

),(

ξ
 (25)

o and the new initial probabilities

∑=
≤≤ Nn

q
n

q
i i

N 1
)(

1
ξπ . (26)

• We compute a series of a posteriori realisations based on 1−q
if  and (23), as explained in section 2.2. For each

realisation (with index r ) we estimate the class parameters rq
i

,Θ , which are averaged to obtain q
iΘ  and thus q

if .
As for hidden Markov random fields, we generally limit the number of a posteriori realisations per ICE iteration to one.

4.3 Generalised Mixture Estimation

In generalised mixture estimation, the distribution if  of each class is not necessarily Gaussian, but can belong to any
distribution family in a predefined set. This implies the following modifications to the above ICE algorithms:

• The parameters of all possible distribution families are computed from the a posteriori realisations for each class.
• The Kolmogorov-Smirnov test is used to determine the most appropriate distribution family for each class4:

o We compute the cumulative distributions for all the distribution families, based on the estimated
parameters of the class.

o The cumulative normalised histogram of the class is computed.
o We retain the distribution family having the smallest maximum difference between the cumulative

distribution and the cumulative normalised histogram of the class.

4.4 Application to Radar Images

For simplicity, we here consider only two distribution families, corresponding to homogeneous and textured classes,
respectively. Assuming the speckle to be spatially uncorrelated, the observed intensity in a zone of constant reflectivity is
Gamma distributed. The corresponding amplitude distribution is
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for 0y ≥  and 0)( =yfi  for 0y < . L  is here the equivalent number of independent looks of the image, which should be
provided by the data supplier. Let the estimated moments of order m  be denoted by mµ . The estimated mean radar
reflectivity 2µ=R  in (27) is computed over the pixels attributed to class i .

If we assume that the radar reflectivity texture of a class is Gamma distributed, the observed intensity will obey a K
distribution. The corresponding amplitude distribution is

( ) ( ) ( ) ( )by
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
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 (28)

for 0y ≥  and 0)( =yfi  for 0y < . K  is here the modified Bessel function of the second kind, and the estimated

parameters a  and b  are computed as follows: Let ))5.0(/()( 211 +ΓΓ= LLLC µµ  and ))1/(( 2
242 µµ += LLC . If

11 <C , a  is obtained by solving the equation 0)5.0()(1 =+Γ−Γ aaaC . Otherwise )1( 1 ≥C  we set )1/(1 2 −= Ca ,

provided that 12 >C . In both cases 2/2 µLab = . If 11 ≥C  and 12 ≤C , we consider (28) as unsuited and we make

sure that it is not selected. Moreover, if the texture is very weak )20typically( >a , we approximate (28) by (27).

For simplicity, we will in the following refer to (27) and (28) as Gamma and K distributions, respectively, even though they
actually are the amplitude distributions corresponding to Gamma and K distributed intensities.

5. RESULTS

5.1 Real SAR Image

Figure 3 (a) shows an extract of a JERS 3-look amplitude image of a tropical forest with some burnt plots related to
agricultural activity. The equivalent number of independent looks 7.2=L . It was decided to classify the image into three
classes. Figure 3 (b) shows the initial classification obtained with the K-means algorithm. The classes are represented by
different grey-levels.€ We note that the K-means class image is very irregular due to the speckle. A more regular initial
classification could be obtained by applying an adaptive speckle filter prior to the K-means algorithm. Our tests indicate that
this generally has little influence on the final result, but it can sometimes facilitate a correct choice of distribution family.
Let us first consider the ICE and MPM algorithms based on the hidden Markov random fields model. We use 30 iterations
for the ICE algorithm, with only one a posteriori realisation per iteration. The initial value of the regularity parameter is

5.0=λ . Within each ICE iteration, the maximum number of iterations for the stochastic gradient is set to 10, with one a
priori realisation per iteration. We interrupt the iteration earlier if λ  differs less than 0.01 from its previous value. Except
for the first ICE iterations, the stochastic gradient estimation generally requires very few iterations. Gibbs sampler with as
much as 100 iterations is used to generate the a priori and a posteriori realisations. The convergence of the global energies
is in fact quite slow, especially for realisations according to the a priori distribution. The MPM classification based on the
hidden Markov random fields model relies on 10 a posteriori realisations. Figure 3 (c) presents the obtained classification
result. The regularity parameter was in this case estimated to 75.0=λ  and the Gamma distribution was retained for all three
classes. The classification result corresponds quite well to our thematic conception of the image based on visual inspection,
except that many fine structures seems to be lost and the region borders are somewhat rounded.
The number of ICE iterations is set to 30 also for the corresponding analysis scheme based on hidden Markov chains, and
we compute only one a posteriori realisation per iteration. Figure 3 (d) shows the result of the MPM classification. It is
generally less regular than the classification in Figure 3 (c), but it represents small structures more precisely. The K-
distribution was here selected for the darkest class, whereas the Gamma distribution gave the best fit for the two others.
The overall quality is comparable for the two classification results, but the computing time is quite different: The
programme based on hidden Markov random fields spent about 53 minutes on a PC with a Pentium III 733 MHz processor
running Linux, whereas the programme based on hidden Markov chains only needed 2 minutes and 27 seconds.

                                                          
€The grey-levels do not correspond to the mean amplitudes of the different classes, but they are ordered according to these mean values.
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(a)                                                                                        (b)

     
(c)                                                                                        (d)

Figure 3 Classification of a JERS 3-look image of a tropical forest into 3 classes: (a) Original amplitude image. (b) Initial
K-means classification. Result obtained (c) with the Markov random fields method and (d) with the Markov chains method.

5.2 Simulated SAR Images

In order to examine the performances more carefully, we have created two simulated SAR images. Figure 4 (a) represents
an ideal class image with 3 classes, and Figure 4 (b) shows its 3-look ( 0.3=L ) speckled counterpart. The darkest and
brightest classes are Gamma distributed, whereas the one in the middle is K distributed with texture parameter 0.4=a (28).
The contrast between two consecutive classes is 3.5 dB. The parameter settings described in section 5.1 were applied,
except that we allowed different regularity parameters vertically and horizontally for the method based on hidden Markov
random fields, as the resolution is not the same in the two directions. The regularity parameters were estimated to 37.0=xλ
and 68.0=yλ , respectively. However, the classification result in Figure 4 (c) seems far too irregular, and only 72.7 % of

the pixels are correctly classified. The method based on hidden Markov chains here gives a more satisfactory result, shown
in Figure 4 (d), with 83.9 % of correctly classified pixels. The confusion matrices are given in Tables 1 and 2.
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(a)                                                                                        (b)

     
(c)                                                                                        (d)

Figure 4 Classification of a simulated 3-look SAR image into 3 classes: (a) Ideal class image. (b) Speckled amplitude
image. Results obtained (c) with the Markov random fields method and (d) with the Markov chains method.

0.954646 0.042079 0.003274 0.850886 0.147929 0.001185
0.360625 0.462592 0.176782 0.107937 0.831746 0.060317
0.030055 0.062420 0.907525 0.000606 0.158517 0.840878

Table 1 Confusion matrix for the classification result in
Figure 4 (c) obtained with the Markov random fields method.

Table 2 Confusion matrix for the classification result in
Figure 4 (d) obtained with the Markov chains method.

Both methods correctly identify Gamma distributions for the darkest and brightest classes, but only the hidden Markov
chains method found that the class in the middle was K distributed. This method was here also about 27 times quicker.

Figure 5 (a) represents an ideal and approximately isotropic class image with 4 classes, and Figure 5 (b) shows the
corresponding speckled image. The radiometric characteristics of the classes are the same as for the simulated image in
Figure 4 (b), except that an additional Gamma distributed class with higher reflectivity has been added. Figure 5 (c) and (d)
represent the results obtained with the two approaches, and Tables 3 and 4 show the corresponding confusion matrices.
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(a)                                                                                        (b)

     
(c)                                                                                        (d)

Figure 5 Classification of a simulated 3-look SAR image into 4 classes: (a) Ideal class image. (b) Speckled amplitude
image. Results obtained (c) with the Markov random fields method and (d) with the Markov chains method.

0.923290 0.075753 0.000925 0.000031 0.819639 0.178788 0.001265 0.000308
0.089819 0.862768 0.039894 0.007519 0.048103 0.909960 0.036221 0.005716
0.017030 0.171414 0.642999 0.168557 0.001741 0.244348 0.627520 0.126391
0.001991 0.005545 0.021842 0.970622 0.000018 0.011179 0.060639 0.928164

Table 3 Confusion matrix for the classification result in
Figure 5 (c) obtained with the Markov random fields method.

Table 4 Confusion matrix for the classification result in
Figure 5 (d) obtained with the Markov chains method.

The regularity parameter for the method based on hidden Markov random fields is here 65.0=λ , which visually gives a
very satisfactory result. The proportion of correctly classified pixels is 87.0 %, whereas it is 85.2 % for the method based on
hidden Markov chains. The borders are slightly more irregular for the latter method, but some of the narrow structures are
better preserved. The distribution families of the four classes were correctly identified by both methods, and the fit of the
estimated parameters is comparable. The hidden Markov chains algorithm was, however, 25 times faster.
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6. CONCLUSION

This article describes unsupervised classification of radar images in the framework of hidden Markov models and
generalised mixture estimation. Hidden Markov random fields are frequently used to impose spatial regularity constraints in
the parameter estimation and classification stages. This approach produces excellent results in many cases, but our
experiments indicate that the estimation of the regularity parameter is a delicate problem, especially when the signal to noise
ratio is low. The considerable computing time is another drawback. Methods based on hidden Markov chains, applied to a
Hilbert-Peano scan of the image, constitute an interesting alternative. The estimation of the regularity parameters, which
here are the elements of a stationary transition matrix, seems to be much more robust. The region borders often get slightly
irregular with this approach, but fine structures are generally better preserved than for the corresponding scheme based on
hidden Markov random fields. We describe how the distribution families and parameters of classes with homogeneous or
textured radar reflectivity can be determined through generalised mixture estimation. For simplicity, we have restricted
ourselves to Gamma and K distributed intensities. In our tests on simulated SAR images, the estimations of distribution
families and associated parameters are of similar quality for the two approaches. Besides the robust estimation of regularity
parameters, the computing speed is the main advantage of the hidden Markov chains approach. It was about 25 times faster
than the programme based on the hidden Markov random fields in our experiments.
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