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Abstract - In this paper, we deal with the fusion
of information and the classification of images sup-
plied by several sensors. By intrinsic characteristics
of each sensors, provided informations are usually
defined on different set of hypothesis, called frames
of discernment. Adapted formalism need to be used
to compute the fusion process. We resolve this prob-
lem of multi-sensor image fusion and classification
in an evidential framework, which is well adapted
for the combination of knowledge defined on differ-
ent frames of discernment. We present two models
for merging available informations, a non contez-
tual and a vectorial model which is defined by using
a Markov chain structure to represent a priori knowl-
edge associated to labelling image. In the Markovian
approach, we have that Markovian property is pre-
served after fusion, which enables us to apply stan-
dard classification algorithms. We adopt an unsu-
pervised contezxt in which parameters estimation is
done by using a mirture distribution algorithm, the
ICE algorithm. We apply these models to satellite
images.

Keywords: Fusion data, Evidential theory, hidden
Markov model, image classification .

1 Introduction

The current expansion of image acquisition tools has
enhanced the development of new theories which allows
the best treatment of all available information. In do-
mains as various as satellite and medical image process-
ing, Bayesian theory is generally the most widely used
to model information. However, because of its inade-
quacy for describing imprecise or imperfect data, new
more flexible theories such as fuzzy set theory[19], the
theory of possibilities[8], and Dempster-Shafer’s theory
of evidence[17] have been developped.

Our study concerns information fusion and classifica-
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tion of multisource images[5]{3][9][14][13]. The aim of
a classification process in image processing is to con-
struct a labelling image from multi-sensor images. We
are interested in classifying two images supplied by
two sensors which have their own physical character-
istics. This implies that they do not necessarily de-
tect the same features of the real scene. Based on
gray levels intensity of pixels, the interpretation of the
observed scene could then be very different from one
sensor to another. For example, the first one could de-
tect reflective properties of the objects while the second
one could detect thermal characteristics of the objects.
Therefore high intensity pixels in one image will corre-
spond to objects with high reflective properties while
high intensity for a second image will correspond to
warm objects. In that case, it seems natural to consider
different referentials R(!) and R(®) associated with each
sensor S and S® (R() adapted to represent reflec-
tivity properties and R(®) adapted to treat heat prop-
erties). R could be defined by two classes, the class
of strong reflective object and the class of non reflec-
tive object, and R(® by three classes, warm objects,
mild object and cold areas. In an operational context,
the labelling referential of interest R(®) considered for
the classification does not always coincides with R(1)
or R®. As an example, R® could correspond two
a referential of three classes of interest, the industrial
areas, the vegetation and the sea areas. How to link
R® with R1) and R™? Statistical training provides
estimates of model parameters on R(!) and R(®) which
are natural referential of the images, but no training
is available on R‘3) which is not directly related to the
information provided by the sensors. We define rela-
tions between R(!), R and R® to use informations
on R and R® to classify on R®). In our model,
these relations will be modelled by a fuzzy function
which will represent the compatibility between classes
of RV and R®? with classes of R(®. Few works have
been carried out in the litterature to treat the problem
of fusion in the context of different referentials asso-
ciated to sensors[11)[6]. In this paper, we develop a
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markovian model for images classification, adapted to
combine these kind of informations.

In the second and third parts, we recall the theoretical
probabilistic and evidential notions necessary to the
understanding of this article. In the fourth part, we
defined a non contextual evidential model for merging
informations provided by the sensors. A fusion vecto-
rial model, which is a generalization of the non contex-
tual evidential model, is developped in the fifth part to
take into account the spatial correlation between pix-
els contained in the images. We use a Markov chain
model to describe, via a Peano type scan, the non-
observable image which represents the real scene. It en-
ables us to significantly decrease the algorithmic com-
plexity of processing encountered when using a Markov
fields model. Experimental results are presented in the
sixth part. The conclusion gives a summary assessing
the methods discussed.

2 Reminders

2.1 The Hilbert scan

A fractal curve first discussed by G. Peano has useful
properties in image processing. D. Hilbert published
a kind of Peano curve which passes through each grid
on a 2-D plane only once. The Hilbert curve is a regu-
lar way of transforming multidimensional data arrays
into one dimensional ones. The Hilbert scan of im-
age data has recent application applications in image
classification{4] and data compression of images[12].
This scan will be used to construct a one-dimensional
signal from the two-dimensionals images.

2.2 The Hidden Markov Chains[16]

Let S be the set of pixels corresponding to the images,
card(S) = N, and X and Y two processes, X repre-
sented the labelling image and Y the observed images.
An homogeneous hidden Markov chain is a pair of two
processes (X,Y) = ((X,), (Yn))nes with:

e X is a Markov chain which takes its values in the
set of k classes Q = {w1,...,w}.

The distribution of X is defined by an initial dis-
tribution 7, = P(X; = u),u €  and a transition
matrix defined by the coefficients t,,, = P(Xp41 =
v]X, = u). Let x be a realization of X. The dis-
tribution of the process X is given by:

P(X1 =.’L‘1,...,XN =zn) =

Mz, X1, X X M

F-2 T1Z2 . IN-1ZN

¢ Y is a R? process, where d corresponds to the

number of sensors. The conditional density of Y

given X will be noted fx(y), x and y being a
realization of Y.

Consider the three classical hypotheses:
(H1) : the Y;, are independant given X.
(H2) : the distribution of Y, given X is equal to its

distribution given X,,.
(H3) : sensors are independent given classes.
The joint probability distribution is then given by:

PX=xY=y)=
7oy % [They £9 W) x )
x o
| IO § | )

where £ (y$?’) is the density distribution of Y given
Xp =g

@)

3 The Theory of Evidence - A
non contextual approach

The evidence theory developped by Dempster and bet-
ter formalized by Shafer[17] enables us to represent
both uncertainty and imprecision with two functions,
plausibility and credibility. These functions are based
on the definition of a frame of discernment ( consti-
tuted of k exclusives hypotheses, the k classes. A ref-
erential 0* = 29 represents the set of all subsets of
Q. Plausibility and credibility can be expressed with
a unique function, the mass function. Mass, plausibil-
ity and credibility, which are all defined on *, char-
acterize the likelihood of any subset of 2. It can be
shown that there exists a bijection between these three
functions(10].

3.1 Definitions

The mass function is defined on Q* by
m(0) =0
S m4) = 1
AcR

The plausibility and credibility functions are given by:

Pi(9) 0
{ PI(A) E m(B),YACQ
{ Bel® = 0

©)

4)

BNA#0
Bel(A) = Y m(B),YACQ (5)
BcA
The focal elements of a mass function are elements
of Q* such that m(A) # 0. If the mass function is
only defined on the single elements of *, then mass,
plausibility and credibility are equal and correspond to
a probability function which we call a Bayesian mass
function. A mass function is said to be consonant if
its focal elements can be arranged in order so that
each focal elements is contained in the following one.
Its associated plausibility function is then similar to a
possibility function, in the possibility theory.

3.2 Dempster-Shafer’s rule of combina-
tion

Let m(V, ..., m(? be the masses associated to d inde-
pendent information sources defined on the same frame
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of discernement 2. It is then possible to combine them
according to the Dempster-Shafer’s orthogonal combi-
nation rule. This rule results in:

mM & ... 0 mD)(4) =
d

== T =@y ©
BiN..NBa=A i=1
where p
k= ¥ (I=9®) (7)
Bin..NB,=0 i=1

is a measure of conflict between the differents sources.
This rule has the following property:

the orthogonal combination of any mass sets with a
Bayesian mass set is also Bayesian.

After the combination of the different sources of infor-
mation, each pixel is defined as belonging to a given
class acccording to a certain criteria. We choose the
maximum plausibility rule which is discussed in (1] to
take the decision.

3.3 Refining and coarsening operations

We consider two frame of discernment © and 2. The
idea that  is obtained from © by analysing or splitting
some or all the elements of © is characterized by the
refining operation. A Refining R is defined by specify-
ing for each classe 8; of © = {6,...,60;} a subset R(6;)
of 2 = {w,...,wg} consisting of classes into which
6; has been splitted. The sets R(6;) should constitute
a disjoint partition of 2. Then a mass function m!
defined on @ is transformed to a mass function m? on
Q according to the following expression: for all A C ©,

m*(R(4)) = m'(4) @)

The coarsening operation, which is the inverse of the
refining operation, provides a way to agregate some
hypotheses. A mass function m?! on © is obtained from
a mass m? on §2 according to the following formula:

forall A C O,
> mB)
BCQ,6(B)=A

mi(A) = 9)

where (B) = {6 € O|R(6) N B # 0}, B C Q.

4 A non contextual fusion model
for images classification

In this section, we deal with the problem of merg-
ing images provided by two sensors S and
S@), and defined on two different sets of classes
O = {wy,,..., w1, } and Q = {wa,,..., vz, }. Our
goal consists in classifying the images on a third set
of classes @ = {wy,...,wx} distinct of Q; and ;.
constitutes the set of labels we are interested in for
the classification process.

In a non contextual approach, this fusion implies the
definition of local mass functions for each pixel n of
the images, m$, , and m%, , defined on the frames of
discernement Q; and §, respectively. We define these
elementary mass functions as follow:

for1<j<2,
J . .
my, .t R o [O,jl] . (10)
B = m, ,(B) = &;2,mi;(B)

with
mi;({wi}) = 0
mi;({wi}°) = g¢;(1-Cy) (11)
mi; () = 1-g;(1~Cy)

These masses characterizing the likelihood of each
classes w;. Cj; corresponds to a quantity capable of
discriminating the class w; according to the obser-
vations. Severals forms of C;; could be used, each
adapted to different contexts[2]. In this paper, we de-
fine them in terms of the conditional density distribu-
tion of the observations Y, given the classes X, = w;,
P(Y# = yi| X, = wi). A quality factorg;;, 0 < ¢i; < 1,
is combined with each likelihood Cj;. To take the het-
erogeneity of the frames of discernment into account,
we consider for each sensor j, 1 < j < 2, two fuzzy
membership functions S* and §2:

for1<j<2,

Si: ,x0 o [0,1] (12)
(w,v) = Si(u,v)

These similarity functions, defined on the cartesian
product of the frames of discernment, correspond to
the degree of compatibility between classes of )/ with
classes of 2. Their determination depends on the con-
text. In a supervised context, these degrees of compat-
ibility will be supplied by an expert who possesses an a
priori knowledge concerning these compatibility links.
In an unsupervised one, they should be estimated from
the images. To integrate these informations in our
model, we construct two possibility measures by con-
sidering a-cuts of the fuzzy functions 7,1 < 7 < 2,
these a-cuts defining sets that includes previous ones.
From these possibility measures, we elaborate two con-
sonant mass functions Tlfl, <q» based on the cartesian
product £; x €.

At this step , we have for each sensors (1 < j < 2)
two kinds of informations:

e an information provided by the sensor and mod-
elized by a mass function my, .: 2% = [0,1]

e an a priori knowledge describing the compatibility
between classes of ()’ and © and modelized by a
consonant mass function n%, ,q: 2% %% = [0,1]

To combine mf, » and nf,xn according to the
35

dempster-Shafer’s rule of comf)ination, we need to de-

fine them on a commun referential. By refining, we
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construct from the mass function m, , two new mass

functions mn ¥Q,n O 2% %2 The combination is then
feasible and correspond to the following expression:
for1<j<2,

Mf’)’- xn,n(‘) = (rh‘;'l,vxﬂ,n ®Tr$7),'xﬂ)(') (13)
These mass functions characterize the informations as-
sociated with each sensor. To perform the classification
process on the referential of interest 2, it is necessary
to construct two new mass functions M,’2 deduced

from MQ xa,n and defined on Q. We elaborate them
by using the coarsening operator, which provides mass
functions on the referential of interest:
Man: 2% = [0, (14)
These functions could then be combined according to
the Dempster-Shafer’s rule of combination:
Man() = (My.eM3 )  (5)
The resulting mass function represents all the informa-
tion available, including sensors and similarity classes
informations. Define on the referential Q, it could be
used to perform the classification process.
Added to the information, we introduce an a priori
information associated with the labelling image and
represented by a Bayesian mass function M , defined
on the referential Q by:
M§.(w) = m ,ueQ (16)
where 7, u € ) are probabilities to observe the classes
u in the real labelling image.

Decision rule:
To perform the classification process and attribute
a label to each pixels, we use the maximum of
plausibility[1], whick is in a Bayesain context, equal
to the maximum of mass. This rule is given after com-
bination of Mg, (0) with Mg, by the relation:

Tn = argma.xMQ,, (u) Z Ma,n(B)

17
uC B#0 ( )

5 A vectorial fusion model for
images classification

In remote sensing, available information have a spa-
tial structure inherent to the real scene. To take this
constraint into account, it is neccessary to elaborate fu-
sion processes which integrate this contextual notion.
In this section, we then develop a markovian vectorial
model, which is a generalization of the non contex-
tual model, to represent spatial correlation between
the pixels of the labels images. This model implies the
definition of vectorial mass and plausibility functions.

5.1 Definitions
5.1.1 Mass function

Let © = OV, the cartesian product of the frame of
discernment . A vectorial mass function m defined
on OV will be given by:

o = [0,1]

me:

To represent the images, the set of all acceptable
global configurations are elements of (* \@)
Indeed, each pixel X,;,1 < n < N could only take
value in Q* \ 0. Then we define a set of evidence v on
(* \ ®)" which represents the evidence distributing
to each acceptable global configuration. We constrain
v to be normalized, that is to say 3- xcq.\g #(X) = 1.
We notice that v is not a mass function since it is not
define on the set of subsets of 2. However we have
the following proposition:

Proposition 1:
There exist a one to one function h between the

acceptable global configurations (2*\0)" and a
subset T of (QV)".
For exemple, the injective function
R (@\0)Y - @y 19)
(Al,...,AN) - A] X... X AN

induces a bijection from =\ 8~ into h((2" \ (D)N) C

@y

According to this proposition, we can define the mass
function mg on ©* in terms of v.
Let the vectorial function mg be:

{ me(A) v(4), A=h4)
me(A) 0, otherwise

(20)

1l

We verify that me.is a mass function since it satisfies
(18).

5.1.2 Plausibility function

We define the plausibility function by:

Pl : @) = 0,1
A - PIA) = > man(B)
BnA#0
(21)
which is equwalent for the mass function we consider,
to Plg : (V)" = [0,1] with for 4 € (QV)":

>

Be(2°\0)" ,BNA#0

Plg(4) = v(B), A=h(A)

Plo(A) = otherwise
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5.2 vectorial fusion model

Consider a global mass functions mg~ to represent the
informations contained in the images and defined on
the frame of discernement 2. We decide to use an as-
sumption of independence concerning the pixels of the
observed images, even if that corresponds to a strong
assumption. In this context, we define mg~ by:

mon (QN)‘ b d [0, 1]
B — mgn(B) = v(B),
. B=nB),Be (0)"; (22)
man (B) =0,
otherwise
and

N
v(B) = [] Man(Bx)
n=1

Added to the information provided by the sensors, we
introduce an a priori global information represented by
a vectorial Bayesian mass function Mgl), defined on the
referential QV. This mass function is constructed by
introducing a Markov chain structure as follows :

M3y : (ON) = [0,1]
B - MgN(B) =1%(u),
B=hw,ue @ (29
M3 (B) =0,
otherwise
and
Pu) = 7y Xtuug X oo X buy_yun

my, corresponds to the probability of observing the
class © € ) in the real labelling image and ¢ corre-
sponds to the transition matrix of the Markov chain.

Proposition 2:
The Dempster-Shafer’s combination rule applied to
mqn and MQy results in an a posteriori distribution
P(X|Y) of a classical hidden Markov chain (X,)Y) de-
fined by:

P(X = u) = my, X tyy, X...Xx tun _run

and

P(Yn|Xn = An) = g(An)

>

AnCCn,CneQ”

where

9(An) = Ma,n(Cn)

This proposition provides a way to compute the clas-
sification process. Using the maximum of plausibility,
we classify each pixels according to the following deci-
son rule:

(#1,..-,2N) = org . max . Tag(A)x
d (24)
I tan-14.9(4n)
n=2

In that case, the classification obtained by maximising
the plausibility is similar to the MAP criteria applied
to the hidden Markov chain (&,Y). Solution is com-
puted by the viterbi algoritm. It is also possible to
consider the MPM criteria computed by the calcula-
tion of “Forward-Backward” probability.

6 Parameter estimation algo-
rithm

Parameters are usually unknown and we need to es-
timate them from the observations. In the following,
we work in an unsupervised context. Different esti-
mation algorithms are available. The iterative EM al-
goritm (Expectation-Maximisation) [7] maximizes the
likelihood of the observations. Modifications of this al-
gorithm have been proposed to improve convergence
of the algorithm to a global maximum of the likeli-
hood [15). In this paper, we use a recent algorithm for
mixture distribution estimation, presented in [4]. We
apply this algorithm to the case of our model.

7 Application

7.1 Fusion of optic and radar images

To evaluate the quality of the model proposed, we car-
ried out segmentations of synthetic and real images.

7.2 Fusion of synthetic images

Let us consiser as the real scene, the image presented
in figure (1). We construct two images, which are con-
sidered as two “pseudo” real scenes, representing the
classes detected by the sensors according to their own
physical characteristics and compatible with the real
scene (figure (2)). We corrupte these two images with
normal noises (for each class: A(0,1) and N(2,1) for
the first image, A (0,1), M(1,1) and N(2,1) for the
second image). The segmentation problem is resolved
by using the markovian model presented previously.
An a priori information on the labels image is defined
by a Bayesian mass set M2 defined on a referential
Q= {w;, w2} by

JUE D

m?l,n(u) = Ty (25)

For the two sensors, we consider the mass functions:
for1<j<2

m‘}',j,n 29y - [0,1]
) -
B - mf,’,’n(B) =@, m,-j(B)

i=1

(26)

with
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mi({w}) = 0 o
m.-_,-({w,-}c) = (1 - P(Y,{ = y“Xn = wi))
m;;(Q;) = 1-(1-P(Y] =y}l Xn = w;))

(@7)
We introduce fuzzy functions to model similarities be-
tween classes of the different referentials, here ; and
O, with Q. Figure (4) provides results of the segmen-
tation. We notice that fusion allows to classify quite
well (the object on the right of left image (figure(3))
is well classify; the object in the center of the right
image (figure(3)) has disappeared). 4.2% of pixels are
misclassified.

7.3 Fusion of optic and radar images

We are now interested in classifying a scene of “Istres”,
an area in the south of france. We expect to segment
in three classes (2 = {city,vegetation, water}). We
use two complementary images, a radar and an optic
images, presented in figure (5). An evidential approach
is well adapted to treat these heterogeneous informa-
tions.

7.3.1 Classification
proach

in a non Contextual Ap-

An a priori information on the labels image is defined
by a Bayesian mass set MJ defined on the referential
Q by

Ty ,U€EN

mG . (1) (28)

For ERS and LANDSAT sensors, we use the pre-
vious model to construct the mass functions m&),n

and m&),n, defined respectively on the referential

Q = {Strong.echo, medium_echo, low_echo} and
Qp = {very.high_density, high_density, low_density,
very-density}:

for1<j<2,
im 0,1
mﬂ,,n Q] - [ ) ] ' (29)
B - m%l,-,n(B) = ®;1,m;;(B)
with
mij({wi}) = 0 .
mi;({wi}C) = (1 - P(Y] = yi|Xn = w)))
mi;{(Q) = 1-(1-P(Y] =yj|Xn = wi))

(30)
Theses mass functions model the evidence we have for
pixels to belong to each class according to the mea-
sures given by the sensors. We consider two fuzzy
functions to model similarities between classes of the
different referentials and construct two mass functions
by a—cuts.
The fusion of these informations requires to be defined
on the same referential. According to the processes
presented in the paragraph (4), we redefine m}z.,n and

My, » on § by refining and coarsening. We then com-
bine with m§, , according to dempster-Shafer’s rule of
combination.

7.3.2 Classification in a Markovian context

To take the spatial structure of the labels image into
account, we consider an a priori information defined by
a Bayesian mass function MSL) on the referential Q.
This mass is characterizes by a markov chain model:

P(X)=u,..., XN =up)

Tuy Quyug X

MgN(ulv"yuN)

e e X Quy_jun

Information supplied by ERS and SPOT sensors de-
fined by:

TT0-, man(4n)

According to the processes presented in the paragraph
(5), and after the combination of mg),), and mq~ with
Dempster-Shafer’s rule, we obtain results of classifica-
tion presented in figure (5) (We recall that the com-
bination provides the distribution of a hidden Markov
chain).

We observe that both ERS and LANDSAT mono-
sensor segmentation could not possess power enough
to discriminate classes considered. ERS image do not
dinstinguish well between city and relief (both strong
echo), and LANDSAT image mistake vegetation, cul-
ture and part of water. The evidential model, which
uses these complementary informations, discriminates
better the classes of interest. Water and vegetation are
well detected by the fusion, and only very high density
culture have been wrongly detected and confused with
city class (right down in th image). A new information,
as another LANDSAT canal could eventually improve
the discrimination power of the model and allow to dif-
ferenciate between high density culture and city class.

"LQN(A],...,A}\') =

8 Conclusion

As the information provided by a single sensor could
be incomplete or imprecise, it is of interest to merge
this information with a new one provided by another
sensor to obtain a better description of the unobserv-
able scene. This work concerns the classification of
multisensor images defined on different set of classes.
We present a evidential model to take into account the
complementarity of images. We introduce a Markovian
structure to model spatial interaction of data. Exper-
imental results show the advantages of the Makovian
evidential modeling compares to monosensor model.
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Figure 1: real scene

Original images ERS and LANDSAT

Figure 2: pseudo real scene

Segmentation from ERS only; LANDSAT only

Figure 3: noisy images

Figure 5: segmentation result using ERS and LAND-
SAT with the evidential Markovian model

Figure 4: Sementation result
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