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Abstract - We propose a new model called a Pairwise
Markov Chain (PMC), which generalises the classical
Hidden Markov Chain (HMC) model. The PMC model is
more general than HMC in that the process one wants to
estimate is not necessarily a Markov process. However,
PMC allows one to use the classical Bayesian restoration
methods like Maximum A Posteriori (MAP), or Maximal
Posterior Mode (MPM). So, akin to HMC, PMC allows
one to restore hidden stochastic processes, with numerous
applications to speech recognition, multisensor image
segmentation, among others. Furthermore, we propose a
new method of parameter estimation, which allows one to
perform unsupervised restoration with PMC. The method
proposed is valid even with non Gaussian and possibly
correlated noise. Furthermore, the very form of the
statistical distribution of the noise need not be known
exactly. All that is required is that for each class the form
of the noise distribution belongs to a given set of forms.
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1. Introduction

The field of applications of Hidden Markov Models is
extremely wide. Among this family of models, Hidden
Markov Chains (HMC) are among the most frequently
used. In pattern recognition and image processing area,
HMC can be used in image segmentation [6, 21, 24],
hand-written word recognition [7], acoustic musical
signal recognition [23], or even gesture recognition {26].
Some other areas of possible application are speech
recognition [22] and communications [12]. Multisensor
images, or even multisensor and multiresolution images,
can still be segmented using hidden Markov chains [11,
8). A4 priori, Hidden Markov Random Fields (HMRF) are
better suited to deal with the image segmentation problem
[2, 4, 10, 13, 15], although, HMC based segmentation
methods can be competitive in some particular situations
[24], and they are much faster that the HMRF based ones.
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The success of such models is due to the fact that when
the unobservable, or hidden, signal can be modelled by a
finite Markov chain and when the noise is not too
complex, then the signal can be recovered using different
Bayesian classification techniques like Maximum A
Posteriori (MAP), or Maximal Posterior Mode (MPM) [1,
6, 9]. These restoration methods use the distribution of
the hidden process conditional to the observations, which
is called its "posterior" distribution. This posterior
distribution can then be seen as a fusion of the
information contained in the observation with the "prior"
information, which is modelled by the "prior" distribution
of the hidden process. Furthermore, such restoration
techniques can be rendered unsupervised by applying
some parameter estimation method, like Expectation-
Maximization (EM) [1, 5, 12, 24], or Iterative
Conditional Estimation (ICE) [17, 19, 24]. For instance,
let us consider the following hidden Markov model:
X=(X,...,X,) is a Markov chain, with all X, taking
their values in the set of classes Q= {w,,...,0,}, and
Y =(¥,...,Y,) is the process of observations, each Y,
taking their values in R. Thus P, is a Markov
distribution and one has to define the distributions £~
of Y conditional to X in such a way that the posterior
distribution P;™ be still a Markov distribution. We shall
insist that the Markovianity of Py~ is essential to
applying the Bayesian MAP or MPM restoration methods.
Indeed, P;~ is Markovian for a large family of
distributions and this very fact is the origin of the success
of the hidden Markov models.

However, there also exist some simple distributions £~
such that when Py is a Markov distribution, Py~ is no
longer a Markovian one. The aim of this paper is to
propose a model which would be more general that the
hidden Markov chain model and in which the posterior
distribution Py~ would always be a Markov chain
distribution. The idea is to directly consider the
Markovianity of the couple (X,Y): such a model will be
called "Pairwise Markov Chain" (PMC). The difference
with the HMC is that the distribution P, is not
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necessarily a Markov distribution, but Py~ always is. Let
us notice that for a given B we can consider a HMC in
which P}™ is not Markovian, and a PMC in which P}~
is Markovian and P, is not.

Me may remark that having P, not necessarily
Markovian could be seen as a drawback; indeed, this
distribution models our prior information about the
process. This is undoubtedly a drawback in the situations
in which we effectively know that X is a Markov chain
and we know all parameters defining P,. However, in
numerous real situations the distribution P, is not known
exactly and has to be estimated. So, the only "a priori"
information is that X is a Markov chain and its
parameters have to be estimated from Y . So, this seems to
be a little bit inconsistent because a part of the "a priori"
information is estimated from Y, and thus becomes "a
posteriori” information. Furthermore, in many real
situations the Markovianity of X is only assumed and is
not strictly established. Finally, we can say that when the
Markovian nature of X is not sure but only assumed
(with unknown parameters), the use of a PMC model is
not necessarily less relevant that the use a HMC model.
The Bayesian restoration methods based on the PMC
model can be rendered unsupervised by considering some
model parameter estimation methods using only the
observed data Y. We propose an original method which
allows one to deal with the cases when the noise in not
necessarily independent or Gaussian (although noise is
often assumed Gaussian, the non Gaussian case is of
interest in numerous situations [4, 11, 14, 16]).
Furthermore, one can not know the exact forms of the
noise distributions, and these forms can vary with the
class. However, one has to know a set of possible forms.
Although original, our method is inspired from the
method recently proposed in [18], which gave acceptable
numerical results.

The PMC model studied in this paper draws from the
same idea as the Pairwise Markov Random Field (PMRF)
model introduced in [20]. However, it is well known that
Markov chains and Markov fields are different models
and so the different properties of PMC discussed below
are not necessarily true in the PMRF case.

The paper is organized as follows.

The PMC model is introduced in next section and its
different properties are contrasted to those of the classical
HMC model. An original PMC parameter estimation
method, called PMC Iterative Conditional Estimation
(PMC-ICE) is then described. Conclusions and
perspectives are in third section.

2. Pairwise Markov chains

2.1 Model

Let us consider two sequences of random variables
X=(X,...,X,), and Y=(Y,,...,Y,). Each X, takes its
values in a set X and each Y, takes its values ina set Y.
Then let Z =(X,Y) be the "pairwise" variable at the
point i, and let Z=(Z,,...,Z,) be the "pairwise" process
corresponding to two processes X and Y. We will
assume that  different probability  distributions
corresponding to the different variables have densities
with respect to some measures. In order to simplify things
we will denote these different densities by a same letter
p. For instance p(x), p(x), p(x,%.),
P(z;)= p(x;,y;) will be the densities of the distributions
of X, X;, (X.,X,,),and Z =(X,,Y), respectively. The
conditional densities will still be denoted by p
p(xmlx,-) will be the density of he distribution of X,
conditional on X; =x;, p(34x) will be the density of the
distribution of ¥ conditional on X = x, and so on. We do
not specify the measures for the different densities
because it is not necessary for what follows, and thus this
lack of specification provides a certain generality of the
framework. Some of classical measures will be specified
in the examples.

Definition 2.1

Z will be called a Pairwise Markov Chain (PMC)
associated with X and Y ifits distribution is defined by

 P(z02)p(23,2,)... Pz, 1,2,)
P = e Pz pz)

@1

where p(.) are probability densities with respect to some
measures.

Thus the distribution of a pairwise Markov chain is given
by the densities p(z,,2,), ..., P(z,1,2,)-

The PMC will be called "stationary" when these n—1
densities are equal. The distribution of a stationary PMC
is thus given by a density on Z? = X* x Y? with respect to
some measure.

The following proposition useful
proporties of PMC.

specifies some

Proposition 2.1

Let Z be a Pairwise Markov Chain (PMC) associated
with X and Y. We have the following :

1. Z is a Markov chain;

2. p(34x) and p(x]y) are Markov chains;

3. the distribution of (Z,,Z,,), which is a marginal
distribution of Z, is given by the density p(z;,z,,).

Proof.
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Let us notice that p(z,,....z;), which is a marginal
distribution of p(z) defined by (2.1), retains the structure
ofaPMC:

2,2 ). (2, ,,2

2.2
Pz)D(21) @2

p(Z,,,,...,Z,) =

1. We have

P2 %,02520)
(2,255 ,2;)

p(z,2)...p(z,2,,)

— pLZ,)...p[z,.) _ E!Z,,Z. l!_

= P2 P ) | plz) = p(zialz:)
P(z)p(z5)... p(z, )

P(Zmlzl 222500 +52i)

where we have applied, in the second equality, (2.2) with
m=1land /=i+1.
2. Let us put p(3x)=p° (). We have to show that

px(ymﬂl)ﬁ,"': ym) =px(ym+l|ym)'
We have

px(ym+l|yl:"-’ym)
= p-" (yl, seey ym !yml) /px())lr' -yym)
_[ XsVisees Voo ]/[ Xy Vyseeesy ]
p(x) p(x)
x7 3t 3
PSPy Y )

Ip(xrylv'-' sV sYmitsYme2s oo Vn )dy,,,,zdy,,

el

Jp(x’yl”' "ym’ym#l’ymﬂ LA ’yn yym#ldyml dyn
Yo

_ P(z,%).. (203 Z00)
D(2,2,)- . K21y Z)

J.P(xmz sers Xms Y1 s Ymi2s +os V)Y me2 AV

o

Ip(xm.xm,...,
Yo

X s Vm sV mets Ymszso+s Yo W m st @2V,

p(zm’zml) Jp(xmﬂ’ eoes Xn o Vsl s Yme2s- '-syn)dymtldyn

-t

Ip(xm’xmﬂ""xn'ym ’ym+l ’ym2’ ""yn)dymldym+2dyn
yeu

P Zma) | PZmats - 20) @2l

ol

- Jp(xm’zml""zn)dym+ldym+2dyn

yom
= a(xm s Xt 19V m s Ymat s+ "yn)

we notice that there is no  y,..,yY,q in
(X0, X1 s Vs Ymstse++» Vo) (Which is a transition matrix
term), which completes the proof.

We can notice that the proof is quite analogous to the
proof in the classical hidden Markov case: the terms of
the transition matrix are obtained by a "backward"
recursion.

3. See (2.2).

Example 2.1

Let us consider a classical hidden Markov chain with
independent noise: X = {®,,...,w,} is a finite set of

classes, X a classical Markov chainon X, and Y=R is
the set of real numbers. Furthermore, the random
variables (Y) are independent conditionally to X and the

distribution of each Y, conditional to X is equal to its
distribution conditional to X;, given by p( y,-lx,-). Assume
that p( y,»lx,-) is Gaussian density. The distribution of Z is
then given by

p(z)=p(x,y) =
= p(x) POl ))p(xofx )p(lx2 ). p(x ) POV,

If the chain X is homogeneous and stationary, we have
(x, l x)= M
PRS0 )
defined by p(zi,zia) = POty X POx) POl5)-
As specified above, p designates different densities with
respect to some measures on different subsets of X" x Y".
Here we have two different measures : a counting measure
on X" and the Lebesgue measure on Y". So, when the
vector x, or some of its sub-vectors, are concerned
different p simply are probabilities, and, when the vector
y, or some of its sub-vectors, are concerned, different p
are densities with respect to the Lebesgue measure. When
both are concerned, as in (2.2), p is a density with
respect to a product of some counting measure with some
Lebesgue measure.

and thus we have a pairwise chain

Proposition 2.2

Let Z be a stationary PMC associated with X and ¥ and
defined by p(z,,2,).
If
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H P(.Vi‘xi 2 Xin1) =P(yl|xl)

Then X is a Markov chain .Furthermore, the distribution
of the Markov chain X is

p(xl’ x’)‘..p(xhl ’xn)
p(x)-.p(x,)

p(x)=

Of course, as the model is symmetric with respect to x
and y, an analogous result is true exchanging x and y.

Proof

As p(x) is a marginal distribution of p(x,y):
p(x) = [ p(x,)adv" () = p(x) | pOle)av" (v)
Y v

so, if p(x) can be written p(x)=g(x)p(x,y) with
jw(x,y)dv"(y): 1, g(x) is necessarily p(x).

v

We have :

p(z,2)).. . p(Z,0,2,)
p(z;)---p(z,)

p(x,y)=p(z)=

p(zl ’z’) )p(xl ’x7)' "p(zn—| ’zn)p(xn—l ’xn)
px, %) plx, . x,)
P(Zz )P(xZ) "p(zn-l )p(xn—l)
p(xp)...p(x,)

[ p(z.2)  p(z..2)
=[p(xl,x,)...p(x,_l,xn)7 pCiax) " p(r.x,)
P(xz)---P(x,._l) Mﬂl

1 px)--plx, )

_ [p(x.,x,)...p(x,_., x,) ]
Px)rP(x,y) ]

[p(yl ’yZ'xl ’xl ) p(yn—l ’ynlxn-l ’xn)

pOoe) P x) ] =q(x)p(x,y)

It remains to show that I(p(x, y)dv'(y)=1. We have
e

Jo@.av' ()
2

= J'p(ypyzl-xpxz)--'p(yj-l ’ynlxn—J’xn)

d n
Y p(y2|x2)"'p(yn—ll‘xn—l) Y (y)

e panlenx)
’J[J P0nlt) dv(y")]

[P()’p)ﬁ"ﬁ 5Xp ) P(yn-z’yn-xlxn-z 2 X,) ]dv..-l )
p(yz|xz)---17()’n-2|xn-z)
_ P(yl’yzlxv"‘z ) PUny ’yn-llxn-z )
v p(yzlxz)'“p(yn—z X,5)

av' ()

where the last equality follows from

p(.y —] ’y x o | "x )
d n
‘Y[ p(yn—llxn-l) V(y )
_ 1 Py, ,ny,,_, ,X,)
p(-yn—llxn-l) Yy PO |'xn-l )

av(y,)

= p(yn—llxn—l ’xn) = p(yn—l Ixn-—L) =
POl POLkL)

which comes from p(y1 %, %,) = pOpil X0t -

So, after n we have Jw(x,y)dv"(y)= 1.
o

Example 2.2

Let us return to the classical model specified in Example
2.1 above. As we have

Pinzin) = P(%i %) P1%) POl %), it is immediate
to see that p( y,,_,|x,,_,, X,) = p(y,,_,lx,,_,) and so, according

to Proposition 2.1, we find again the fact that X is a
Markov chain defined by p(x;, x,,,) -

Furthermore, we note that p(x,.|Vp-i» ¥ )# Pt Yaut) »

which is consistent with the well known fact that ¥ is not
a Markov chain.

Example 2.3

Let us complicate slightly the model specified in Example
2.1 above.

Let P(2i:2i) = P(X;5 Xy )p(yi’ynl'xhxiﬂ)’
p(y;, y,ﬂlxi, X;,1) are Gaussian distributions with non null
correlations. Then there are two possibilities:

1. p( y,,_,lx,,_,, x,) = p(y,,_,|x,,_.) , which means that the
mean and variance of p( y,,_.|x,,_,,x,,) do not depend on
x,. In thit case the Proposition 2.2 is applicable and X is
a Markov chain;

2. the mean or the variance of p( y,,_,|x,,_1, x,) depends on
x,. In thit case, X is not a Markov chain.

where
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So we can see how pairwise Markov chains generalise
hidden Markov chains. In fact, as X is not a Markov
chain in the the second case, the model is not a classical
Hidden Markov Chain.

Let us illustrate the possible dependence of
o( y,,_,lx,,_,,x,,) on x, in real situations by an example.
Let us consider the problem of statistical image
segmentation with two classes "forest” and "water" :
X={F,W}. For x,,=F, the random variable ¥, ,
models the natural variability of the forest and, possibly,
other "noise” which is considered absent here.
Considering (x,,x,)=(F,F) and (x,.,x,)=(F, W) as
two possibilities for (x,,,x,), it seems quite natural to
consider that p(y|F,F) and p(y,, |F ,W) can be
different. In fact, in the second case the trees are near
water, which can make them greener or higher, say,
giving them a different visual aspect.

2.2 Parameter estimation

In many applications in signal or image processing it is
useful to dispose of unsupervised methods, which means
that all model parameters are estimated, in a previous
step, from the sole observation. We propose in this section
an original method based on the general Iterative
Conditional Estimation for Generalized Mixtures (ICE-
GEMI) method. Such a method has been successfully
applied in the case of non Gaussian and possibly
correlated sensors [18]. As we shall see in the following,
it is still possible to apply such kind of method in PMC,
mainly because of the fact that the distribution of
(Z,,Z,,;), which is a marginal distribution of Z, is given
by the density p(z,,z;,) (point 3, Proposition 2.1).

2.2.1 Classical ICE

Here, we assume that the distribution of a stationary PMC
Z, which is defined by a density p(z,,z,), depends on a

parameter 6 € ©. The problem is to estimate 6 from a
sample y=(3,,...,¥,) . The classical Iterative Conditional

Estimation (ICE) method is based on the following
assumptions :

(i) thgre exi§ts an estimator of @ from the complete data:
8 = 6(2) = B((x3, 31 Deeeo(Xp 3 )

(i) for each O€ O, either the conditional expectation
E,,[G(Z)IY =y] is computable, or simulations of X
according to its distribution conditional to Y=y are
feasible.

ICE is an iterative method which runs as follows :
1. Initialise 8 = 6°;
2.forgenN,

put 67 = Eo,[é(Z ¥ =y] if the conditional expectation
is computable,
- if not, simulate / realisations x,,...,x; of X according
to its distribution conditional to ¥ =y and based on 6*
B )+ +6(x,p)

] .

and put 87 =

As Z is stationary, its distribution is defined by
Po(zi,2:q) which also is, according to the Proposition
(2.1), the distribution of U, =(Z,Z,). Finding an
estimator of 6 from the complete data is, in general, not
a serious problem (if it were, it would be pointless to seak
an estimator of @ from the incomplete data, Whether by
ICE or by any other method).

Let us specify how ICE runs in the three models of
Examples 2.2 and 2.3. In the case of the Example 2.2 the
parameters 6 are the K parameters ¢; = p(@;, ®;),
1<i,j <k, k means (m,, ..., m;) and k variances (o},
.., Of) of the k Gaussian distributions p(y|®,), ...,

p(»lo,). One possible 8 = 6(z) is then:

. . 1

el =¢;(x)== Zo,lnxw e, (23)

. ] &

(@) =50 2 e (2.4)

"2 1 2n . 1

/(D) =7 2l wap 0 = 1(2)) @5)
r=l

which relative simply frequencies and empirical means
and variances.
Concerning the reestimation of ¢; given by (2.3), the

conditional expectation is computable. One obtains
- 1<
ci" =Epl6,0lY =1 =7 % praisxy = w0, )
r=0

which can be computed in a manner analogous to that of
the a posteriori transition matrices in the proof of the
Proposition 2.1). Concerning the reestimation of means
and variances, the conditional expectation of (2.4) and
(2.5) is not computable and one must resort to simulations
of realisations of X according to its distribution
conditional to Y =y and based on 6.

When the first possibility of the example 2.3 is concerned
(classical hidden Markov chain with correlated noise), we
have to add to (2k~-1)/2 parameters (c;), 1<i,j<k
(recall that c; =c;), k means and % variances, and
(2k-1)/2 correlations of the (2k-1)/2 Gaussian
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distributions p(y,, yzlw,-,wj). (2.4) and (2.5) are then

replaced by :
N 1 < Yora

(2)=—D1 2.6
m,l(z) 2 ,2=l [(’y—n‘y):("’n“’/)]( Pr ) ( )
()= @7

, .
1 & Yo ~ Yara ~
= gll(xm.x,,pm.w,n[( o )—m,,-(z)) (( i J—m.-,-(l)

so we have in this case (2k—1)/2 parameters (c;) and
(2k-1)/2 variance-covariances matrices (X;) of the
Gaussian distributions p(y,, yzla),,a) ;). As above, the
reestimations of (c;) is analytical and the reestimation of
mean vectors (m;) and variance-covariances matrix ()
are made through stochastic simulations.

2.2.2 Pairwise Markov Chain ICE (PMC-ICE)

The generalized ICE was first introduced in a hidden
Markov discrete fields context, with application to
unsupervised image segmentation [4], then generalised to
any other discrete Hidden Markov Models [11], and
finally extended to any discrete Hidden Markov Models
with correlated sensors [18]. The ideas of [18] to deal
with sensor dependencies is here applied to deal with
spatial dependencies. :
Let 2Z=(X,Y) be a stationary PMC, with
X ={w,,...,®,;} and Y = R. Its distribution is defined by

2(21,23) = p(x, %) p(O1,s yzlx., X, ) : thus the problem here
is to estimate the k(3k—1)/2 probabilities p(x;,x,,)
and to find the k(3k-1)/2 probability densities
s yzlxl,xz) on R*. The aim of the generalized ICE is
to seak the k(3k—1)/2 pdfs in as large a set as possible.
Let us consider the set ® of M parametrized families of
densities on R: @ ={F,...,F,}. For instance, K, may be
Gaussian distributions, £ Gamma distributions, and so
on, each family F, being parametrized by a parameter
B,. We will then assume that for each (x,x,),

P b, x2) is the distribution of

uy_( ' oyn h ¥, and W
U; = a(x"‘rl) 1 Vz N where 1 an 2 are

independent and the distribution of each of them belongs
to one of the families in @ . '

Finally, we have to determinate the probabilities
p(x;, x,,,) and, for each (x,, x;):

(i) estimate a;

(ii) determine i, j for which B,eFand B, eF;

(ii)) estimate the parameters B, and j,.

As mentioned above, the parameter estimation method we
propose below is inspired from the "ICE-COR" method
proposed in [18]. The class process studied in [18] was a
Markov field and the random variables (Y) were
assumed independent conditionally on X. However, there
were two sensors: each Y, took its values in R*. For k
classes the problem was to estimate a mixture of &
distributions on R’. Assuming that these distributions are
neither independent nor Gaussian, we have a problem
which is close enough, from the mathematical point of
view, to the problem of estimating the distributions
r(n, yzfx, ,X,) considered here.

So, let Z=(X,Y) be a stationary PMC defined by
Pe(2,,2,), with 6 € ©, LU...U O, and let 6, = 6,(2), ...,
éM = éM (z) be M estimators, each 6, taking its values in
Q,.

We assume having at our disposal a decision rule D such
that for each z and (6,,..,0,)e0,x..x0,,,
D(z)e{6,,...,0y}.

The parameter estimation method we propose, which will
be called PMC-ICE, is the following iterative algorithm:

1. Initialise 6 = 6°;
2.forgeN,
-put /" =E,[6,(Z]Y=y] for 1<i<M for which the
conditional expectation is computable;
- for 1<i< M for which the conditional expectation is
not computable, simulate / realisations x,,...,x, of X
according to its distribution conditional to Y=y and
6.(x, Y)+...+6.(x,,y) .

1 ’
-put z,=(x),y) and defined the next value of the

parameter as 8" = D(z,) € {6],..., 6%} .

based on 8¢ and put 87" =

This method of estimating 6 can be of interest when we
have M possible models for p(z,,z,) (which are
parametrized by ©,, ..., ©,,, respectively) and we do not
know in what case we are.

2.3 Numerous sensors

There is no theoretical limitation to consider several
sensors. So, for m sensors we would have
X={w,...,0;} and Y=R". For k classes we would
then have to estimate a mixture of k> distribution on
R*™. So, there would be k> random vectors V, each
having 2m independent components, and &’ triangular
matrices of size 2m x 2m. We can see how the estimation
method proposed here extends the method proposed in
[18], where the multivariate variables ¥, =(Y,...,Y™),
s ¥, =(¥),..,¥7") are independent conditionally on X.
Here they are dependent conditionally on X and their
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distribution is given by the distribution of (¥,%,)
conditional to (X;,X.,). So, we have a more general
model and recover again the model proposed in [18] when
(%, Y., ) are independent conditionally on (X, X,;).

i Liv]

3. Conclusions and Perspectives

We proposed in this paper a new Pairwise Markov Chain
(PMC) model. Having an unobservable process
X=(X,...,X,) and an observed process ¥ =(¥,,...,Y,),
the idea was to consider the Markovianity of the couple
Z=(X,Y). This idea is analogous to the idea having lead
to the Pairwise Markov Random Field (PMRF) model
recently proposed in [20]; however, there exist some
significant differences between the two models.

We have discussed the differences and some possible
advantages of the new model with respect to the classical
Hidden Markov Chain (HMC) model. It appeared that in
some situations it is possible to use the classical Bayesian
restorations when using PMC, and it is not when using
HMC.

The second point was to propose a method of PMC
parameter estimation from the data Y alone. We
described a fairly general method, valid even with non
Gaussian or independent noise. The method was
described in the one sensor case for clarity, but there is no
theoretical limitation to consider multiple sensors.

Finally, we can say that the new PMC model and the
corresponding parameter estimation method allows one to
fuse, in an unsupervised manner, m pieces of information
provided by m sensors and use the fused information in
order to restore the observed noisy version of the process
of interest.

As perspectives, let us mention the possibility of the use
of HMC models in multiresolution images segmentation
problem [8], which could thus be generalised to some
PMC models. More generally, HMRF and HMC are
particular cases of Hidden Markov models on networks
[3, 25]. So, different generalisations of PMC proposed
here - and PMRF proposed in [20] - to Pairwise Markov
Processes on Networks could undoubtedly be considered
and be possibly be of interest in some situations.
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