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Abstract

Several approaches have been proposed in the last few

years to handle the problem of multiresolution image

segmentation. In a Bayesian framework, models using

Markov �elds have been highly e�ective. However the

computational cost can be prohibitive. Markov tree

models were therefore proposed. Although fast, these

methods do not always give good results. In this arti-

cle, we propose a new approach using a Markov chain

built by transforming multiresolution images into one

vectorial process via a Peano type scan, the Hilbert

scan. We work in an unsupervised context in which

parameters estimation is carried out by using a mix-

ture distribution algorithm, the ICE algorithm. Ex-

perimental results, including classi�cation of multires-

olution synthetic images and SPOT images, are pre-

sented in this paper.

1. Introduction

In recent years, multiresolution methods have been
developed in di�erent frameworks for multiresolution
data fusion. Several models based on wavelet trans-
forms have been proposed[8][3]. In a Markovian con-
text, which is the approach we consider, multiresolu-
tion models have been used in image coding [2] and
image restoration[7][6]. In this article, we deal with
the problem of statistical segmentation of multiresolu-
tion images with a pyramidal structure. Intuitively,
the best adapted model for the distribution of the
class process is the three-dimensional Markov �eld
model[15]. This model, which is a generalization of the
classic Markov �eld model[11][5], requires complex and
iterative computations. Other models have been sug-
gested in order to speed up processing. Based on the
Markov tree model[16][6], they have been applied suc-
cessfully in various situations. They are rapidly com-
puted but can however generate classi�cation results
in which \blocky" phenomena sometimes appear. This

is why we suggest a new approach to treat the mul-
tiresolution segmentation problem. We use the Hilbert
curve to transform the two-dimensional multiresolu-
tion images into a one-dimensional vectorial signal and
assign this signal a Markov chain structure. The mul-
tiresolution model we propose enables us to maintain
the algorithmic simplicity of the Markov tree.
The remainder of the article is organised in six parts.
The second part presents the multiresolution hidden
Markov chain model. In the third part, we deal with
the statistical classi�cation problem adapted to our
model. The parameters estimation will be studied in
the fourth part. The �fth part presents experimental
results of segmentation on synthetic and real images.
In the �nal part, we make our conclusion.

2. Multiresolution Hidden Markov
Chain model (MHMC)

Let Y(1); : : : ;Y(d) be respectively d observed images
at resolution R(1); : : : ; R(d), R(1) corresponding to the
coarsest resolution, R(d) to the �nest one. These im-
ages have a pyramidal structure. We assume that
Y(1) has 4N pixels and Y(r) has 4N+r�1 pixels, 1 �
r � d. Classically, Y(1); : : : ;Y(d) are d observed pro-
cesses representing a \noisy"version of d \ideal" hid-
den processes X(1), : : : ;X(d), the classes processes.

Let X(r) = (X
(r)
0 ; : : : ; X

(r)
4N+r�1�1

), 1 � r � d. We

assume that each X
(r)
i , 0 � i � 4N+r�1 � 1 takes its

value in the set of classes 
 = f!1; : : : ; !kg. Using the
geometrical features of the Hilbert scan, it is possible
to match one \parent" pixel of the resolution r with
four \children" pixels of the resolution r+1 in an op-
timal way, in the sense that we conserve the spatial
information.

Let us start with the case of a two-resolution process
(d = 2) with two classes (k = 2). In the case of �gure

(1), the father X
(1)
0 corresponds to the four children
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3 ), and so on. We use this fractal

property of the Hilbert scan to de�ne the multiresolu-
tion hidden Markov chain model. Therefore, the two
processes X(1) and X(2) will be de�ned by a unique
random process X on 
2 (�gure (2)):
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Figure 1: multiresolution model
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Figure 2: Realization of a multiresolution process with
two resolutions and two classes(white and black)

Let x = (x0; : : : ; x4N+1�1) be a realization of X. We
consider the state space 
2 = fe1; : : : ; e4g, with e1 =�

w1

w1

�
, e2 =

�
w1

w2

�
, e3 =

�
w2

w1

�
, e4 =

�
w2

w2

�
.

The MHMC model is de�ned by assigning a non-
homogeneous Markov chain structure to the class pro-
cess X. The distribution of X is then given by:

� the distribution of
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� The transition matrices which are given for 1 �
n � 4N+1 � 1 by (we have to consider 2 cases):

- for n mod 4 = 0

t(1)xn�1;xn
= t(1) =

0BB@
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1CCA (2)

with 0 � aij � 1 and
P4

j=1 aij = 1, 1 � i � 4.
This matrix corresponds to the case in which \the
father and its son are updated"; all transitions are
possible, which is represented by an unspeci�ed
matrix t(1).

- for n mod 4 6= 0

t
(2)
xn�1;xn = t(2) =0BB@

c 1� c 0 0
1� d d 0 0
0 0 e 1� e
0 0 1� f f

1CCA (3)

0 � c; d; e; f � 1.

This matrix correspond to the case in which \the
father is constant, its son is updated". Therefore,
from the class e1 or e2, the transition to the class
e3 or e4 is not possible; in the same way, from e3
or e4, the transition to e1 and e2 is not possible.

Let us consider now the general case of a d res-
olution process with k classes. We note X =
(X0; : : : ; X4N+d�1�1) the process de�ned by :

Xs =

0BBBBBB@
X

(1)
Q(s;4d�1)

:

X
(r)
Q(s;4d�r)

:

X
(d)
Q(s;40)

1CCCCCCA (4)

where Q(s; 4u) = js=4uj and 0 � s � 4N+d�1 � 1, jj
refers to the integer part operator.
This process is de�ned on the cartesian product

d = f!1; : : : ; !kgd. The d processes X(r) =

(X
(r)
0 ; : : : ; X

(r)
4N+r�1�1

), 1 � r � d will be there-
fore considered as a unique random process X on

d. Let x = (x0; : : : ; x4N+d�1�1) be a realization of
X. We de�ne the MHMC model by assigning a non-
homogeneous Markov chain structure to the class pro-
cess X. Its distribution is given by:



� the distribution of X0 =

0BB@
X

(1)
0

:
:

X
(d)
0

1CCA:
�X0

= P (X0 = x0); x0 2 
d (5)

� the transition matrices which are given for 1 �
n � 4N+d�1� 1 by (we have to consider d cases):

- if n mod 4 6= 0:

t(d)xn�1;xn
= t(d) (6)

This matrix corresponds to the case in which the
dth component of Xn changes and the others re-
main constant.

- if n mod 4d�r = 0 and 1 � r � d� 1:

t(r)xn�1;xn
= t(r) (7)

This matrix corresponds to the case where the
last r components of Xn change and the others
remain constant.

In conclusion, t(r), 1 � r � d, are d given matrices to
constrain each parent pixel to be constant four times
with respect to its sons.

3. Segmentation algorithm

As we mentioned before, X = (X(1); : : : ;X(d)) is an
unobservable process representing the image of classes.
The problem consists of estimating this process only
from the available observations Y = (Y(1); : : : ;Y(d)).
We de�ne the observations with the same structure as
the class processes. Let Y = (Y0; : : : ; Y4N+d�1�1) the
observed process de�ned by:

Ys =

0BBBBBB@
Y
(1)

Q(s;4d�1)

:

Y
(r)

Q(s;4d�r)

:

Y
(d)
Q(s;40)

1CCCCCCA (8)

Let Y(r) = (Y
(r)
0 ; : : : ; Y

(r)
4N+r�1�1

), 1 � r � d and y =
(y0; : : : ; y4N+d�1�1) be a realization of Y.

3.1 Assumptions on the observation model

We use the following classic assumptions:

� conditional independance of the observations

Y
(r)
n , 1 � r � d and 0 � n � 4N+d�1 � 1, given

the class process X.

� the distribution of Y
(r)
n given X is equal to its

distribution given X
(r)
n , 1 � r � d and 0 � n �

4N+d�1 � 1.

Such assumptions are strong but simplify the model,
which thus have some good statistical properties as
the one we give in the proposition 1.

3.2 Posterior distribution of X

The Posterior distribution of X will be useful for es-
timating parameters. Contrary to the Markov �elds
model, the posterior distribution of X is directly
tractable, without using iterative algorithms such as
Gibbs sampler. General results on Markov chains are
valid in the context of our model. We recall one of
these results in the following proposition.

Proposition 1:

The a posteriori distribution of X is the distribution

of an non-homogeneous Markov chain.

In accordance with this proposition, it is easy and
rapid to simulate realizations of X according to its
posterior distribution without having recourse to iter-
ative Monte-Carlo methods. This constitutes a great
advantage compared to Markov random �eld models
which imply the use of algorithms such as Gibbs sam-
pler or Metropolis algorithms [11][13]. In the con-
text of Markov random chain models, computation of
\Backward" probabilities [4] is enough to obtain such
realizations.

3.3 The MPM Bayesian segmentation method

In our context, we use the MPM decision rule[17]
which is analyticaly computable and quickly computed
compared to MAP solution provided by simulated an-
nealing algorithms [1]. The MPM decision rule is char-
acterised by:

cxn = arg max
u2
d

P (Xn = ujY = y) (9)

This rule requires the computation of \Forward" prob-
abilities and \Backward" probabilities.

4. Parameter estimation algorithm

From the beginning, we have assumed that the pa-
rameters of our multiresolution hidden Markov chain
model (initial distribution and transition matrices)
and of the conditionnal density were known (super-
vised context). Parameters are usually unknown, and
we need to estimate them from the observations. Dif-
ferent estimation algorithms are available. The itera-
tive EM algoritm (Expectation-Maximisation)[9] max-
imizes the likelihood of the observations. Modi�ca-
tions of this algorithm have been proposed to improve



convergence of the algorithm to a global maximum of
the likelihood [18]. In this paper, we use a di�erent al-
gorithm for mixture distribution estimation, the ICE
algorithm presented in a general context in [12]. We
apply this algorithm to the case of our model [10].

5. Application

To evaluate the pertinence of the model, we present
below experimental results of segmentations obtained
with synthetic and real images. First, the segmenta-
tion is carried out by using the real parameters of the
model. Then we apply the model to SPOT images
from Istres, an area in the south of France.
Let us consider a realization of a Markov random �eld
with three classes. For this simulation, we chose for
the two resolutions, images corrupted with a similar
strong noise to show the interest of using all the infor-
mation. In �gure (3), image (a) is the original image
corresponding to the true classes. Image (b) and (c)
correspond, for the resolution R(1) et R(2), to the cor-
rupted images (noisy image with N (0; 1) for the �rst
class, N (0:5; 1) for the second class, N (1; 1) for the
third class). Figure (4) provides results of a segmen-
tation obtained by using real parameters: (a) shows
the result of an MPM monoresolution segmentation
obtained by using information provided by (c) of �g-
ure (3) only. (b) presents the multiresolution segmen-
tation result obtained from both images (b) and (c)
of �gure (3) (17.3% of pixels are misclassi�ed in the
monoresolution case, 12.9% of pixels misclassi�ed in
the multiresolution case).

(a) (b) (c)

Figure 3: original scene and noisy images

We now apply our model in an unsupervised context
to classify multiresolution SPOT images of an area of
France, the ISTRE coast and its surrounding. The aim
is not to provide a precise description of the scene but
only show a kind of example for using such a model.
Two SPOT images correspond to the same geographic
zone. The scene is composed of four classes, water
(pond of Berre), �elds (corn and wheat), city (Istres

(a) (b)

Figure 4: mono and multiresolution segmentation

on the left of pond of Berre), and vegetation (forest or
other agricultural zones). The image at the resolution
R(2) show a kind of incertainty in the north of the area
corresponding to the water due to the depth of the wa-
ter. The image at the resolution R(1) provides better
information which permit to detect completely the sea
zone, the monoresolution segmentation obtained from
the image at the resolution R(2) only classifying the
sea in three classes. Visually, results of the classi�-
cation is improved when using information from both
images.

6. Conclusion

In this article, we de�ne a multiresolution Markov
model which enables us to treat the problem of statis-
tic segmentation of images de�ned on a pyramidal
structure. We have presented the case of two images,
each pixel of the coarse resolution image giving four
pixels son of the �ne resolution image. A solution
would be to use a three-dimensional Markov model
which sometimes gives very good results. However,
these models require iterative algorithms which are
very time-consuming in terms of computation. Much
research based on the Markov trees has been con-
ducted. These models, which assume independence
of children given their parent ensure non-iterative al-
gorithms (much rapid), but the segmentation results
are not always satisfactory. In this article, we propose
a new approach to de�ne the distribution of the class
process. We use Markov chain structure by transform-
ing images via the Hilbert scan. Some �rst simulations
indicate good performances of our model for multires-
olution segmentation. However, additional research is
currently being conducted to compare this model with
other existing multiresolution Markov models.
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