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Abstract
This paper deals with the problem of statistical
unsupervised fusion of dependent sensors with its
potential applications to multisensor image
segmentation. On the one hand, Bayesian fusions can be
of great efficiency, particularly when using hidden
Markov models. On the other hand, we give some
examples showing that there are situations in which the
Dempster-Shafer fusion can be usefully integrated in the
classical Bayesian models. The contribution of this paper
is then to show how a recent parameter estimation of
probabilistic models, valid in the case dependent and
possible non Gaussian sensors case, can be extended to
the situations in which some of sensors can be evidential.
The proposed method allows one to imagine different
unsupervised segmentation methods, valid in the
Dempster-Shafer framework for dependent and possibly
non Gaussian sensors.

1. Introduction

In this paper we consider the problem of unsupervised
Dempster-Shafer fusion of correlated sensors with
applications to unsupervised multisensor statistical image
segmentation. When the sensors are independent and the
noise distribution known, it is possible to use different
Bayesian methods like Maximum Posterior Mode (MPM)
or Maximum a Posteriori (MAP), once we have adopted
some model for the class process like, for instance,
Markov field [6, 11]. These methods can be made
unsupervised by estimating the model parameters by
some general methods like Stochastic Gradient (SG,
[16]), or Iterative Conditional Estimation (ICE, [8, 9]).
When the nature of the noise is not known exactly, it is
still possible to estimate the model using some recent
extension of ICE [8]. Finally, considering the
multisensor case with sensors neither independent nor
Gaussian, one can still estimate the model parameters by
a further recent extension ICE [12].

On the other hand, the Dempster-Shafer theory of
evidence can provide some interesting extension of the
classical probabilistic models [1, 3, 5, 7, 15].
The aim of this paper is to propose a family of parameter
estimation methods valid in some Dempster-Shafer
extensions of the classical probabilistic models.
Extending the method proposed in [12], this family is
valid in the case of non necessarily independent or
Gaussian sensors case.

2. An example

Let us first consider an example of the problem of
satellite image segmentation in the case of two classes
(forest and water) and two sensors (optical and radar). Let
S  be the set of pixels, X = (Xs )s∈S  the random field of
classes (each Xs  takes its values in the set of classes
Ω = {ω1,ω 2}), and Y = (Ys )s∈S  the random field of

observations (each Ys = (Ys
1,Ys

2 ) takes its values in R2 ).
A Markovian structure of X = (Xs )s∈S  will be considered

in the following; however, for the moment we assume
the random variables (Xs )  independent.

Let us temporarily assume that Ys
1,Ys

2  are independent

conditionally on X , and that their distribution
conditional to X  is their distribution conditional to Xs .

Furthermore, their distributions conditional to
Xs = ω1,ω 2  are given by densities f1

1 , f1
2 , f2

1 , and f2
2 ,

respectively.
When priors π1 = P[Xs = ω1 ], π2 = P[Xs = ω 2 ] are
known, the posterior probability distribution of Xs  is :

P[Xs = ω1 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π1 f1
1(ys

1 ) f1
2 (ys

2 )

(1)

P[Xs = ω 2 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π2 f2
1(ys

1 ) f2
2 (ys

2 )

Now, let us assume that there are clouds and, when a
pixel is concealed with a cloud, the first sensor, which is
an optical one, cannot give any information about the



class lying at the ground. It just gives a grey level of
clouds, whose probability distribution is given with a

density fc
1 ( c  for "clouds"). How does one integrate the

presence of clouds in the model to obtain posterior
distribution analogous to (1)? The Dempster -Shafer
theory of evidence allows one to treat this problem as
follows. Following one of the possible models [1],
which we adopt in this paper, the observed Ys

1 = ys
1

defines a probability q  on Ω* = {{ω1},{ω 2},{ω1,ω 2}}

with:

q[{ω1}] = f1
1(ys

1 )

f1
1(ys

1 ) + f2
1(ys

1 ) + fc
1(ys

1 )

q[{ω 2}] = f2
1(ys

1 )

f1
1(ys

1 ) + f2
1(ys

1 ) + fc
1(ys

1 )
(2)

q[{ω1,ω 2}] = fc
1(ys

1 )

f1
1(ys

1 ) + f2
1(ys

1 ) + fc
1(ys

1 )

The probability q , which is called the "mass function" in

the theory of evidence language, may then be fused, using
the Dempster-Shafer combination rule (or "fusion"), with
the posterior probability

 P[Xs = ω1 Ys
2 = ys

2 ] ∝ π1 f1
2 (ys

2 ) ,

P[Xs = ω 2 Ys
2 = ys

2 ] ∝ π2 f2
2 (ys

2 ) ,

provided by the second sensor. We obtain:

P[Xs = ω1 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π1[ f1
1(ys

1 ) + fc
1(ys

1 )] f1
2 (ys

2 )

(3)

P[Xs = ω 2 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π2 [ f2
1(ys

1 ) + fc
1(ys

1 )] f2
2 (ys

2 )

The aim of this paper is to handle the above problem
once the sensor independence hypothesis is relaxed. In the
absence of clouds, f1

1(ys
1 ) f1

2 (ys
2 ) in (1) is replaced with

f1(ys
1, ys

2 ), and f2
1(ys

1 ) f2
2 (ys

2 ) is replaced with f2 (ys
1, ys

2 ).

In the presence of clouds, (3) becomes :

P[Xs = ω1 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π1[ f1(ys
1, ys

2 ) + fc,1 (ys
1, ys

2 )]

(4)

P[Xs = ω 2 (Ys
1,Ys

2 ) = (ys
1, ys

2 )] ∝ π2 [ f2 (ys
1, ys

2 ) + fc,2 (ys
1, ys

2 )]

These posterior probabilities can then be used in different
processing, like, for example, Bayesian segmentation. In
the unsupervised processing case that interests us in this
paper, the main problem is then to find the four functions

f1, f2 , fc,1 , fc,2 , which are probability densities on R2 , and

the priors π1, π2 . In other words, we have to estimate a

mixture of four components f1, f2 , fc,1 , fc,2  on R2  and the

priors π1, π2 .

We specify in this paper how the "correlated ICE-GEMI"
method proposed in [12] (which is itself a generalization
to the dependent sensor case the ICE-GEMI algorithm
proposed in [8]) can be employed in a theory of evidencec
ontext.
The correlated ICE-GEMI principle is as follows. We
assume that f1, f2 , fc,1 , fc,2  are probability laws of random

vectors U1,U2 ,U3 ,U4 , with, for each i ∈{1,2,3, 4},

Ui =
1 θ i

0 1






Vi
1

Vi
2







(5)

and Vi
1, Vi

2  uncorrelated (the parameters θ1 , ..., θ4  are
computed from the correlations of the components of U1 ,

..., U4 ). The variables Vi
1, Vi

2  are then assumed

independent (this is an approximation). Furthermore, the
distributions of the random variables (Vi

j )  are given with

densities (gi
j ) , and each density gi

j  belongs to one
among families F1, ..., FM . For instance, if we have
F1 = {Gaussian Laws} ,  F2 = {Gamma Laws},

F3 = {Beta Laws} , each of the eight densities gi
j  can be

Gaussian, Gamma, or Beta (giving 38  possibilities). The
correlated ICE-GEMI can then be used to determinate the

nature of each density gi
j , estimate the parameters for

each of them (for instance we need the mean and the
variance if gi

j  is Gaussian), and estimate the four
parameters θ i . So, given (5), the correlated ICE-GEMI

method, whose general walk will be detailed in the next
section, allows one to estimate the four densities
f1, f2 , fc,1 , fc,2 .

3. General case

In a general way, let us consider a set of classes
Ω = {ω1, ...,ω k}, the power set Ω* = {Ω1, ...,Ω

2k }  of

Ω ,  and m + 1 mass functions M0 , M1, ..., Mm , which are

probabilities on Ω * . Recall that if a mass function only
charges the singletons, it can be assimilated to a classical
probability on Ω  : such a mass function will be called
"Bayesian" or "probabilistic". Roughly speaking, M0 ,

which will be assumed probabilistic in this paper, will
model the prior information and M1, ..., Mm  will model

the information contained in the observation of m
sensors. In the case of independent pieces of information,
the Dempster-Shafer combination rule, which enables one



to aggregate theses different pieces of information, is as
follows:

M(A) ∝ [ Mj (Aj )
j=0

m

∏ ]
A0 ∩...∩Am =A≠∅

∑ (6)

The combination rule (6) corresponds to independent
sensors (fusion (3) in the previous section). When
sensors are dependent, (6) becomes (see (4) above):

M sen (A) ∝ M' (A0 × ...× Am )
A1∩...∩Am =A≠∅

∑ (7)

where M'  is a mass function on the Cartesian product
(Ω*)m+1. This defines a mass function on Ω* which
will be denoted by M = M0 ⊗ M1⊗...⊗Mm . We then

have the following well known property:

Proposition 3.1

If at least one mass function among M0 , M1, ..., Mm  is
probabilistic, M = M0 ⊗ M1⊗...⊗Mm  is probabilistic.

In the case we are interested in, the mass function M0  is
the prior distribution π1, ..., πm , and the mass function

M'  is provided by m  sensors Ys
1 , ... , Ys

m . Each sensor

Ys
j  can distinguish Ω1

j , ..., Ωr( j)
j , which are r( j)

subsets of Ω . The distribution of Ys
j  conditional to Ωl

j

will be denoted by fl
j . In other words, the law

distribution of Ys
j  is some mixture of f1

j , ..., fr( j)
j . For

each t = (t1, ... tm ) , with 1 ≤ t1 ≤ r(1), ..., 1 ≤ tm ≤ r(m) ,

let Ωt *  be the set of elements Ωt = (Ωt1

1 , ...,Ωtm

m )  and,

for each ω i ∈Ω , let Ωi
t * be the subset of Ωt *  of

elements Ωi
t = (Ωi,t1

1 , ...,Ωi,tm

m )  such that ω i ∈Ωi,t1

1 , ...,

ω i ∈Ωi,tm

m . So for each Ωi
t = (Ωi,t1

1 , ...,Ωi,tm

m )  there exists

a probability density fΩi
t  on Rm . Let us recall that this

density is not necessarily a product of marginal densities.
For an observed ys ∈Rm , we have to fuse the priors with

the mass function M sen  resulting from the Dempster-
Shafer fusion of the m  sensors. The result, which is a
generalization of (4), is then a probability dinstribution
defined on Ω  by:

π i
ys ∝ π i

ω i ∈A
∑ M sen (A) ∝ π i fΩt (ys )

ω i ∈Ωt1
1 ,...,ω i ∈Ωtm

m
∑ (8)

(the sums above are made over A  such that ω i , which is

fixed, is included in A ).

So the problem is to estimate the priors π = (π1, ..., π k )

and K = r(1)r(2)...r(m)  densities ( fΩt ) on Rm .

Following [12], we assume that there exist K  triangular

matrices AΩt

,with

AΩt

=

1 0 0 ... 0

a21
Ωt

1 0 ... 0

a31
Ωt

a32
Ωt

1 ... 0

... ... ... 1 0

am1
Ωt

am2
Ωt

... amm−1
Ωt

1























, (9)

such that for each Ωt , when ( fΩt ) is the density

distribution of Ys , then the components of Zs = AΩt

Ys

are uncorrelated. Let us denote by gΩt

1 , gΩt

2 , ...gΩt

m  the

densities of the distributions of the components. We
assume that for each i , the form of gΩt

i  belongs to the

finite set of forms Ψ = {F1, ..., FM}, each form Fj  being a

parametrized family of densities on R.
Thus the problem is to find the Km  densities (gi

l ) , the
K  matrices (AΩt ) , and the priors π = (π1, ..., π k ) .

We assume that the following general points hold:
( A1) An estimator of π = (π1, ..., π k )  from X  is

available;
( A2) One may simulate realizations of X  according to its

distribution conditional to Y ;
( A3 ) Each family Fj  of Ψ = {F1, ..., FM} is characterized

by a parameter β j , i.e., Fj = {gβ j }β j ∈Β j . In practice β j  is

a subset of Rnj  with nj  depending on Fj : for instance

nj = 2  if Fj  are Gaussian;

( A4) M  estimators β̂ 1, ..., β̂ M  are available such that if a
sample z = (z1, ..., zr )  is generated by a distribution gβ j

in Fj  , then β̂ j = β̂ j (z) estimates β j ;

( A5 ) A decision rule D is available, such that for any
sample z = (z1, ..., zr )  and any (g1, ..., gM ) ∈F1 × ...× FM ,

the rule D associates to z  the "best suited" density
among g1, ..., gM , according to some criterion.
A1 is obvious but it will be useful in the next section.

We propose the following iterative generalization of the
ICE-COR method:
(i) initialize π 0 , ( fΩt

0 ) in some way;

(ii) determine π q+1  and ( fΩt

q+1 )  from π q , ( fΩt

q ), and the

observed Y = y  according to:

1. For each s ∈S , calculate π ys ,q  and put
π q+1 = ( π ys ,q

s∈S
∑ ) / Card(S);



2. Simulate a realization xq  of X  according to its current
posterior distribution π y,q  (given by π q , ( fΩt

q ), and y ).

For each ω i ∈Ω , use the subset yi,q = {ys / xs
q = ω i} to

estimate, by using the classical ICE-COR specified in

[12], the densities ( fA )
A∈Ωi

t *
, obtaining ( f̂A )

A∈Ωi
t *

. Put

fA
q+1 = f̂A  for each A ∈Ωi

t * .

We notice that the generalization proposed consists on
adding a novel level : at each iteration, a classical ICE-
COR iteration is used k  times on sub-samples.

Example

Let us consider three classes : grass on dry ground ( ω1 ),
rice in water ( ω 2 ), and water ( ω3), with possible
presence of clouds. The priors are π1, π2 , π3 .

Considering an optical sensor and a radar one, we can
imagine that the optical sensor distinguishes {ω1,ω 2},
{ω3}, and {ω1,ω 2 ,ω3}, because it cannot make any

difference between grass on dry ground and rice on water;
moreover, when there is a cloud, it does not distinguish
anything. On the other hand, radar sensor distinguishes
{ω1} and {ω 2 ,ω3} , because it cannot make any difference

between rice in water and water.
So, for the first sensor we have r(1) = 3, and for the
second one r(2) = 2 . We thus have six possible couples
t = (t1, t2 ) , which implies that a mixture of six

components on R2  is to be estimated: f({ω1,ω2},{ω1}),

f({ω1,ω2},{ω2,ω3}) , f({ω3},{ω2,ω3}) , f({ω1,ω2,ω3},{ω1}) , f({ω1,ω2,ω3},{ω1}) ,

and f({ω1,ω2,ω3},{ω2,ω3}) . Once these components are estimated

by ICE-COR as above, the posterior probabilities are:

π1
ys ∝ π1[ f({ω1,ω2},{ω1}) (ys ) + f({ω1,ω2,ω3},{ω1}) (ys )]

π2
ys ∝ π2 [ f({ω1,ω2},{ω2,ω3}) (ys ) + f({ω1,ω2,ω3},{ω2,ω3}) (ys )]

π3
ys ∝ π3[ f({ω3},{ω2,ω3}) (ys ) + f({ω1,ω2,ω3},{ω2,ω3}) (ys )]

4. Other distributions for X .

We have assumed above that the random variables
(Xs ,Ys ) were independent (and thus the random variables
(Xs )  were independent too), but more complex structures

for the distribution of the class random field X  can be
considered. Roughly speaking, every structure is suitable
under the following conditions : (a) the distribution of X
depends on a parameter α  which can be estimated from
X ; (b) it is possible to simulate realizations of X
according to its distribution conditional to observations.
Let α̂  be the estimator of α  from X . Then the point
(ii) 1. in ICE-COR above is replaced by

α q+1 = Eq [α̂ (X) Y = y], if this conditional expectation is

calculable, and by α q+1 = α̂ (xq )  if it is not.
Several classical probabilistic models for the X  can be
used because of the following result:

Proposition 4.1

Let Π  be the prior probability distribution of X  and
M sen  the mass function provided by the Dempster-Shafer
fusion of possibly dependent sensors. Let us consider the
following assumptions : (i) the random variables ( Ys )  are

independent conditionally to X ; (ii) the distribution of
( Ys )  conditional to X  is equal to its distribution
conditional to Xs .

The probability distribution Π ⊗ M sen  on ΩN  is the
same as the a posteriori probability distribution of the
random field X  classically noised by the independent
noise given by

ϕ xs
(ys ) ∝ Ms

sen (A)
xs ∈A
∑ (10)

Proof
This result is a generalisation of the particular case of
Markov fields showed in [2]; the proof is quite
analogous.

So, roughly speaking, for observed Y = y , the

observations are fused "pixel by pixel", and the result of
the fusion is then converted by using (10) into a
"classical" noise. This is very useful because in
numerous models it is then possible to simulate
realizations of X  according to its distribution conditional
to observations. Let us view some of them :
- Hidden Markov fields model : X  is a Markov field. So
the fused probability distribution Π ⊕ M sen  is also a
Markov field, which which can thus be simulated by the
Metropolis algorithm or the Gibbs sampler. This model
has ben introduced and discussed in [2].
- Hidden Markov chain model. It is well known that the
posterior distribution of a Markov chain noised with an
independent noise is a Markov chain distribution.
Realizations of X  can then be performed. These models
are widely used in different signal processing problems
and they can also be used in the statistical unsupervised
images segmentation [8].
- Hidden Markov trees. More recent models introduce
networks in form of "trees", in which the set of pixels S
forms the "leaves" [10, 14]. Such models are pyramids in
which S  forms the basis. In these models X  is not a
Markov field but realizations of X  according to its
distribution conditional to observations can be performed.
Let us notice that Markov trees can also be used to model
evidential priors [13].



- Truncated Markov trees. This recent model, which
seems to be very promising, is a truncated pyramid, in
which the top is a Markov field and conditionally on the
top, the basis is formed by trees whose roots are in the
top. Realizations of X  according to its distribution
conditional to observations can still be simulated in such
models [4].

5. Conclusion

We addressed in this paper the problem of unsupervised
Dempster-Shafer fusion of possibly correlated and non
Gaussian sensors, with application to Bayesian methods
of multisensor image segmentation. Such methods, based
on the probabilistic fusion of sensors, can be of great
efficiency in numerous situations. Furthermore, such
methods are based on some probabilistic model like
hidden Markov field, and they can be made unsupervised
by estimating, in a previous step, all model parameters.
On the other hand, Dempster-Shafer fusion can be useful,
and we have given some examples of such situations.
The contribution of this paper was to propose, extending
the methods valid in a probabilistic frame [12], some
methods of the model parameters estimation valid in the
Dempster-Shafer framework. The proposed methods are
valid in different structures for the class process, such as
Markov field, Markov chain, Markov tree, or even
Markov truncated tree. Furthermore, the sensors can be
dependent and the method determine the very nature of
their noise, which can be other than Gaussian.
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