UNSUPERVISED BAYESIAN CLASSIFICATION OF SAR - IMAGES

Hans-Christoph QUELLE* Jean-Marc BOUCHER* Wojciech PIECZYNSKI

He

* Groupe Traitement d'Images
Département Mathématiques et Systémes de Communication
Ecole Nationale Supérieure des Télécommunications de Bretagne
Technopble de Brest-Iroise, B.P. 832, 29285 BREST Cedex, France

** Groupe Images .

Département Systémes et Reseaux
Institut National des Télécommunications
9, rue Charles Fourier, 91011 EVRY Cedex, France

ABSTRACT

We present a non-supervised method of bayesian contextual
radar image segmentation. We adopt the hierarchical image mo-
del (HIM) from Kelly and Derin. In contrast to their global seg-
mentation method a local method is used in order to speed up the
segmentation. The algorithm for parameter estimation is SEM, a
recent variation of EM. The algorithm obtained is tested on
synthetic images and also applied to the segmentation of real
SEASAT-scenes.

. Key Words: Unsupervised Bayesian local (contextual or
blind) segmentation, Hierarchical Field Model.

INTRODUCTION

When considering a statistical segmentation of images au-
thors generally suppose the existence of two random fields : the
field of “classes” €={& :5€ S}, and the field of “measure-
ments” X ={X; :se §}. Each & takes its value in a finite
set Q={a@y,..., ax } of classes and X, in R. So the problem
of segmentation is the problem of the estimation of an “ignored”
realization of & from an “observed” realization of X.

We will suppose that the realization of X depends on the rea-
lization of £ and a certain “noise”. The distribution of (£,X ) is
defined by £ , the distribution of &, and the family Ff of dis-
tributions of X conditional to £ = €.

MODELING RADAR IMAGES

~ The hierarchical image model adopts this general proceeding,
it consists of two random fields. One governs the grouping of
pixels, called region process. The other consists of K random
fields which represent the speckled appearance of the K types of
nature, the classes.

‘We have chosen Kelly and Derin's image model for two rea-
sons.

Firstly, this medsl peints clearly out the idea that the
“observed speckle” is not only a worthless disturbance, but
carries information about the nature of ground.

2177

Secondly, the hierarchical character fits well to Bayesian de-
cision theory and this model allows quite easily the generation of
a great number of images with real radar image statistics.

Region process
The region process is responsible for the distribution of
pixels within the different classes.

The field £ is said to be markovian, with :
Pl& = &l& =g, O # ()]
=Pl&i=gl5=g, (he vl

where v; designs a neighborhood of (i).

In fact it can be a very simple type of a MF, called multilogis-
tic level (MLL) field [3] [5]. In this model one parameter exists
for each clique type: o, for the K differently colored single-
tons, f for the four types of clique-pairs. For the sake of sim-
plicity all cliques consisting of more than two pixels are ignored.

Under a positivity condition the field £ has the Gibbs distri-
bution : '

PlE=¢]= %exp{— > me)} @

ceC

Where the potential function V, (€) is defined as :
« for ¢ a clique of pairs

. ={ B ifall§ are equal )
~B otherwise
» for ¢ a single pixel clique :
Ve(@=o ifg=0 for(i)ec “@
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Speckle process
The speckle consists, in analogy with the physical model of a
field, of complex, gaussian, zero-mean random variables
Z=A{7:ie SY}.
At each site i, the intensity w and the phase ¢ are defined by :

Im 2]

2
w; =|z;|°, and ¢@; = arct; %)
Jzil o g Re[z1]
The density of the intensity of one pixel is then :
25 1 >
= = __@a 2a 6
Plwl=["P[w.¢ldp 5 6)

The joint probability P{w] may be expressed explicitly {5]
with :

E=[Wk,l,Wk-1,1,Wk+1,1,Wk,1—1,Wk,1+1,:| k,he S
For multi-look images with
L u
V=—> W, 7
M; @

the joint density can be expressed by a (M - 1) fold convolution
of either P[w] or Plw] :

yM-n E[v]
Ppvl= e, withuy=—— (8)
Loy M M

Expressing P[v] analytically fails at the evaluation of the
convolution integral.

Hierarchical model
Ateach pixel s the value of §; = o, determines the marginal
distribution of the speckle process. The color of the pixel s from

speckle process, W,© gives the final value X, .
X, =W® it &= )
BAYESIAN APPROACH
Global
We denote by P; the distribution of & and by f§ the density

of the distribution of X conditional to £ = ¢e. This defines the
distribution of (£,X) and therefore the conditional distribution of
¢ knowing that X = x, which we denote P*. The Bayesian
rule r, is then defined by :

7 () : .fﬁpx[é] = supP*[¢] (10)
it can also be expressed as follows :
1, () : E© Pyt = sup Pt (11)
£

The functions g, = P.f* are called “digcriminating”, From
the basjs of (11) it is “impossible” to find ¢ directly, due to the
high number of possible € - realizations (equal to K*, 7 = card
3. '

S. Geman et al. propose in [4] an iterative procedure, called
“simulated annealing”, allowing the approximation of & given
by (10)-and (11). This method is used by Kelly and Derin [5]

Contextual

The contextual method consists in estimating the realization
of each & from X, ={X, :re v,}. The method correspon-
ding to v = {s} will be called “blind”. The Bayesian rule is ex-
pressed as follows :

B@): &=y g ()= sup g (r)  (12)
15¢sK

Let us denote n = card (v), v*=v —(s). For each
€' e Q'Y Puer=PIl& =0, ,6 =€ andf ¢ the den-
sity of X, knowing {, =&. The discriminating functions
8; in (12) may be expressed as follows :

84 00y) = 2P ef ) (13)

They can'be calculated as soon as the distribution P of &,
and the conditional densities f ¢ knowing &, = € are determi-
ned.

So the previous problem is that of estimation the parameters
of Py and &€. This is the problem of estimation of a mixture of
densities : we propose the use of a recent variation of EM, called
the SEM [1] [2] [6].

ALGORITHM SEM

Let vy,...,v, be a sequence of contexts in S, we denote
further by E = (g, ..., ) with ¢ =K" and n = card(v) the set
of possible realizations of £, and £ conditional distributions of
X, which will be supposed exponentional (gamma).
Each f; is defined by its mean y; , by its covariance matrix

R; and by M, the number of averaged independent looks. Let
I1be the distribution of & , TI; =P [§, =g ] .

Initialization :
IT=° and parameters defining f*=° are chosen at random.
They can also be estimated by easier methods.

Step S :

For each x; we draw a realization e’ (x; ) from the set E
with regard to the conditional distribution knowing X; =x;
with the help of the couple (I, ,f; ) . We obtain a partitioning

Qf,....Q with:

[x; € Q1 & [€'(xi) = @] (14)
Step M :
We estimate IT,*! by :
HI+1 — card(@z) (15)

card(S)

and parameters defining £,* *! are estimated in the selection O}

.- by classical estimators (empirical mean and covariances),
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Step E ¢
We compute the distribution B! (@) and return to step S.



EXPERIMENTAL RESULTS

Simulated image '
We consider a two class image modelled by a HIM, with

o1=0p=0, andf = - 0. 3. We processed 50 iterations, using the
Gibbs sampler.

Fig. 1: The field X, the partition of classes. .

The speckle processes for the two classes have the parame-
ters/,ll—20%—— 20, ﬂ2—2(g" 40andph12 pv12_01

Fig. 2: The speckled images for N = 4 (left), N = 16 (right).

pdfiX], (measured)

Fig. 3 : N =4 ; The density of X mesured (left) and theore-
tical (right)-and the minimum error of blind classifi-
cation e, = 0. 24
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Fig. 4 : N = 16 : The density of X mesured (left) and theore-
tical (right) and the theoretical error of blind classifi-
cation e, = 0.14.
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+  Contextual method, the density of one pixel is gaussian.
' ==> v = (5) + two neighbors, gaussian f ¢,
+  Blind method, one pixel has a gamma density.
==>v; = (s), gamma f .

Vg = (s) + two neighbors
f€: gaussian.

_right:

vs = (5) + two neighbors
€ : gaussian.

150
:= observed
distribution

= theoretical
distribution

Fig. 7 : observed and theoretical distributioﬁs forN=4,
blind method (left) and contextual method (right).

The error rates in figure 5 and 6 are :

Method Nb.of Estimated Error rate
looks means
gamma, blind 4 19,4 41,1 0,314

auss, contextual 4 25,3 530 0.403
“gamma, biind 16 19,4 39,9 0,123

. gauss, contextual 16 19,7 40,1 0,067



The experiment shows, that if the form chosen a priori for
the densites f ¢ deviates too much from the theoretical form, the
spatial information from the neighbors is worthless.

For N = 4, the hypothes1s that the gamma dens1ty can be,
written as a gaussian, is not valid.

For N = 16, the gamma and the gauss1at1 form are suffi-
ciently similar so that the contextual method 1 is able to achieve
lower error rates.

Flgure 8 shows, that the blind method converges in less ite-
rations than the contextual method. Indeed one iteration of the
contextual method is about 50 times longer than one iteration of
the blind méthod. :
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Fig, 8 : Convergence as a function of iteration, (N = 16).

-Real image (SEASAT-SAR) -

Fig. 9 : Real SEASAT-SAR scene from La Rochelle (France).

Fig. 10: .

left : ! ngn ‘
vs = (8) . V V=) Ftwo neighbors
f€: gamma, ‘ f&.: gaussian.

m=172 =567 l1 =344 uy=880
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CONCLUSION

a) We have compared the accuracy and the rapidity of the
blind method and the contextual method using many different
synthesized images. The results show that the blind method con-
verges much faster but the contextual method is much more ac-
curate for N > 4. So we combined these two methods, using the
blind method as a pre-processing (pre-segmentation) for the -
contextual method. The moment to switch between the two me-
thods is implemented in such a way that the final segmentation is
found as fast as possible.

b) The contextual SEM has shown to be a robust method

" with regard to the variability of spatial dependence. Also wheit

the dependency increases, the accuracy decreases, but remains
always better than the blind method. For an image (N = 16 -
look) which consists of two classes (means 20,40), the blind
method achieves an error rate of 12%, whereas the contextual
method achieves 8% for strong spatial dependency and for light
dependency 6%.
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