
Pairwise Markov Random Fields and its Application in Textured Images
Segmentation

Wojciech Pieczynski and Abdel-Nasser Tebbache

Département Signal et Image
Institut National des Télécommunications,

9, rue Charles Fourier, 91000 Evry, France

E-mail Wojciech.Pieczynski@int-evry.fr

Abstract
The use of random fields, which allows one to take into
account the spatial interaction among random variables in
complex systems, is a frequent tool in numerous problems
of statistical image processing, like segmentation or edge
detection.
In statistical image segmentation, the model is generally
defined by the probability distribution of the class field,
which is assumed to be a Markov field, and the probability
distributions of the observations field conditional to the
class field. In such models the segmentation of textured
images is difficult to perform and one has to resort to some
model approximations. The originality of our contribution
is to consider the markovianity of the pair (class field,
observations field). We obtain a different model; in
particular, the class field is not necessarily a Markov field.
The model proposed makes possible the use of Bayesian
methods like MPM or MAP to segment textured images
with no model approximations. In addition, the textured
images can be corrupted with correlated noise. Some first
simulations to validate the model proposed are also
presented.

1. Introduction

We propose in this paper a new Pairwise Markov Random
Field model (PMRF), which is original with respect to the
classical Hidden Markov Random Field model (HMRF)
[ChJ93]. The main difference is that in a PMRF the class
field is not necessarily a Markov field. One advantage,
which will be developed in the following, is that textured
images can be segmented without any model
approximation.
To be more precise, let S  be the set of pixels, X = (Xs )s∈ S

the random field of classes, and Y = (Ys )s∈ S  the random
field of observations. The problem of segmentation is then
the problem of estimating the realizations of the field X
from the observations of the realizations of the field Y .
Prior to considering any statistical segmentation method,
one must define the probability distribution P(X,Y )  of the

random field (X,Y ).

In the classical HMRF model this distribution is given by
the distribution of X , which is a Markov field, and the set
PY

X=x  of the distributions of Y  conditional to X = x .

Under some assumptions on PY
X=x , the posterior

distribution PX
Y=y  of X  is a Markov distribution and

different Bayesian segmentation techniques like MPM
[MMP87], MAP [GeG84] , or ICM [Bes86] can be
applied. These assumptions can turn out to be difficult to
justify when dealing with textured images, as detailed in
[DeE87], [KDH88], [WoD92].
The idea of the PMRF model we propose is to consider
directly the Markovianity of the pairwise random field
Z = (X,Y ). The distribution of X  is then the marginal
distribution of P(X,Y )  and thus it is not necessarily a

Markovian distribution. What counts is that PX
Y=y  remains

Markovian and so different Bayesian segmentations
specified above can be used. When the particular problem
of segmenting textured images with correlated noise is
considered, the PMRF model is quite suitable because
different Bayesian segmentation methods above can be
applied without any model approximation.
The organization of the paper is following. In the next
section we specify the difference between HMRF and
PMRF in the case of simple Gaussian noise fields. Section
3 is devoted to some simulations and some concluding
remarks are presented in section 4.

2. Pairwise Markov Random Field and
textured image segmentation

2.1 Simple case of Hidden Markov Field

Let us consider the set of pixels S  and X = (Xs )s∈ S  a
random field, each random variable Xs  taking its values in
the class set Ω = {ω1,ω2}. The field X  is Markovian with
respect to four nearest neighbors if its distribution is
written



P[X = x] = λ exp − ϕ1(xs , xt )
(s,t)neighbors

∑ − ϕ 2 (xs )
s
∑













(2.1)

where " (s, t)  neighbors" means that the pixels s  and t  are
neighbors and lie either on a common row or on a common
column. The random field Y = (Ys )s∈ S  is the field of
observations and we assume that each Ys  takes its values in
R. The distribution of (X,Y ) is then defined by (2.1) and
the distributions of Y  conditional on X = x . Assuming
that the random variables (Ys ) are independent conditionall
to X  and that the distribution of each Ys  conditional to
X = x  is equal to its distribution conditional to Xs = xs ,
we have :

P[Y = y X = x] = fxs
(ys )

s
∏ (2.2)

where fxs
 is the density of the distribution of Ys

conditional to Xs = xs . Thus :

P[X = x,Y = y] =
= λ exp[− ϕ1(xs , xt )

(s,t)neighbors
∑ − [ϕ 2 (xs )

s
∑ + Logfxs

(ys )]](2.3)

So the pairwise field (X,Y ) distribution is Markovian and
the distribution of X  conditional to Y = y  is still
Markovian. It is then possible to simulate realizations of
X  according to its distribution conditional to Y = y ,
which affords the use of Bayesian segmentation techniques
like MPM or MAP.
In practice, the random variables (Ys ) are not, in general,
independent conditionally on X . In particular, (2.2) is too
simple to allow one to take texture into account. For
instance, if we consider that texture is a Gaussian Markov
random field realization [CrJ83], (2.2) should be replaced
with :

P[Y = y X = x] =

= λ (x) exp[− axsxt
ys yt

(s,t)neighbors
∑ − 1

2
[axsxs

ys
2

s
∑ + bxs

ys ]]
(2.4)

The field Y  is then Markovian conditionally on X , which
models textures. The drawback is that the product of (2.1)
with (2.4) is not, in general, a Markov distribution. In fact,
for the covariance matrix Γ (x) of the Gaussian distribution
of Y = (Ys )s∈ S  (conditional to X = x ), we have :

λ (x) = [(2π)N det(Γ (x))]−1/2 (2.5)

which is not, in general, a Markov distribution with
respect to x .
Finally, X  is Markovian, Y  is Markovian conditionally
on X , but neither (X,Y ), nor X  conditionally on Y , are
Markovian in general. This lack of the posterior

Markovianity invalidates the rigorous application of MPM
or MAP.

2.2 Simple case of Pairwise Markov Field

To circumvent the difficulties above we propose to consider
the Markovianity of (X,Y). Specifically, we put

P[X = x,Y = y] =
= λ exp[− ϕ [(xs , ys ), (xt , yt )]

(s,t)neighbors
∑ − ϕ *[(xs ,

s
∑ ys )]] =

= λ exp[− [ϕ1(xs , xt ) + axsxt
ys yt + bxsxt

ys
(s,t)neighbors

∑ +

+cxsxt
yt ] − [ϕ 2 (xs ) + axsxs

ys
2

s
∑ + bxs

ys ]]

(2.6)

The Markovianity of the pairwise field (X,Y ) implies the
Markovianity of Y  conditionally on X , and the
Markovianity of X  conditionally on Y . The first property
allows one to model textures, as in  (2.4), and the second
one makes possible to simulate X  according to its
posterior distribution, which allows us to use Bayesian
segmentation methods like MPM or MAP.
Let us briefly specify how to simulate realizations of the
pair (X,Y ). The pair (X,Y ) being Markovian, we can
specify the distribution of each (Xs ,Ys ) conditionally on
its neighbors. Let us consider the calculus of the
distribution of (Xs ,Ys ) conditional to the four nearest
neighbors :

[(Xt1
,Yt1

), (Xt2
,Yt2

), (Xt3
,Yt3

), (Xt4
,Yt4

)] =

[(xt1
, yt1

), (xt2
, yt2

), (xt3
, yt3

), (xt4
, yt4

)]
(2.7)

This distribution can be written as

h(xs , ys ) = p(xs ) fxs
(ys ) (2.8)

where p  is a probability on the set of classes and, for each
class xs , fxs

 is the density of the distribution of Ys

conditional to Xs = xs  ( p  and fxs
 also depend on

(xt1
, yt1

), (xt2
, yt2

), (xt3
, yt3

), (xt4
, yt4

), which are fixed in the

following and so will be omitted). (2.8) makes the
sampling of (Xs ,Ys ) quite easy: one samples xs   according

to p , and then ys  according to fxs
. We thus have:

P{(Xs ,Ys ) = (xs , ys )

[(Xt1
,Yt1

), ..., (Xt4
,Yt4

)] = [(xt1
, yt1

), ..., (xt4
, yt4

)]}

∝ exp[− ϕ [(xs , ys ), (xti
, yti

)]
i=1,...,4
∑ − ϕ *[(xs , ys )] =

= exp[− [ϕ1(xs , xti
) + axsxti

ys yti
+ bxsxti

ys
i=1,...,4
∑ +

+cxsxti
yti

] − [ϕ 2 (xs ) + axsxs
ys

2 + bxs
ys ]]

(2.9)



This can be written h(xs , ys ) = p(xs ) fxs
(ys ), where fxs

 is

a Gaussian density defined by the following mean Mxs
 and

variance σ xs

2  :

Mxs
= −

bxs
+ (axsxti

yti
+ bxsxti

)
i=1,...,4
∑

2axsxs

,    σ xs

2 = 1
2axsxs

(2.10)

and p  the probability given on the set of classes with :

p(xs ) ∝ (axsxs
)−1 exp[

(bxs
+ axsxti

yti
+ bxsxtii=1,...,4

∑ )2

4axsxs

−

−ϕ 2 (xs ) − (ϕ1(xs , xti
) + cxsxti

yti
)

i=1,...,4
∑ ]

(2.11)

Finally, the main differences between the classical HMRF
model and the new PMRF we propose are :

(i) The distribution of X  (its prior distribution) is
Markovian in HMRF and is not necessarily Markovian in
PMRF;

(ii) The posterior distribution of X  is not necessarily
Markovian in HMRF and is Markovian in PMRF;

(iii) In the case of case of images which are textured, and
possibly corrupted with correlated noise, the PMRF allows
one to apply the Bayesian MPM or MAP methods without
any model approximations.

Remarks

1. The classical HMRF can also be applied in the case of
multisensor images [YaG95]. For m  sensors the
observations on each pixel s ∈ S  are then assumed to be a

realization of a random vector Ys = Ys
1, ...,Ys

m[ ] . It is

possible to consider a multisensor PRMF. For example, a
multisensor PMRF would be obtained by replacing in (2.6)

ys yt  and ys
2  by φ1 (ys

1, ..., ys
m ), (yt

1, ..., yt
m )[ ]  and

φ2 (ys
1, ..., ys

m )[ ] .

2. In some particular cases the classical model allows one
to take correlated noise into account [Guy93], [Lee98]. The
difficulties arise when wishing to consider the cases when
correlations vary with classes.

2.3 General case of PMRF

Generalizing of the distribution given by (2.6) does not
pose any problem. Let us consider k  classes
Ω = {ω1, ...,ωk}, m  sensors (each Ys = (Ys

1, ...,Ys
m )  takes

its values in Rm ), and C  a set of cliques defined by some

neighborhood system. The random field Z = (Zs )s∈ S , with
Zs = (Xs ,Ys ) , is a Pairwise Markov Random Field if its
distribution may be written as

P[Z = z] = λ exp[− ϕ c (zc )
c∈ C
∑ ] (2.12)

Let us note that the existence of the distribution (2.12) is
not ensured in a general case.
In particular, three sensor PMRF can be used to segment
colour images.

Remark

As mentioned above, X  is not necessarily Markovian in a
PMRF. This could be felt as a drawback, because the
distribution of X  models the "prior" , i.e., without any
observation, knowledge we have about the class image. Of
course, this "prior" distribution of X  also exists in PMRF
(it is the marginal distribution of P(X,Y ) ), but it is not

Markovian. The gravity of this "drawback" is undoubtedly
difficult to discuss in the general case. However, supposing
that it really is a drawback, let us mention that it also
exists in the classical HMRF model. In fact, even in the
very simple case defined by (2.3), the observation field Y
is not a Markov field. So, one could consider that the non
Markovianity of X  in the PMRF model is not stranger
that the non Markovianity of Y  in the classical HMRF
model.

3. Visual examples

We present in this section two simulations and two
segmentations by the MPM. We consider rather noisy
cases : one can hardly distinguish the class image in the
noisy one. One can notice that although the class images
are not Markov fields realizations, they look like.
The two realizations of PMRF presented in Fig.1 are
Markovian with respect to four nearest neighbors; the
distribution of (X,Y ) is written :

P[X = x,Y = y] =

= λ exp[− ϕ [(xs , ys ), (xt , yt )]
(s,t)neighbors

∑ − ϕ *[(xs ,
s
∑ ys )]]

(3.1)

with

ϕ [(xs , ys ), (xt , yt )] = 1
2

(axsxt
ys yt + bxsxt

ys + cxsxt
yt + dxsxt

)

(3.2)

ϕ *[(xs , ys )] = 1
2

(α xs
ys

2 + βxs
ys + γ xsxt

)

The different coefficients in (3.2) are given in Tab.1. Let us
notice that it is interesting, in order to have an idea about
the noise level, to dispose of some information about the
distributions of Y  conditional to X = x . In fact, these are



Gaussian distributions and knowing some parameters like
means and variances can provide some information about
the noise level. Of course, the noise level also depends on
different correlations and the prior distribution of X .
We may note that some of the coefficients in (3.2) are
simply linked with means or variances of the distributions
of Y  conditional to X = x . In fact, denoting by Σ x  the

covariance matrix of the Gaussian distribution of Y
conditional to X = x  and putting Qx = [qst

x ]s,t∈ S = Σx
−1, we

have :

P[Y = y X = x] ∝ exp − (y − mx )t Qx (y − mx )

2









 (3.3)

Developing (3.3) and identifying to (3.2) we obtain

mxs
= −

βxs

2α xs

, σ xs

2 = 1
α xs

(3.4)

So, all other parameters being fixed, one can use (3.4) to
vary the noise level. For instance, keeping the same
variances the noise level increases when one makes the
means approach each other. Otherwise, there are no simple
links between correlations of the random variables (Ys )
(conditionally on X = x ) and the coefficients in (3.2). The
correlations in Table 1, whose variations make appear
different textures, are estimated ones. The values of the
means show that the level of the noise is rather strong,
which is confirmed visually.

Image 1 Image 4

Image 2 Image 5

Image 3 Image 6

Fig. 1. Two realizations of Pairwise Markov Fields (Image
1, Image 2), (Image 4, Image 5), and the MPM
segmentations of Image 2 (giving Image 3), and Image 5
(giving Image 6), respectively.

Images 1, 2, 3 Images 4, 5, 6
α xs

1 1

βxs
−2mxs

−2mxs

γ xsxt mxs

2 mxs

2

axsxt
−0, 4 −0,1

bxsxt
−0, 4mxt

−0,1mxt

cxsxt
−0, 4mxs

−0,1mxs

dxsxt
0, 4mxs

mxt
+ ϕ (xs , xt ) −0,1mxs

mxt
+ ϕ (xs , xt )

m1 −0,3 1
m2 0,3 1,5

σ1
2 1 1

σ2
2 1 1

ρ11 0,26 0, 05

ρ22 0,26 0, 07
τ 13,1% 07,9%
Nb 30 × 30 30 × 30

Tab.1
α xs

, ... , dxsxt
 : functions in (3.2), the function ϕ  being

defined by ϕ (xs , xt ) = −1 if xs = xt  and ϕ (xs , xt ) = 1 if

xs ≠ xt . m1, m2  , σ1
2 , σ2

2  : the means and the variances in
(3.3). ρ11 , ρ22  : the estimated covariances inter-class
(neighboring pixels). τ  : the error rate of wrongly
classified pixels with MPM. Nb = n1n2  : the number of
iterations in MPM (the posterior marginals estimated from
n1 realizations, each realization obtained after n2  iterations
of the Gibbs Sampler).

4 Conclusions

We proposed in this paper an novel model called Pairwise
Markov Random Field (PMRF). A random field of classes
X  and a random field of observations Y  form a PMRF
when the pairwise random field Z = (X,Y ) is a Markov



field. Such a model is different from the classical Hidden
Markov Random Field (HMRF); in particular, in PMRF
the random field X  is not necessarily a Markov field.
The PMRF allows one to deal with the statistical
segmentation of textured images which can be, in addition,
corrupted with correlated noise. On the contrary to the use
of hierarchical models [DeE87], this can be done in the
framework of the model, without any approximations.
Roughly speaking, in the Hierarchical HMRF the prior
distribution of X  is Markovian and its posterior
distribution is not Markovian; and in PMRF the prior
distribution of X  is not Markovian and its posterior
distribution is Markovian. When using a Bayesian method
of segmentation like MPM or MAP we have to make
some approximations when using Hierarchical HMRF, and
we have not when using PMRF. Furthermore, the
distributions of Y  conditional to X , which model different
textures and different possibly correlated noises, can be
strictly the same in the both Hierarchical HMRF and
PMRF models.
We have presented two simulations of PMRF and two
results of the Bayesian MPM segmentation of the
observation fields. The two cases presented are rather noisy
and the results show that the well known efficiency of the
HMRF can also occur when using PMRF.
As perspectives for further work, let us mention two
important points. First, the existence of the distribution
given by (2.12) is not ensured in the general case. Even in
the simple Gaussian case given by (2.6) we should verify
that all Gaussian distributions of Y  conditionally on X
exist. There exist some conditions of existence of Gaussian
fields [Guy95] and thus one possible way of verifying the
existence of PMRF could be the verification of the existing
conditions "uniformly" with respect to X . The second
problem is the parameter estimation one. One could view
applying the general Iterative Condition Estimation (ICE
[Pie92]), which gives satisfying results in some classical
situations [DMP97], [GiP97], [SaP97]. Using ICE
requests considering an estimator from complete data
(X,Y ): one possible way of seeking such an estimator
could be considering the stochastic gradient [You88],
applied to (X,Y ) instead of X .
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