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Abstract

The problem addressed in this paper is that of statistical
segmentation of images using hidden Markov models. The
problem is to introduce a prior evidential knowledge,
defined by a mass function, or equivalently, by a belief
function. We notice that the result of the Dempster-Shafer
fusion of an evidential Markov field with a probability
provided by the observations is not necessarily a Markov
field. Thus using classical Bayesian segmentation as MPM
or MAP is not tractable. In order to solve this problem, we
show that the use of Markov trees, which is an another
way of modelling the spatial dependence of the class
random process, leads to tractable segmentation methods.
In fact, the Dempster-Shafer fusion does not destroy the
Markovianity in the a posteriori distribution and thus the
classical Bayesian segmentation methods like as MPM or
MAP may used. Furthermore, some ways of the model
parameter estimation are indicated.

1 Introduction

The Dempster-Shafer theory of evidence [2, 11, 12], which
can be seen as a kind of generalization of classical
probabilistic models, can be useful in Bayesian image
segmentation. More precisely, when the priors are
"evidential” (i.c., the prior knowledge about the classes is
modeled with a belief function, or, equivalently, with a
mass function) and the observations are "classical" (i.e.
modeled with the classical probability densities), their
Dempster-Shafer fusion gives a probability measure, which
is the posterior distribution in the classical purely
probabilistic model. When wishing to take spatial
interaction among pixels into account in such situations,
the first idea is to consider a Markov field distribution for
priors [4, 5]. Unfortunately, the result of fusion is no
longer a classical Markov field, and thus the use of
classical segmentation methods is not possible.

The original contribution of this paper is to show that
when replacing the Markov field by a Markov tree, the
result of the Dempster-Shafer fusion stays a Markov tree,
which makes possible the use of classical Bayesian
methods (like MAP or MPM) for segmenting the image.
The organization of the paper is as follows. In the next
section we specify the problem in a simple context,
without Markov models. The third section contains the
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main results concerning the hidden Markov trees.
Conclusions are to be found in the fourth section.

2. Pixel by pixel context

Let § be the set of pixels, X = (X,), s
of classes (each X| takes its values in Q ={w;,®,}),
and ¥ = (Ys)ses
takes its values in R). Let 7, =F [®] and
7, = Py [@,] be priors, and f;, f, be densities of P,
conditional on X, = @,, ®,, respectively. For observed

the random field

the random field of observations (each YS

Y =y, the posterior distribution of X, is then :

n = £ ,)
m A+ 7, f,(y,)
¢))
Ys — 7{2f2 (y.r)
P mEO)+mA,)

According to the Dempster-Shafer theory of evidence, let
us assume now that our prior knowledge about classes in
not precise enough to be modeled by a probability
distribution, and instead an evidential measure (which
equivalently can be a mass function, a plausibility
function, or a belief function) is used [2, 11, 12]. We use a

mass function, which is a probability II on
Q* ={{o,},{0,}.{0,,0,}} :

I-Il = H({CDI}), nz = H({wz}),
I, =N{ow,,w,}).

To illustrate such situations, let us consider the case of a
satellite picture taken in a region A (with probability
0.5), or in a region B (also with probability 0.5). We
know that the proportions of classes @,,®, are 0.2,0.8
in a region A, but we know nothing about these
proportions in a region B. Such a knowledge can then be
modeled with IT, =0.1, I1, =0.4, and I1;, =0.5.



Then we consider that the information about the classes
given with the observation Y, =y, is modeled with the
probability

Ys = fi(ys)
)= o+ 00
£,) @
e - 2\
7 @)= N L)

The Dempster-Shafer combination rule applied to the mass
function IT and the probability q" gives a probability
Ir-:

HYc (w]) =

_ (T, +0,) £(3,) :
(T, +T0,,)£,(3,) + (I, +T1,) £,3,)

3
T (w,) =
- I, +I1,,) £,0,)
(I, + 11, A () + (TT, + T1,) £ (y,)

We see how (3) generalises (1) : when IT,, =0 the mass

function IT is comparable to the probability measure 7,
and the Dempster-Shafer combination rule gives the
classical posterior probability (1). In other words, when
our prior knowledge is "probabilistic”, the posterior

probability IT’™* becomes the classical posterior
probability.

3. Markovian context
3.1 Hidden Markov Fields

It is well known that the spatial interaction among the
random variables (X,) can be modeled via Markov

random fields, and then different Bayesian segmentation,
such as MAP [4] or MPM [8], are better than the Bayesian
segmentations based on (1). How to introduce Markov
models in the evidential context? We consider in [1] the
case where the field X =(X )  is classically

probabilistic and Markovian, and the sensors are evidential
(which mean, roughly speaking, that the probabilities (2)
are replaced by some mass functions). Different simulation
results presented in [1] show then that such a modeling is
quite interesting. In this paper, we would like to replace
the classical probabilistic priors with a Markov evidential
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prior. So the idea could be to consider a Gibbs measure
P * defined on (%)) with :

> - I, *(x,*)
P*[x¥]=y*e @

where ¥ * is a'constant, E is the set of cliques (a clique

being a subset of S which is either a singleton or a set
containing mutual neighbours with respect to a

neighbouring V'), x, * is the restriction of x* to e, and
W, * is a function, which depends on e only, and which

takes its values in R.

Thus we have to fuse the mass function defined by (4) with
the mass function defined by the observations. If the mass
function (4) were probabilistic, that is to say if we had a
classical hidden Markov field, the simplest way of
modeling the probability measure provided by the
observations is to assume that they are independent
conditionally on the classes. Taking the same simple
modeling, we have

Jo,(s)
fo, )+ fo,(3)

P =]pr @)=T]¢ ) 5)

S€S ses

Putting N =Card(S) and @ =(®,,...,@y), the
Dempster-Shafer fusion is written :

(P*®p’)w) =
< Y P (@)...p" (@) P*(x %, xy®) (6

@, €x, *

Oy EXy*

of the mass function P * given on (Q*)" by (4) and the
probability distribution p” given on QY vy (5) gives a

probability distribution on Q" Thisisa generalization of
the classical hidden Markov model because when the mass

function P * is a classical Markov field, then P*®p’
is the classical a posteriori distribution of this field. The

drawback is that P* @ p’ can not be written as a simple
Markov probability distribution.

In other words, in the hidden Markov field case the
Markovianity is not preserved when fusing a Markovian
evidential prior knowledge with classical probabilistic
sensors observation knowledge.

As we will see in the next section, this Markovianity is
saved when using the hidden Markov tree model.



3.2 Hidden Markov Trees

Another way of taking into account the spatial interactions
in the a priori evidential knowledge we propose in this
paper consists of using the Markov tree models, which
have been successfully considered in the classical
probabilistic context [3, 6, 7]. Let us specify our method
in the particular case of the model presented in Figure 1.

We consider Card(S)=2" (with n =2 in Figure 1).
The class field is here X* = (X?), s, the other X; being

"artificial”. The distribution of X? is then the marginal
distribution of X = (X°, X", X?), and the distribution of
X is given with the distribution of X°, the distributions
of X' conditional on X°, and the distributions of X>

conditional on X' . Different calculations are feasible once
we assume that four "sons" are always independent
conditionally to the "father". In such a model the
components of the class field X* = (X?)__ are dependent
(let us insist on the fact that they are independent
conditionally on X', but they are dependent when
removing the conditioning), and thus it is an alternative to
the hidden Markov field model. In particular, the
simulations of X’ according to its posterior, i.e.
conditional on the observations Y =(¥Y,...,¥;),
distribution is feasible.

Let us return to the problem of Dempster-Shafer fusion.
We have to fuse the probabilities defined by (5), with the

mass function of the tree X*. We show that, on the
contrary to the Markov hidden field case, such a fusion is

feasible. After fusion, the distribution of X is a tractable
probability law and, when the tree is probabilistic, the

distribution of X° is exactly its posterior distribution. So
we obtain a model in which spatial interactions in the class
field and an evidential prior knowledge can simultaneously
be taken into account.

Scale 0

Scale 1

%7 Scale 2
Figure 1

First two steps of the construction of "four children"
pyramids.
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So, let us consider n scales and N = 4" pixels. On each
pixel s € S, we consider a mass function g, which is a

probability measure on £2*, and which models our prior
evidential knowledge about the class lying on the pixel s.
Spatial interactions among pixels are then modeled by an

“evidential tree": we consider the scale 0 with a mass
function q° and 2 —1 mass functions q(|x*), with
[x*e Q*-D, on Q*, each of which models the
knowledge about the son conditionally on the father. So
g and q(|x*) define a mass
9" =(q",4"...,4"",¢") on the whole tree, which is
a probability on £ * X(Q*)* ><...(Q"‘)4"-l x (Q¥)¥
Our evidential prior knowledge about classes is then
modeled by g", the marginal probability of g defined
on (Q*)*

The prior knowledge has to be fused with the knowledge
provided by the observation y =(y,),.s- The latter

observation knowledge will be classically modeled by the
probability

p) =[] px) ="

s€S s€S

function

1, ()

Zf()

»eQ

M

for x =(x,)

seS
which is analogous to (5). According to the general

Dempster-Shafer theory the result of fusion of the prior and
the observation knowledge, modeled by

r=q"®p
is a probability on Q.
Lemma

Let § be the set S of N pixels, Q ={®,,...,0,} the

set of classes, and Q* the power set of €. Let us
consider a probability g defined on (Q*)" by

4(zs.-2y) = D,q(2]0)...q(zylt)g (1)

teT

®

where g' is a probability on a finite set 7.
Let p be a probability on Q" verifying



P(X5es Xy) = p(x))... p(xy). ©)

The result of the Dempster-Shafer combination rule is then

a probability on Q" verifying :

(@ ® p)(xy,...,xy) o<

oe 2‘,( Y4z It)]p(xl )( Y4z It)Jp(xN )q (t)
tel \ x, €z, Xy €Zy

Roughly speaking, the mixture form. (8) is saved.
Proof.

We have

(g ® p)(x,,...,xy) o<

o< ) 4(Z5eeer2y)P(X,).... Pty ) =

= Y Y a@)...q(zylg (Op(x)... p(xy) =
x €7y teT

p

Y. 4z p(x,)...q(zyl) p(xy) | (1) =

x, €2,

\ X~ €25

(
= | Yalnpx )J

Xy €2

( ZQ(ZNIt)P(xN)Jq' (1=

=2[Zq<zllt>}<xl>...( Zq(z,vlt)]mx,v)q' (t)

which ends the proof.

Proposition

Let us consider a mass function
4" =(q°,¢",.....q"",q") defined on the tree, which is
a probability on € * x(Q*)* X...(Q*)4n_l X Q%)
q the marginal probability on (Q*)4n induced from
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g™, and the probability p defined on Q" from the
observations y,,..., Yy by

1., ()
px)= gp(xs) = g_—z,fm(y )

wefd

The probability g" @ p is then the marginal probability

on QV induced by ¢"* = (¢°,4",...,,q"",r") defined
on the tree, which is a probability on
Q* x(Q*)* X...(Q*)“H x Q¥ defined by

q°.q',...,,q" ", and
*n—1
x, ))

The result is obtained by applying the Lemma to
-1
T = Q* x(Q*)* x...(Q*)*

r'(x"

=TT pD Y 4@

i=1 2] €Q*/x] ez]

Proof

As a consequence, stochastic realizations can be sampled in
Q" with respect to ¢" @ p (which simply is the
posterior probability distribution on Qw). This allows
one to estimate the marginal distributions of ¢” @ p and
thus to segment the noisy image y =(y,),.s by the
classical MPM method.

When dealing with real images, the problem of the model
parameter estimation may be of the most importance. For

instance, in the simplest case the parameters are following.
For the prior distribution on tree we have the mass

ses

function qo (three parameters with the sum equal to one),
and three "father-son" conditional mass functions (for each
possible father {@,}, {®,}, {®,,®,} we have a mass
function on {{®,}, {®,}, {®,,®,}), which makes
twelve real parameters. Concerning the noise parameters,
all the distributions of Y conditional on X" are given by

two densities f, , f, which are densities of the
distribution of each Y, conditional on X = @, and
X; = m,, respectively. Thus in the Gaussian case, the
noise parameters are two means 71, 1, and two variances

0’12 y 0'3. Finally, we have sixteen real parameters to
estimate from Y = y. One possible way may then be to
apply the Iterative Condition Estimation (ICE, [9]), which



is a general estimation method in the case of hidden data.
In a more complex case, in which the exact nature of

densities fm| , f‘,,2 is not known (for instance, we do not
know whether f,,,l is Gaussian or Beta, and the same for

fm,) the generalized mixture ICE (ICE-GEMI, [5]) could

possibly be used (ICE-GEMI has recently been
successfully applied to the classical hidden Markov tree
[10].

4 Conclusions

We have addressed in this paper the problem of Bayesian
image segmentation. The problem was to introduce a prior
evidential knowledge in a Markovian context. First, we
have noticed that the hidden Markov field model is not
adequate. In fact, the result of Dempster-Shafer fusion of
the prior Markov mass function with the probabilistic
mass function provided by the observations does not
provide a Markov probability distribution. This is a
drawback because the classical Bayesian segmentations
with MPM or MAP are not feasible. Second, we showed
that this drawback does not occur when the prior evidential
knowledge is modeled by a hidden Markov tree (a Markov
tree is a pyramid in which the base is made up with the
image pixels) The probabilistic mass function provided by
the observations can then be fused with an evidential
Markov tree. The result is an evidential tree with a
probability measure on the base. The latter probability,
which is a generalisation of the posterior probability
obtained in the classical probabilistic framework, may then
be used to perform some Bayesian segmentation like
MPM. Otherwise, let us recall that the MPM is much
faster in the Markov tree context than in the Markov field
case; in fact, there are no iterations in calculations.

The model parameter estimation does not pose a particular
problem and some general methods like Iterative
Conditional Estimation (ICE) may be used.
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