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Abstract - The Dempster-Shafer combination rule can be of great utility in multisensor
image segmentation. In addition, the approach based on theory of evidence can be seen as
generalizations of the classical Bayesian approach, which is often used in the Hidden
Markov Field Model context. Finally, some recent works allow one to use the Dempster-
Shafer combination rule in the Markovian context, and different methods so obtained can
greatly improve the effectiveness of Markovian methods working alone. The aim of this
paper is to make these methods unsupervised by proposing some parameter estimation
algorithms. In order to do so, we use some recent methods of generalized mixture
estimation, which allows one to estimate mixtures in which the exact nature of components
is not known.
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1. Introduction

Fusion of information provided by
numerous sensors, which possibly are of
different nature, has met with increased
interest in different fields of signal and
image processing, particularly, in satellite
and medical imaging. One can deal with this
problem by the use of probabilistic models
and statistical processing. In particular, it is
well known that in a Bayesian context the
Hidden Markov Field model based
segmentation methods may be of
exceptional efficiency [2, 5, 6, 8, 13, 14, 15,
20]. Otherwise, fusing information supplied
by different sensors can be performed by
exploiting the theory of evidence [1, 11, 12,
16, 17, 18]. A piece of information is

attached to each sensor via a "fuzzy"
measure, which gives, in a particular case, a
classical probability measure. Then the
fusion is performed by the so-called
Dempster-Shafer combination rule. We
notethat when at least one sensor provides a
classical probabilistic measure, the fusion
result is a classical probabilistic measure.
Thus, in the image segmentation context of
interest, when at least one sensor gives a
classical probability measure we can use,
after fusion, classical Bayesian decision
rules to perform segmentation. In some
situations, and in particular when the
knowledge of the probability distribution of
some sensors is not precise enough,
replacing these probability distributions with
fuzzy measures can improve the final
segmentation, based on the fusioned
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probability measure. These possible
advantages of the Dempster-Shafer fusion
can be exploited in the hidden Markov fields
context, which allows one to merge the
advantages of both models. We proposed in
[3] some heuristic manners of Dempster-
Shafer fusion which take into account the
Markovian structure, and numerous
simulations show that merging the two
approaches can be of interest. The latter
study led us to propose "evidential" hidden
Markov models, which can be hidden
Markov fields [4] or hidden Markov chains
[10]. The aim of this paper is to study how
the evidential hidden Markov field based
image segmentation, which is in this context
a Bayesian classification, can be rendered
unsupervised. More precisely, the problem
is to estimate different parameters from the
observations alone. In the classical hidden
Markov field case, different solutions to the
difficult parameter estimation problem have
been proposed [2, 5, 13, 15, 20] and,
although it is very difficult to advance any
theoretical results, the methods generally
perform well. Here we propose an original
method, inspired by the "generalized"
mixture estimation methods proposed in [7,
9], to solve this problem.
The organization of the paper is as follows.
In the next section we briefly recall the
classical multisensor hidden Markov field
model, and section 3 is devoted to a brief
description of the "fuzzy", or "evidential"
measures and Dempster-Shafer combination
rule. The Dempster-Shafer fusion in a
Markovian context is specified in section 4,
and the parameter estimation method we
propose is described in section 5, and
section 6 contains some simulation results.
Conclusions and perspectives for further
work are presented in section 7.

2. Multisensor Hidden Markov
Fields

Given the set S  of pixel, we consider two
sets of random variables X = (Xs )s∈S ,
Y = (Ys )s∈S  called "random fields". The field
X  models the unobservable class field (each
Xs  takes its values in a finite set of classes
Ω = {ω1,...,ω k}), and Y  models the
observations (for m  sensors, each

Ys = (Ys
1,...,Ys

m ) takes its values in Rm). The
segmentation problem consists in estimating
the unobserved realization X = x  of the
field X  from the observed realization Y = y
of the field Y , where y = (ys )s∈S are m
digital images. The field X = (Xs )s∈S  is said
to be Markovian  with respect to a
neighborhood V  if its distribution can be
written as

PX[x] = γe
− Ψe ( xe )

e∈E
∑

(2.1)

where U(x) = Ψe (xe )
e∈E
∑  is called the

energy. E  is the set of cliques (a clique
being a subset of S  which is either a
singleton or a set containing mutual
neighbours with respect to V ), xe  is the
restriction of x  to e , and Ψe is a function,
which depends on e  only, and which takes
its values in R . Assuming that
(i) the random variables (Ys )  are
independent conditionally to X ;
(ii) the distribution of each Ys  conditional to
X  is its distribution  conditional to Xs ;

(iii) the random variables Ys
1,...,Ys

m  are
independent conditionally to Xs ,
one can show that all the distributions of Y
conditional to X  are defined, for k  classes,
and m  sensors, by km  distributions on R .
To be more precise, let fi  denote the density

on Rm of the distribution of Ys  conditional
to Xs = ω i  ( fi  is a product of m  densities

fi
1,..., fi

m  on R ). Thus the distribution of
(X,Y) is defined by the functions Ψe and
the densities fi . It is then possible to
perform the segmentation by the maximum
posterior mode (MPM) method:
x̂ = MPM(y)  if for each pixel s ∈S

x̂s = argmax
x∈Ω

P[Xs = xs Y = y] (2.2)

by using the algorithm of Marroquin et al.
[14].
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3. Evidential measures and
Dempster-Shafer combination rule.

There are three equivalent ways to introduce
the evidential measures on Ω = {ω1,...,ω k}:
plausibilities, belief functions or mass
functions. In this work we will adopt the
representation by mass functions. Let us
denote by Ω* = {Ω1,...,Ω2 k } the set of

subsets of Ω . A mass function M  is a
probability on Ω* verifying M[∅] = 0 . Let
us consider m  mass functions M1

s ,..., Mm
s .

Roughly speaking, M1
s ,..., Mm

s  will model
the information contained in the observation
of m  sensors at pixel s . The Dempster-
Shafer combination rule, which enables one
to aggregate these different pieces of
information, is as follows:

M s[A] = c M j
s[Aj ]

j =0

m

∏










A0 ∩...∩ Am = A≠∅
∑     (3.1)

with c  the normalising constant. The
probability M s is generally denoted by
M s = M1

s ⊗...⊗Mm
s . The mass functions can

be seen as generalizations of probability
distributions in the following way: when the
mass of every set but the singletons is null,
it can be assimilated to a probability
distribution. Such a mass is called
"probabilistic", or "Bayesian". An important
property is that if at least one mass function
among M1

s ,..., Mm
s  is probabilistic, then

M s = M1
s ⊗...⊗Mm

s  is also probabilistic.

4. Dempster-Shafer fusion in a
Markovian context

The classical Markov field, whose
distribution is given by (2.1), can be
extended to an "evidential" Markov field,
whose distribution is given on (Ω*)N , where
N  is the set of pixels, by an analogous
formula:

M0[x*] = γ * e
− Ψe *( xe *)

e∈E
∑

(4.1)

We can thus consider that prior information
on x*  is given by (4.1). Otherwise, the
information contained in the observation
Ys

j = ys
j  at a given pixel s  is modelled by a

mass function M j
s defined on Ω*. More

precisely, for a given observation
ys = (ys

1,..., ys
m ), the mass functions

M1
s ,..., Mm

s   are defined by

 M j
s (A) = gA

j (ys
j )

gB
j (ys

j )
B∈Ω*
∑

(4.2)

in which gA
j  are probability densities on R .

Recall that gA
1 ,...,gA

m correspond to fi
1,..., fi

m

of section 2.
Let us consider M s = M1

s ⊗...⊗Mm
s . Then,

M0  models the prior information,
Mobs = (M s )s∈S  models the information
contained in the observations, and
M = M0 ⊗ Mobs  models the whole
information available about x* . Of course,
the direct application of (3.1) to calculate M
is not feasible in a general case and some
complementary hypotheses are needed. We
have shown in [4] that if (i), (ii), and (iii)
section 2 are verified and if either M0  or
(M s )s∈S  is probabilistic, that the fusion is
feasible and the result is a probabilistic
posterior distribution of a classical hidden
Markov field. Thus the classical MPM
segmentation is feasible. Let us note that
this holds when one at least of the mass
functions M1

s ,..., Mm
s  is probabilistic.

5. Parameter estimation

Although the considerations to follow are
quite general, in order to simplify things, we
shall place ourselves in a particular case. Let
us consider two sensors Y1, Y 2 and
Ω = {a,b,c}. The first sensor is probabilistic
and the second one is evidential, with the
corresponding mass function defined on
Ω* = {A, B,C, D}, with A = {a}, B = {b},
C = {c}, and D = Ω = {a,b,c}. Thus we have
to determine ga , gb, and gc  concerning the
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first sensor, and gA , gB, gC , and gD

concerning the second one. Estimating these
functions from the observations is the
mixture estimation problem and we propose
to solve it by applying a new variant of a
recent method of "generalized" mixture
estimation. A mixture is called generalized
when the form of each component is not
known; however, it belongs to a given set of
forms. For instance, if each of the densities
ga , gb, and gc  can be Normal or
exponential, we have 8 possibilities of
classical mixtures and the additional
difficulty is to determine in which case we
lie.
We consider the Ising model, whose
distribution is defined by α ∈R  for X ,  and
propose the following method:
1) Consider (X,Y1), which is a classical
hidden Markov field described in section 2.
We assume that each of the densities ga , gb,
and gc  can be a Normal, Beta, or Gamma
density. We apply our method, whose
novelty is specified below, to estimate this
Markovian generalized mixture.
2) Consider (Ys

2 ) without any Markovian

structure. The distribution of Ys
2 is thus a

classical mixture on R  of four distributions
gA , gB, gC , and gD. We could still apply our
method to treat this mixture as a generalised
mixture, although in simulations below, we
consider that it is a Gaussian mixture and we
estimate it with the classical ICE [15].
The general mixture estimation method
proposed in [9], called the ICE-GEMI
algorithm, is an iterative method: at step q ,

let α q and ga
q ,gb

q ,gc
q  be current prior

parameters and current densities ga , gb, and
gc . The updating is as follows:

(a) Simulate xq, a realization of X ,
according to its α q and ga

q ,gb
q ,gc

q  based

distribution conditional to Y1 = y1. Calculate

α q+1 = α̂(xq ), with α̂  the Younes method
[19].

(b)  For  i = a,b,c, consider

Si
q = {s ∈S / xs

q = i}. Let yi
q = (ys )

s∈Si
q . For

each  i = a,b,c estimate, from  yi
q , the three

"candidate" densities: fi
1 (Normal), fi

2

(Beta), and fi
3  (Gamma).

(c) For i = a,b,c, choose between

fi
1, fi

2, and fi
3  using a decision rule D ,

which gives D(yi
q ) ∈ fi

1, fi
2 , fi

3{ }.

(d) Update ga ,gb ,gc by putting

(ga
q+1,gb

q+1,gc
q+1) = (D(ya

q ), D(yb
q ), D(yc

q )).
The novelty of our method is situated at the
decision rule D  level. In [7] the rule D  is
based on the use of the Pearson system in
which one calculates the skewness and the
kurtosis, and in [9] the rule D  is the
minimization of the Kolmogorov distance.
The decision rule we propose is based on
kernel estimation; the step (c) becomes:

( i )  For  i = a,b,c, calculate

f̂i (y) = 1
nhn

K
y − y j

hn





j =1

n

∑ , where (y j ) are

in yi
q  and K  is the Normal kernel:

K(y) = 1
2π

e
− y2

2 ;

(ii) take among fi
1, fi

2, and fi
3  the

d e n s i t y  fi
r  s u c h  t h a t

fi
r − f̂i ∞

= min
1≤t≤3

fi
t − f̂i ∞

.

This procedure turns out to perform better,
at least in the setting of our experiments,
than the Pearson system based method.

6. Experiments

As mentioned above, we consider here gA ,
gB, gC , and gD  Normal, with variance 1
and means 0, 2, 4, and 1, respectively,
whose parameters are estimated by classical
ICE. Thus, concerning these densities, we
consider a particular case, though a
generalized ICE could easily be applied
here. The forms and parameters of ga ,gb ,gc

are given in Table 1, which also contains the
Bayesian error ratio (performed from the
Bayesian sensor Y1 only), and the
"fusioned" error ratio (performed from the
both Y1 and Y 2 after their fusion).
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Table 1
B, G, N: Beta, Gamma, Normal distributions, respectively, with the corresponding parameters. MPM (Y1):

Error ratio obtained by the MPM method using the only probabilistic sensor Y1. Fusion MPM: Error ratio

obtained by the MPM method after the Dempster-Shafer fusion of the sensors Y1 and Y 2 . ICE The classical
ICE assuming all distributions normal.

Case Class a b c MPM
(Y1)

Fusion
MPM

1 True Laws B(7.0, 7.0, 0.0, 20.0)G(1.5, 2.0, 5.0)N(2.0, 1.0) 3.63 1.86
2 ICE N(9.8, 5.4) N(7.8, 5.6) N(1.5, 1.0) 4.54 2.22
3 ICE-PEAR N(8.7, 5.8) G(1.2, 2.6, 6.0)N(2.4, 1.3) 9.93 5.69
4 ICE-KERNEL B(4.3, 6.0, 1.8, 23.2)G(1.4, 2.2, 4.7)N(1.9, 0.9) 3.98 2.18

Figure 1
An example unsupervised segmentations of two
sensor hidden evidential Markov field image.

Im 1
Bayesian class image

Im 2
Evidential class image

Im 3
Noisy Im1

Im 4
Noisy Im2

Im 5
Unsupervised
segmentation of Im3 with
MPM, case 4, Table 1.

Im 6
Unsupervised
segmentation of (Im3,
Im4) with MPM after
fusion, case 4, Table 1.

Concerning the detection of the distribution
forms, we note that ICE-KERNEL finds the
right forms and ICE-PEAR makes one
mistake. It is interesting to note that ICE-
based segmentation, which is necessarily
based on normal distributions, gives here
better results than the ICE-PEAR-based
segmentation.
Finally, we note that the ICE-KERNEL-
based fusioned MPM segmentation is close
to the True Laws based fusioned MPM
segmentation.

7. Conclusion

We have addressed in this paper the
problem of parameter estimation in recent
hidden evidential Markov fields model [4],
with application to segmentation of
multisensor images. Adopting the modelling
by mass functions, we have considered the
parameter estimation problem as a classical
mixture estimation problem. We then
proposed an original generalized mixture
estimation method, which belongs to the
wide family of methods proposed in [9], and
we have applied it to solve the parameter
estimation problem in the context of the
multisensor evidential Markovian field
model considered. First simulations show
favourable behavior of the unsupervised
MPM segmentation, i.e., the estimated
parameter based estimation is close to the
true parameter estimation.
We have considered a relatively simple
case, with one sensor Bayesian and the
another one Evidential. As a direction for
further work, one could consider the



problem of identifying of the mass functions
related to each sensor, which will
undoubtedly take a great importance in real
situations.
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