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Abstract - The Dempster-Shafer combination rule can be of great utility in multisensor
image segmentation. In addition, the approach based on theory of evidence can be seen
generalizations of the classical Bayesian approach, which is often used in the Hidde
Markov Field Model context. Finally, some recent works allow one to use the Dempster
Shafer combination rule in the Markovian context, and different methods so obtained cal
greatly improve the effectiveness of Markovian methods working alone. The aim of this
paper is to make these methods unsupervised by proposing some parameter estimati
algorithms. In order to do so, we use some recent methods of generalized mixtur
estimation, which allows one to estimate mixtures in which the exact nature of component
is not known.
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1. Introduction _ ) )
attached to each sensor via a "fuzzy

Fusion Of information provided b measure, Wh|Ch giveS, in a partiCU|ar case, a

numerous sensors, which possibly are” ¢lassical probability measure. Then the
different nature, has met with increase@sion is performed by the so-called
interest in different fields of signal andDempster-Shafer combination rule. We
image processing, particularly, in satellitéotethat when at least one sensor provides a
and medical imaging. One can deal with thiglassical probabilistic measure, the fusion
problem by the use of probabilistic modelgesult is a classical probabilistic measure.
and statistical processing. In particular, it id hus, in the image segmentation context of
well known that in a Bayesian context thenterest, when at least one sensor gives a
Hidden Markov Field model basedclassical probability measure we can use,
segmentation methods may be og@fter fusion, classical Bayesian decision
exceptional efficiency [2, 5, 6, 8, 13, 14, 15tules to perform segmentation. In some
20]. Otherwise, fusing information suppliedsituations, and in particular when the
by different sensors can be performed bhowledge of the probability distribution of
exploiting the theory of evidence [1, 11, 1250me sensors is not precise enough,

16’ 17’ 18] A piece Of information is I"epla(“ng these prObab|l|ty d|Str|bUt|OnS with
fuzzy measures can improve the final

segmentation, based on the fusioned
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probability measure. These possiblg, - (Y3,...,Y™) takes its values ilR™). The

advantages of the Dempster-Shafer fusio . o . .
can be e%ploited in the higden Markov fielgge9mentation problem consists in estimating
he unobserved realizatiolX = x of the

context, which allows one to merge the o
advantages of both models. We proposed {i§/d X from the observed realization=y
[3] some heuristic manners of Dempsterof the field Y, where y=(y,),,s are m
Shafer fusion which take into account thgjjgital images. The fieldX = (X,).. is said

Markovian structure, and NUMerousy” pe Markovian  with respect to a

simulations show that merging the twaq__.. P ST
approaches can be of interest. The latt rerilggrl])%rshoodv if its distribution can be

study led us to propose "evidential" hidde
Markov models, which can be hidden 5w x)

Markov fields [4] or hidden Markov chains PIx]=ye <" " (2.1)
[10]. The aim of this paper is to study how

the evidential hidden Markov field based _ .
image segmentation, which is in this context/Neére U(x) = ;Ewe(xe) s called the
a Bayesian classification, can be rendere P . .
unsupervised. More precisely, the probleré’j?rgy' E is the set of _cllqu_es (_a clique
is to estimate different parameters from thB€iNg & subset ofS which is either a
observations alone. In the classical hiddetingleton or a set containing mutual
Markov field case, different solutions to theneighbours with respect tv), x, is the

difficult parameter estimation problem haveestriction of x to e, and W, is a function,

been proposed [2, 5, 13, 15, 20] andyhich depends ore only, and which takes
although it is very difficult to advance anyiis values inR. Assuming that

theoretical results, the methods generall .

perform well. Here we propose an originafl) the random variables(Y,) are
method, inspired by the "generalizedindependent conditionally tX;

mixture estimation methods proposed in [#ji) the distribution of eaclY, conditional to

9], to solve this problem. . X is its distribution conditional tX_;
The organization of the paper is as follows.

In the next section we briefly recall the(iii) the random variablesY;,...,Y," are
classical multisensor hidden Markov fieldndependent conditionally t&X_,

model, and section 3 is devoted to a brigf,o can show that all the distributions of

description of the "fuzzy", or "evidential" i .
measures and Dempster-Shafer combinatiG@nditional to X are defined, fork classes,

rule. The Dempster-Shafer fusion in &nd m sensors, bykm distributions onR.
Markovian context is specified in section 470 be more precise, lef denote the density
and the parameter estimation method Wg, gm of the distribution ofY. conditional
propose is described in section 5, an _ s .
section 6 contains some simulation result§d X, =, (f; is a product ofm densities
Conclusions and perspectives for furtheg! ™ on R). Thus the distribution of

work are presented in section 7. (X,Y) is defined by the function¥, and

2 Multisensor Hidden Markov the densitiesf. It is then possible to
Fieds perform the segmentation by the maximum

posterior mode (MPM) method:

Given the setS of pixel, we consider two X =MPM(y) if for each pixels0S

sets of random variablesX=(X,)ys: . _ B B

Y = (Y,). called "random fields". The field % = M PIX =x[Y=y]  (2.2)

X models the unobservable class field (each . . :

X, takes its values in a finite set of classe[ y4]95|ng the algorithm of Marroquiet al.
Q={w,..,w}), and Y models the
observations (for m sensors, each



3. Evidential measures and We can thus consider that prior information

Dempster-Shafer combination rule. o0 X* is given by (4.1). Otherwise, the
information contained in the observation

There are three equivalent ways to introduc¥’ =y! at a given pixels is modelled by a

plausibilities, belief functions or mass : ; :
functions. In this work we will adopt thepremsely, for a given observation

representation by mass functions. Let u¥s =(¥s--Ys), the mass functions
denote by O* ={Q,,...,Q.} the set of M;,..,M; are defined by

subsets ofQ. A mass functionM is a
probability on Q* verifying M[J] = 0. Let
us considerm mass functionsM,,...,M_.
Roughly speakingM;,...,M: will model

the information contained in the observatior - j - L
of m sensors at pixek. The Dempster- th which g, are probability densities oR.

Shafer combination rule, which enables onBecall thatgy,...,gy correspond tof',..., f."
to aggregate these different pieces aff section 2.

Meo(A) = Sa0%) 4.2
e > Ge(ye) (42)

BLIQ*

information, is as follows: Let us considerM® = MS0...OMS. Then,
m C M® models the prior information,

M°[A] =c¢ z MTAIC (8.1 M*®=(M°,, models the information
Pon.nAg=Az0 []= C contained in the observations, and

-|-heM:M°DM°'°S models the whole

robability M° is generally denoted b information available about*. Of course,

P y 9 y ) Ythe direct application of (3.1) to calculaké

M* = M;O...0M;. The mass functions canijs not feasible in a general case and some
be seen as generalizations of probabilitgomplementary hypotheses are needed. We
distributions in the following way: when thehave shown in [4] that if (i), (i), and (iii)
mass of every set but the singletons is nulbaction 2 are verified and if eithev® or

it can be assimilated to a probability, . . e .
distribution. Such a mass is calledM’)ss is probabilistic, that the fusion is
"probabilistic”, or "Bayesian”. An importantfeaSib|e and the result is a probabilistic

property is that if at least one mass functioposterior diStI’ibUtiOh of a classical hidden
among M?,...M? is probabilistic, then Markov field. Thus the classical MPM

segmentation is feasible. Let us note that

M®* =M, 0...0M;, is also probabilistic. this holds when one at least of the mass
_ _ functions M;,...,M;, is probabilistic.

4. Dempster-Shafer fusion in a

M ar kovian context 5. Parameter estimation

with ¢ the normalising constant.

The classical Markov field, whoseAlthough the considerations to follow are

distribution is given by (2.1), can bequite general, in order to simplify things, we

extended to an "evidential" Markov field,shall place ourselves in a particular case. Let

whose distribution is given ofQ*)", where us consider two sensor¥!, Y? and

N is the set of pixels, by an analogou) ={a,b,c . The first sensor is probabilistic

formula: and the second one is evidential, with the
corresponding mass function defined on

MO = y*e = ) (4.1) O*={AB,C,D}, with A={g, B={4},
C={d,and D=Q ={a,b,¢. Thus we have
to determineg,, g,, and g. concerning the



first sensor, andg,, 9;, 9., and g, "candidate" densities:f® (Normal), f?
concerning the second one. Estimating the 3

functions from the observations is thjﬁeta), andf (Qamma).

mixture estimation problem and we propose (c) For i=a,b,c, choose between

to solve it by applying a new variant of aft {2 and f° using a decision rulé,
recent method of "generalized" mixture' ' ' L es e

estimation. A mixture is called generalizedvhich givesD(y!) O{ f*, 2, £%}..

when the form of each component is not d) Update b uttin
known; however, it belongs to a given set of £+l) q+1p %’gb’g: ¢ qp J
forms. For instance, if each of the densitie§% % 8 ) =(D(¥a); D(¥,), D(Y.))-

0., G, and g can be Normal or The novelty of our method is situated at the
exponential, we have 8 possibilities Ogemsmn ruleD level. In [7] the ruleD is
classical mixtures and the additionaPa@seéd on the use of the Pearson system in
difficulty is to determine in which case weWhich one calculates the skewness and the
lie. kurtosis, and in [9] the ruleD is the

We consider the Ising model, whosdninimization of the Kolmogorov distance.
distribution is defined byr OR for X, and [he decision rule we propose is based on
propose the following method: kernel estimation; the step (c) becomes:

1) Consider(X,Y"), which is a classical (i) For i=abc, calculate
hidden Markov field described in section 2. 7, . 1 & Oy-yC
We assume that each of the densitigsg,, f(y) = ﬁ;KE h where(y;) are

and g, can be a Normal, Beta, or Gamma

in y® and K is the Normal kernel:
density. We apply our method, whose ¥

novelty is specified below, to estimate this _ -y—;_

Markovian generalized mixture. K(y) = 2ns

2) Consider(Y?) without any Markovian (ii) take among f*, 2, and f° the
structure. The distribution o¥” is thus a density fr such that
classical mixture orR of four distributions RS et 2

Us» Us Oe, andg,. We could still apply our ‘fi - &, =min|f - f .

method to treat this mixture as a generalisethis procedure turns out to perform better,
mixture, although in simulations below, weat least in the setting of our experiments,
consider that it is a Gaussian mixture and wi@an the Pearson system based method.
estimate it with the classical ICE [15].

The general mixture estimation method, Experiments

proposed in [9], called the ICE-GEMI

algorlt(:]m, is anqlteqrat;ve method: at stqp As mentioned above, we consider hege
let a® and g,.g,,q; be current prior o "4 and g, Normal, with variance 1

parameters and current densitigs g,, and  and means 0, 2, 4, and 1, respectively,
g.- The updating is as follows: whose parameters are estimated by classical
Simulatex® lizati £ ICE. Thus, concerning these densities, we
(@) Simulatex®, a realization ofX, cqnsiger 'a particular case, though a
according to itsa® and g;,g;,0] based generalized ICE could easily be applied

distribution conditional tor* = y*. Calculate here-_The_formsl and pﬁrahmeltersggigb,_ 9 )
g+l — A /yq : ~ are given in Table 1, which also contains the
[qg] =a(x?), with a the Younes method Bayesian error ratio (performed from the

(b) For i=abec, consider Bayesian sensorY' only), and the
] T "fusioned" error ratio (performed from the
S'={s0OS/xI=i}. Let y =(ys)smsq. For

both Y* and Y? after their fusion).
each i =a,b,c estimate, fromy’, the three



Table 1
B, G, N: Beta, Gamma, Normal distributions, respectively, with the corresponding parameters.\ﬁ)?M (
Error ratio obtained by the MPM method using the only probabilistic seM&pFusion MPM: Error ratio

obtained by the MPM method after the Dempster-Shafer fusion of the séfisarsd Y2. ICE The classical
ICE assuming all distributions normal.

Casg Class a b C MPM | Fusion
(YY) MPM

1 True Laws B(7.0, 7.0, 0.0, 20.0)G(1.5, 2.0, 5.0)N(2.0, 1.0)| 3.63|1.86

2 ICE N(9.8, 5.4) N(7.8, 5.6) N(1.5, 1.0) 4.5412.22

3 ICE-PEAR N(8.7, 5.8) G(1.2, 2.6, 6.0)N(2.4, 1.3)] 9.93[5.69

4 ICE-KERNEL| B(4.3, 6.0, 1.8, 23.2)G(1.4, 2.2, 4./)N(1.9, 0.9)[ 3.98 | 2.18
Figure 1
An example unsupervised segmentations of tw@&oncerning the detection of the distribution
sensor hidden evidential Markov field image. forms, we note that ICE-KERNEL finds the

right forms and ICE-PEAR makes one
mistake. It is interesting to note that ICE-
based segmentation, which is necessarily
based on normal distributions, gives here
better results than the ICE-PEAR-based
segmentation.

Finally, we note that the ICE-KERNEL-
based fusioned MPM segmentation is close
to the True Laws based fusioned MPM
segmentation.

7. Conclusion

We have addressed in this paper the
problem of parameter estimation in recent
hidden evidential Markov fields model [4],
with application to segmentation of
multisensor images. Adopting the modelling
by mass functions, we have considered the
parameter estimation problem as a classical
mixture estimation problem. We then
proposed an original generalized mixture
estimation method, which belongs to the
wide family of methods proposed in [9], and
we have applied it to solve the parameter
estimation problem in the context of the
multisensor evidential Markovian field
model considered. First simulations show
favourable behavior of the unsupervised
MPM segmentation, i.e., the estimated

e A W - parameter based estimation is close to the
Ims _ true parameter estimation.
Unsupervised Unsupervised We have considered a relatively simple

segmentation of Im3 With;egmentation of (Im3, case, W|th one sensor Bayesian and the
MPM, case 4, Table 1. ]'cm‘.l) with “1P¥ gftelr another one Evidential. As a direction for
usion, case 4, fable L. t,rther work, one could consider the
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