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Abstract - We address in this paper the problem of classifying of multidimensional data. We
adopt the context of Bayesian unsupervised classification, so that our problem amounts to
estimating a mixture of k  components on Rm, where k  is the number of classes and m  is the
number of sensors. When these components are Gaussian, one can use some general methods
like Expectation-Maximization (EM) or Iterative Conditional Estimation (ICE). When the
components are not Gaussian but the components of each of them are independent, one can
still estimate such a mixture by the use of ICE or some stochastic variant of EM. We attack in
this paper the more general problem of possibly correlated and non Gaussian sensors. A new
method, called ICE-COR, of estimation of the corresponding mixture is presented and we
provide some simulation results. The method proposed is inspired from a recent "generalized"
mixture estimates, which means that we do not know, a priori, what the exact forms of the
components are.
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1. Introduction

The aim of this paper is to generalize some
known solutions to the following problem.
We are faced with m  series of real data
produced by m  sensors. For each sensor
1 ≤ j ≤ m  the data are denoted by y1

j ,..., yn
j ,

where n  is the size of each series. We
assume that for each point 1 ≤ s ≤ n the data
ys

1,..., ys
m correspond to a certain class ω i ,

among k  classes ω1,...,ω k , and the problem
is to find which class it is. In other words,
the problem is to classify each point
1 ≤ s ≤ n from the data available.
Solutions to this problem find many
applications in economy, medicine, and
signal or image processing, the latter being
covered by the simulations we present
below.

The probabilistic approach, which we shall
adopt in this paper, consists in assuming that
the class of the point 1 ≤ s ≤ n is a
realization of a random variable Xs , and the

data ys
1,..., ys

m produced by the m  sensors are
a realization of a random vector
Ys = (Ys

1,...,Ys
m ). Finally, the problem is to

estimate the unobservable realisations of a
random process X = (X1,..., Xn )  from the
observed realisation of a random process
Y = (Y1,...,Yn ). Different methods of such a
statistical classification exist once the
distribution P( X ,Y )  of (X,Y) is known: thus

determinating the distribution P( X ,Y )  means
doing the fusion of sensors.
In order to simplify things, let us
temporarily assume that the random
variables (X1,Y1),...,(Xn ,Yn ) are independent
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and equidistributed, such that P( X ,Y )  is

defined with P( Xs ,Ys ), which is independent of

1 ≤ s ≤ n.
Thus we treat here the case where P( Xs ,Ys ) is

not known and has to be estimated. P( Xs ,Ys ) is
generally assumed to be defined with the
distribution of Xs , so called priors, which
are π i = P[Xs = ω i ], and the family of

functions fi , which are densities on Rm of
the distribution of Ys  conditional to Xs = ω i .
As the distribution of each Ys  is a mixture of

k  distributions on Rm, the problem of
estimating P( Xs ,Ys ) is sometimes called the
"mixture estimation" problem. If the
densities are assumed Gaussian, their
parameters and the priors can be estimated
by different methods like Expectation-
Maximization (EM [7, 8, 12, 16, 18, 20, ]),
some stochastic approximations of EM [3, 5,
14, 16, 22], Iterative Conditional Estimation
(ICE [2, 4, 6, 15, 16, 17, 21]), or stochastic
gradient methods [23]. In the Gaussian case,
sensors can be independent or not, which
means that the random variables Ys

1,...,Ys
m

can be independent or not, the latter being
considered conditional to Xs . Unfortunately,
the fi  are not necessarily Gaussian in

practice. Let us denote fi
j  the density of the

distribution of the sensor j , conditional to
the class ω i . Considering independent
sensors, which means that

fi (ys
1,..., ys

m ) = fi
1(ys

1)... fi
m (ys

m )        (1.1)

we have proposed in [10] a quite general
method allowing one to find the form of the
km  functions fi

j , and estimate their
parameters, once we know that the form of
each fi

j  belongs to a given set of forms. We
called such a mixture a "generalized"
mixture, because there are numerous
possibilities of classical mixtures and one
has to determinate what case the data come
from [6, 10]. For instance, the case of three
classes and two independent sensors, in
which each component can be exponential

or Gaussian, leads to sixty-four possibilities
of “classical” mixtures. Estimating such a
mixture entails a supplementary difficulty:
one must label, for each class and each
sensor, the exact nature of the corresponding
distribution. Thus the method proposed in
[10] allows one to (i) identify the conditional
distribution for each class and each sensor,
(ii) estimate the unknown parameters in this
distribution, and (iii) estimate priors.
In this paper we generalize the method
proposed in [10] to the case of possibly non
Gaussian or independent sensors (let us
insist on the fact that the independence or
the dependence of the sensors is always
considered conditionally to the random
process of classes X ). The organization of
the paper is as follows.
The assumptions needed and the general
method proposed are presented in the next
section. Section 3 is devoted to the particular
case of hidden Markov fields and a
simulation is provided. Section 4 contains
some concluding remarks and perspectives
for further work.

2. Generalized correlated sensors
mixture estimation

We consider a stochastic process
X = (Xs )s∈S , with each Xs  taking its values
in a finite set of classes Ω = {ω1,...,ω k}, and
whose distribution PX  depends on a
parameter α . The process X  is not observed
and one observes realizations of a process
Y = (Ys )s∈S , such that each Ys = (Ys

1,...,Ys
m )

takes its values in Rm. The random variables
(Ys )s∈S  are assumed to be independent
conditional to X , and the distribution of
each Ys  conditional to X  is equal to its
distribution conditional to Xs . The random

variables Ys
1,...,Ys

m  are not necessarily
independent conditionally to Xs ; however,
we assume that there exist k  triangular
matrices A1,..., Ak  such that for each
1 ≤ i ≤ k , the components of Zs = AiYs  are
independent conditionally to Xs = ω i .
Furthermore, the form of each of



801

components of Zs = AiYs   is not known, but
necessarily belongs to a family of forms
Ψ = {F1,..., FM}.
We will admit the following hypotheses:

( A1) An estimator α̂ = α̂(X)  of α  from X
is available;
( A2 ) One may simulate realizations of X
according to its distribution conditional to
Y ;
( A3) Each family F j  of Ψ = {F1,..., FM} is

characterized by a parameter β j , i.e.,

Fj = {g
β j }β j ∈Β j . In practice  B j  is a subset of

R
n j  with n j  depending on F j : for instance

n j = 2  if the F j  are Gaussian;

( A4 ) M  estimators ̂β1,...,β̂ M  are available
such that if a sample z = (z1,..., zr ) is
generated by a distribution g

β j  in F j  , then

β̂ j = β̂ j (z) estimates β j ;
( A5 ) A decision rule D  is available, such
that for any sample z = (z1,..., zr ) and any
(g1,...,gM ) ∈F1 × ...× FM ,  the rule D
associates to z  the "best suited", according
to some criterion, density g1,...,gM .

Roughly speaking, the method we propose
resembles the method proposed in [10],
except that we use, at each iteration, some
estimates of the matrices A1,..., Ak  in order
to "decorrelate" the sensors. Of course, the
matrices A1,..., Ak   are not known and thus
they represent the additional parameters to
be estimated, with respect to our previous
work.
The method we propose, called ICE-COR
(COR for "correlated") is an iterative
method and runs as follows. After having
initialized the procedure by some algorithm
well suited to a given particular situation, we
have to calculate, at each iteration q , the

next value α q+1 of the parameter α , and the
next probability densities f1

q+1,..., fk
q+1 from

the observation Y = y  and current value α q

and current densities f1
q ,..., f k

q .

The run of each iteration is:

(a) Simulate xq, a realization of X ,
according to its α q and f1

q ,..., f k
q  based

distribution conditional to Y = y ;

(b) Calculate α q+1 = Eq[α̂(X) Y = y], where

Eq[ . Y = y] denotes the conditional

expectat ion g iven α = α q  a n d
( f1,..., f k ) = ( f1

q ,..., f k
q ). If this calculation is

impossible, calculate α q+1 = α̂(xq );

(c) Consider Si
q = {s ∈S / xs

q = ω i} for each

i = 1,...,k . Let yi
q = (ys )

s∈Si
q = (ys

1,..., ys
m )

s∈Si
q

and yi
q, r = (ys

r )
s∈Si

q . For each i = 1,...,k

calculate, from yi
q = (ys )

s∈Si
q , the empirical

covariance matrix Γ̂i
q  and consider a

triangular matrix Ai
q  such that Ai

qΓ̂i
q (Ai

q )T  is

diagonal (we assume all  ̂Γi
q  are

diagonalizable). For each s ∈Si
q , put

zs = Ai
qys  and consider zi

q = (zs )
s∈Si

q .

Remember that zi
q = (zi

q,1,..., zi
q,m );

(d) For each r = 1,...,m and each class
i = 1,...,k ,  calculate M  parameters

βi
1, r = β̂1(zi

q, r ), ..., βi
M , r = β̂ M (zi

q, r ), which

give the densities gi
1, r , q+1,...,gi

M , r , q+1. Use the

decision rule D  to determinate gi
j , r , q+1, the

best suited, among the densities
gi

1, r , q+1,...,gi
M , r , q+1, to the sample (zi

q, r ).
(e) Put
fi

q+1(ys
1,..., ys

m ) = gi
j ,1, q+1(zs

1)×...×gi
j , m, q+1(zs

m ).

(recall that zs = Ai
qys ).

Finally, the algorithm above allows us to
estimate the parameters which define the
prior distribution of X  and choose the k
distributions (k  densities f1,..., fk  on Rm) in
the set of all distributions of random vectors
which are linear combinations of random
vectors having independent components and
such that the form of each component is in a
known set of forms. Concerning the



801

estimation of priors, the method above can
be applied in a wide range  of situations; in
particular, it covers the modelling by hidden
Markov chains and hidden Markov fields.

Remark

Let us consider the following problem of
image segmentation: we have two sensors
and two classes and we do not wish use a
Markovian model. We desire to classify
each pixel s  from the observation of Ys  and
of Yt , where t  is a neighbor of s . Such a
segmentation is called "local" segmentation.
It becomes feasible once the distribution of
(Xs ,Ys ,Yt ) is known, and the latter
distribution is given by the distribution of
(Xs , Xt ,Ys ,Yt ) . Recalling that there are two
sensors, we have to determine the
distribution of (Xs , Xt ,Ys

1,Ys
2 ,Yt

1,Yt
2 ). Putting

Xs
* = (Xs , Xt )  and Ys

* = (Ys
1,Ys

2 ,Yt
1,Yt

2 ), we

see that the distribution of Ys
*  is a mixture

distribution of four components on R4 . �So
this is mathematically equivalent to having
four classes and four sensors, and thus the
whole procedure above can be applied. Of
course, this can be generalized provided
there are not too many neighbors considered.
We have compared in [2] such local
methods with Markovian methods and it
turns out that in certain particular situations
local methods are competitive. Thus the
study of local methods with ICE-COR,
which would generalize the Gaussian case
study described in [14], could undoubtedly
be of interest in some special situations.

3. Simulation results

We present in this section some results
concerning the case of two classes (k = 2)
and two sensors (m = 2). We consider a
hidden Markov field, with application to
unsupervised image segmentation. We focus
on the interest of taking the sensor
correlation into account in unsupervised
image segmentation. Although the
estimation of the parameter α  which defines
the energy of the Markov field we use does
not pose a problem, we keep it fixed, to

better specify the interest we focus on.
According to the general modelling
described on the previous section, an
observation is thus a realization of a random

process Y =
Y1

Y 2









, whose distribution

conditionally to X  by the two distributions

of Ys =
Ys

1

Ys
2









 conditional on Xs = ω1 and

Xs = ω2, respectively. Furthermore, there

exist two matrices A1 =
1 0

a1 1





,

A2 =
1 0

a2 1





, such that the components of

the random vector Zs = A1Ys  are independent
conditionally to Xs = ω1, and the
components of the random vector Zs = A2Ys

are independent conditionally to Xs = ω2.
Let us denote by
f1(z) = f1(z1, z2 ) = f1

1(z1) f1
2 (z2 )

and
f2 (z) = f2 (z1, z2 ) = f2

1(z1) f2
2 (z2 )

the densities of the distribution of Zs = A1Ys

conditional to Xs = ω1, and Zs = A2Ys

conditional to Zs = A2Ys, respectively. The
densities of the distribution of Ys  conditional
to Xs = ω1,ω2 , respectively, are then
f1(A1y), f2 (A2y) . We consider the case

where each of the densities f1
1, f1

2 , f2
1, f2

2

can be exponential or Gaussian. An
exponential density is of the form
f (z) = be−b(z−a)1[a, +∞[(z) , and thus depends

on two parameters, which can easily be
determined from the mean and the variance.
F ina l ly ,  we have a  sample

(y1, y2 ,..., yn ) = (
y1

2

y1
1






,

y2
2

y2
1






,...,

yn
2

yn
1







) and we

must:
(i) Identify the forms of f1

1, f1
2 , f2

1, f2
2

and estimate their parameters;,
(ii) Estimate a1,a2

The algorithm is as follows:
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1. Initialization:
Assume the sensors independent (matrices
A1  and A2  are identity) and all densities

Gaussian. Calculate, from y1
1, y2

1 ,..., yn
1, the

empirical mean and variance M0
1, Σ0

1  of first

sensor, and M0
2 , Σ0

2  the empirical mean and
variance of the second one. Put

m1
1 = M0

1 − Σ0
1

2
 and m2

1 = M0
1 + Σ0

1

2
 for means

of f1
1, f2

1 , and (σ1
1)2 = (σ2

1 )2 = Σ0
1  for their

variances. Proceed in the same way to
calculate m1

2 ,m2
2 ,(σ1

2 )2 ,(σ2
2 )2 , the means and

variances of f1
2 , f2

2 .
2. At each iteration
2. a) Simulate a realization xq of X

according to its distribution conditional to
Y = y , by the use of the Gibbs sampler.

2. b) Calculate, from S1
q et S2

q,  the

empirical covariance matrices Γ̂1
q , Γ̂2

q .

CalculateA1
q , A2

q  (takeA =
1 0

− ρ
σ1

2 1











 for

Γ =
σ1

2 ρ
ρ σ2

2









);

2. c) Consider

z1 =
zs

2

zs
1







s∈S1
q

= A1
q ys

2

ys
1







s∈S1
q

,

z2 =
zs

2

zs
1







s∈S2
q

= A2
q ys

2

ys
1







s∈S2
q

and use the samples (zs
1)

s∈S1
q , (zs

2 )
s∈S1

q ,

(zs
1)

s∈S2
q , et (zs

2 )
s∈S2

q  to identify the forms of

g1
1, g1

2 ,g2
1 ,g2

2  and estimate their parameters.
The latter is done as follows: estimate the
mean and the variance from (zs

1)
s∈S1

q , which

gives a Gaussian density h1 on the one hand,
and an exponential density h2  on the other.

Calculate the histogram ĥ  from (zs
1)

s∈S1
q  and

consider di = [hi (z) − ĥ
R
∫ (z)]2 dz  for i = 1,2 .

Put g1
1 = h1  if d1 ≤ d2  and g1

1 = h2  if d1 ≥ d2 .

Proceed in the same way for g1
2 , g2

1, and g2
2 .

2. d) Determine the densities f1 , f2

(recall that for gi (z) = gi
1(z1)gi

2 (z2 ) we have
fi (y) = gi (Aiz)  Calculate the posterior

distribution.

We present in Table 1 the results of two
cases studied. In the first one, we consider
two Gaussian densities and two exponential
densities, and in the second one we consider
three Gaussian densities and one exponential
density. When applying the MPM method
based on the real parameters we obtain the
error ratio τ = 0.65%, which means that the
image is not very noisy. However, the
parameter restimation is not so easy; in
particular, the error ratio obtained after
estimation of the correlated generalized
mixture is of τ1 = 25.25%. Now, if we do
not take the correlation into account, the
result τ2 = 38.00% is still worse, and could
well be described as disastrous. Thus taking
the correlation into account can be presented
as keeping some interest in the case studied.
The second case is not very noisy either, as
the real parameter segmentation error ration
is τ = 1,00% . When applying the correlated
sensors generalized mixture estimation
method we propose, this ratio becomes
τ1 = 3.03%, which can be seen as a good
result. Not taking the correlation into
account leads to the error ratio of
τ2 = 46.27% , which is really quite poor
compared to τ1 = 3.03%. The different
images corresponding to the case 2 are
presented in Figure 1, and, in fact, one can
notice that it is very important, visually, to
take the correlation into account.
These two simple examples show that taking
the sensor correlation into account is of
interest. In some situations the improvement
can be moderate, but, in some others, it can
be quite impressive.



Table 1
GEEG:  g1

1 and g2
2  Gaussian, g1

2  and g2
1 Exponential. ρ1 , ρ2 : correlation's in Γ1, Γ2 . m1

1 , m1
2 , m2

1 , and m2
2 :

means of g1
1, g1

2 , g2
1 and g2

2 , respectively. Variance of the four distribution equal to 1. τ1  and τ2 : error rates

of Bayesian classification without (τ1 ) and with (τ2 ) taking the correlation into account. τ  : real parameters
based segmentation.

Case Laws ρ1 ρ2 m1
1 m2

1 m1
2 m2

2 τ1 τ2
τ

1 GEEG 0.8 0.0 -0.5 0.5 0.7 -0.7 38.00% 25.25% 0.65%
2 GEGG 0.8 0.8 -0.5 0.5 0.7 -0.7 46.27% 3.03% 1.00%

Figure 1
Visual aspect of the segmentations corresponding to the case 2, Table 1.

Real image Sensor 1, case 2 Sensor 2, case 2

Real parameters based
segmentation, case 2,
τ = 1.00%

Without Decorrelation (ICE-
GEMI): τ = 46.27%

With Decorrelation (ICE-
COR):τ = 3.03%



4. Conclusions

In this paper we presented a new
unsupervised Bayesian fusion of correlated
sensors, called ICE-COR. Unsupervised
Bayesian fusion means that the joint
distribution of the observed and the hidden
data is previously estimated in some way.
Focusing on the Bayesian multisensor
classification in this paper, the latter
estimation problem is a mixture estimation
problem. Thus we have presented a new
method of multisensor mixture estimation,
whose originality is that the sensors are not
necessarily Gaussian, and the form of the
noise can vary with the class and the sensor.
The method presented generalizes the
method proposed in [10], in which the form
of the noise was allowed to vary with the
class and the sensor, but was only valid in
the case of independent sensors.
The method proposed is valid in a rather
general setting; in particular, hidden Markov
fields or hidden Markov chains can be
treated, with known applications to image or
signal restoration.
Application of the method proposed to the
restoration of real processes is a natural
direction for further work. In particular,
following the simple simulations presented
above, we hope to develop some
applications of multisensor hidden Markov
field models to unsupervised real world
image segmentation.
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