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Abstract - We address in this paper the problem of classifying of multidimensional data. V
adopt the context of Bayesian unsupervised classification, so that our problem amount:

estimating a mixture ok components orR", wherek is the number of classes andis the
number of sensors. When these components are Gaussian, one can use some general m
like Expectation-Maximization (EM) or Iterative Conditional Estimation (ICE). When the
components are not Gaussian but the components of each of them are independent, on
still estimate such a mixture by the use of ICE or some stochastic variant of EM. We attack
this paper the more general problem of possibly correlated and non Gaussian sensors. A
method, called ICE-COR, of estimation of the corresponding mixture is presented and -
provide some simulation results. The method proposed is inspired from a recent "generaliz
mixture estimates, which means that we do not know, a priori, what the exact forms of t
components are.
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1. Introduction The probabilistic approach, which we shall

The aim of this paper is to generalize som dopt in this paper, consists in assuming that
known solutions to the following problem.the class of the pointi<ss<n is a
We are faced withm series of real data realization of a random variabl€,, and the
produced bym sensors. For each Sensogatay?, .., y™ produced by then sensors are
1< j<m the data are denoted lyy,...,y,, a realization of a random vector

where n is the size of each series. Wey —(y! _ y™) Finally, the problem is to
assume that for each poibk s<n the data ggtimate the unobservable realisations of a
¥er-Ys correspond to a certain clas$, random processX = (X,,...,X,) from the
amongk classesw,,...,w,, and the problem observed realisation of a random process
is to find which class it is. In other words,Y =(Y,,...,Y,). Different methods of such a
the problem is to classify each poinktatistical classification exist once the

1< s<n from the data available. distribution P, ,, of (X,Y) is known: thus
Solutions to this problem find many '

applications in economy, medicine, and€terminating the distributiori, ,, means
signal or image processing, the latter beingoing the fusion of sensors.

covered by the simulations we presert order to simplify things, let us
below. temporarily assume that the random

variables(X,,Y)),...,(X,,Y,) are independent
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and equidistributed, such tha®,,, is Of Gaussian, leads to sixty-four possibilities

. . . of “classical” mixtures. Estimating such a
defined with Ry, v, which is independent of i+ re entails a supplementary difficulty:

l<s<n. one must label, for each class and each
Thus we treat here the case whég ,, is Sensor, the exact nature of the corresponding

. . distribution. Thus the method proposed in
not known and has to be estimatéy}. ., IS 10 allows one to (i) identify the conditional

generally assumed to be defined with thgistribution for each class and each sensor,
distribution of X, so called priors, which (ii) estimate the unknown parameters in this
are m=P[X.=w], and the family of distribution, and (iii) estimate priors.

. s . In this paper we generalize the method
functions f,, which are densities oR™ of  proposed in [10] to the case of possibly non
the distribution ofY, conditional toX; = . Gaussian or independent sensors (let us

TR : . insist on the fact that the independence or
As the distribution of each; is a mixture of the dependence of the sensors is always

k distributions on R", the problem of considered conditionally to the random
estimating R, ., is sometimes called theprocess of classeX). The organization of
"mixture estimation" problem. If the the paperis as follows.

densities are assumed Gaussian, theif€ assumptions needed and the general

parameters and the priors can be estimatg4thod proposed are presented in the next
by different methods like Expectation section. Section 3 is devoted to the particular

Maximization (EM [7, 8, 12, 16, 18, 20, ]),case of hidden Markov fields and a
some stochastic approximations of EM [3, ssimulation is provided. Section 4 contains
14, 16, 22], Iterative Conditional EstimatioreMe concluding remarks and perspectives
(ICE [2, 4, 6, 15, 16, 17, 21]), or stochastiéor further work.

gradient methods [23]. In the Gaussian case, )

sensors can be independent or not, which Generalized correlated sensors
means that the random variablg...,Y" Mixture estimation

can be independent or not, the latter being . _

considered conditional t,. Unfortunately, We consider a stochastic process

the f are not necessarily Gaussian in¢ = (X)ss, With €achX, taking its values

practice. Let us denoté’ the density of the in afinite set of classe® ={w,,...,y}, and

distribution of the sensoyj, conditional to whose distribution B dgpends on a

the class w. Considering inde enolentparametera. The proces« is not observed

SENSOrS hclh means that 9 P and one observes realizations of a process
, whi

Y =(Y.)s SuUch that eachr, =(Y2,...,Y,")

f (Y. Y™ = £1 0. £ (Y™ (1.1) takes its values ilR". The random variables
(Y.),s are assumed to be independent

we have proposed in [10] a quite generaonditional to X, and the distribution of
method allowing one to find the form of theeach Y, conditional to X is equal to its

km functions f', and estimate their distribution conditional toX,. The random
arameters, once we know that the form - .
P (\’farlables Y4, X" are not necessarily

j .
each f;’ belongs to agiven Se:[, of forms_. We,tndependent conditionally t&; however,
called such a mixture a "generalized

mixture, because there are numerou¥® assume that there exigt triangular
possibilities of classical mixtures and onénatrices A,...,A. such that for each
Pas t?6dt:aLtoe]rrrI1:ina¢e \{vhat cattﬁe the dat]:’:ltﬁormgi <k, the components oZ_ = AY, are
rom [6, 10]. For instance, the case of thre i >
classes and two independent sensors, ?dependent conditionally toX, = a.

which each component can be exponentifiurthermore, the form of each of
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components oZ_ = AY, is not known, but The run of each iteration is:

necessarily belongs to a family of forms

W={F,..,.F}. (a) Simulate x%, a realization of X,

We will admit the following hypotheses:  according to itsa® and f/,...,fJ based
distribution conditional toY =y;

i(spgvaALi?aSIS(:'imatom =a(X) of a from X (b) Calculatea®** = Equ{(X)|Y = y], where

(A,) One may simulate realizations of E,[-|Y=Yy] denotes the conditional
according to its distribution conditional toexpectation given a=a® and

Y: —(¢d q . L
(A) Each familyF, of W={F,..F} is (v )= (1 1), [fhis calculation s
impossible, calculate ™ = a(x%);

. J -
characterized by a .parameteﬁ e (c) ConsiderS' ={s0S/ x{ = w} for each
F ={9,}, 4 - In practice B' is a subset of .
B1d gl o8 i=1..k. Let y’ :(ys)sDsq = (¥, ¥ )SDSq

R" with n, depending onF;: for instance , . _
and y* :(ys)susq. For eachi=1..,k

n = 2 if the F, are Gaussian;

(A) M estimatorsf,....3" are available -
such that if a samplez=(z,...,z) is covariance matrix['? and consider a
generated by a distributioglﬁj in F; , then triangular matrixA® such thatAqI:iq(Aq)T is

B =pi(2) estimatesB’; diagonal (we assume all[® are

(A;) A decision ruleD is available, such giagonalizable). For eactrs0F, put

A for any SAMPIE= (5,1 2) A0 &Y <y, ana consiver 7=(2).

associates ta the "best suited", accordingRemember thag” = (z*4,...,2*™);

to some criterion, density,,...,g,, . (d) For eachr =1,...m and each class

. i=1..k, calculate M parameters
Roughly speaking, the method we propose - - _
resembles the method proposed in [103"" =B*(z*"), ..., B*" =B"(z""), which
except that we use, at each iteration, SOMBe the densitieg* ,...,g" """ Use the
estimates of the matrice4,..., A in order Lo

to "decorrelate" the sensors. Of course, t ) =
best suited, among the densities

matricesA,...,A. are not known and thus

. 1r,q+1 M,r,q+1 q,r
they represent the additional parameters @&~ -G , to the samplgz™").
be estimated, with respect to our previoug) Put
work. Farlo A ymy = ghLatlAlyy  xglimarlpmy
The method we propose, called ICE-COR' (%55 %‘ (z) 9 ()
(COR for "correlated”) is an iterative (recall thatz, = A'y;).
method and runs as follows. After having
initialized the procedure by some algorithniinally, the algorithm above allows us to
well suited to a given particular situation, weestimate the parameters which define the
have to calculate, at each iteration the prior distribution of X and choose thé

next valuea " of the parameterr, and the distributions k densitiesf,..., f, on R™) in
next probability densitied,*",..., fkqﬂ from the set of all distributions of random vectors
L o Which are linear combinations of random
the observatiory =y and current valu&"  yectors having independent components and
and current densitie§,..., .. such that the form of each component is in a
known set of forms. Concerning the

calculate, fromy® =(y,) the empirical

sost’

Hiecision ruleD to determinateg” "', the
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estimation of priors, the method above cabetter specify the interest we focus on.

be applied in a wide range of situations; i\ccording to the general modelling

particular, it covers the modelling by hidderdescribed on the previous section, an

Markov chains and hidden Markov fields. observation is thus a realization of a random
1

YL T
Remark processY = E(Z[, whose distribution
C

Let us consider the following problem ofconditionally to X by the two distributions
image segmentation: we have two sensors 1

and two classes and we do not wish useq y = ° [ conditional onX; = w, and
Markovian model. We desire to classify %(s [

each pixels from the observation oY, and X, = w,, respectively. Furthermore, there
of Y, wheret is a neighbor ofs. Such a Ll o
segmentation is called "local" segmentatiorexist two matricesA = @1 1E’

It becomes feasible once the distribution of

(X, Y.,,Y) is known, and the latter , [l OC

distribution is given by the distribution of % = [}, 1+ Such that the components of

(X, X, Y., X)) Recalling that there are tWoy,e random vectoZ, = AY, are independent
sensors, we have to determine the

o L2 ol o . conditionally to X, = w,, and the
dlz:‘,trlbutlon Of(XS’Xl*’YS Yo, YY) Putting components of the random vec@dr= AY,
X =(X. %) and Y, = (Ysl’\fsz’Ytl’Ytz)’ We are independent conditionally %, = w,.
see that the distribution of, is a mixture Let us denote by

distribution of four components oR*. So f,(2) = f,(Z, 7)) = () f*(?)
this is mathematically equivalent to havingand

four classes and four sensors, and thus the;) = f (£ 22) = 1(2) f2(2
course, this can be generalized provide - s
there are not too many neighbors consideregonditional to X,=w,, and Z =AY,

We have compared in [2] such locakonditional to Z, = AY,, respectively. The

methods with Markovian methods and it . o iy
turns out that in certain particular situationdensities of the distribution o conditional

local methods are competitive. Thus théo X, =w,,w,, respectively, are then
study of local methods with ICE-COR, {(Ay), f,(Ay). We consider the case
which would generalize the Gaussian cas . 2 el €2
study described in [14], could undoubtedlyVhere each of the densitiek, . f,, f
be of interest in some special situations. ¢an be exponential or Gaussian. An

exponential density is of the form

3. Simulation results f(z) =be™¥1,...(2), and thus depends
o _ on two parameters, which can easily be

We present in this section some results  determined from the mean and the variance.

concerning the case of two classks=(2) Finally, we have a sample
and two sensorsni = 2). We consider a Oy> 00y, Oy

hidden Markov field, with application to (Y1, Y2r+-:¥,) = (%)’1%%)’1%%/1 and we
unsupervised image segmentation. We focus 1 2 n

on the interest of taking the sensor must:

correlation into account in unsupervised (i) Identify the forms of f*, f2, f}, {2
image segmentation. Although the and estimate their parameters;,

estimation of the parameter which defines
the energy of the Markov field we use does
not pose a problem, we keep it fixed, to

(if) Estimatea,, a,

The algorithm is as follows:
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1l 1 _ 2 :
1. Initialization: Putg =hif d <d, andg, =h"if d =>d,.

Assume the sensors independent (matricB§oceed in the same way fof, g;, andg;.
A and A, are identity) and all densities 2. d) Determine the densitieg, f,

Gaussian. Calculate, frong,y2,...,y}, the (recall that forg (2) = g/(z')g’(z°) we have
empirical mean and variandd?, =% of first fi(¥) =6(A2) Calculate the posterior

sensor, andM?, 2 the empirical mean anddlsmbu“on'
variance of the second one. Pu{e present in Table 1 the results of two
% 1 zo cases studied. In the first one, we consider
m = Mg - 5 and m;, = M, 5 for means two Gaussian densities and two exponential
1 .1 5 1 densities, and in the second one we consider
of f, f;, and (0y)° =(0;)° = Z; for their three Gaussian densities and one exponential
variances. Proceed in the same way tensity. When applying the MPM method
calculateny?,m?,(02)?,(02)?, the means and based on the real parameters we obtain the
variances off2. {2 error ratio T = 0.65%, which means that the
5 At ela’cﬁ iteration image is not very noisy. However, the
' parameter restimation is not so easy; in
2. a) Simulate a realizatior” of X particular, the error ratio obtained after
according to its distribution conditional toestimation of the correlated generalized
Y =y, by the use of the Gibbs sampler.  mixture is of 1, = 25.25%. Now, if we do
2. b) Calculate, fron§' et S, the not take the correlation into account, the

fa  result 7, =38.00% is still worse, and could
)

empirical covariance matrice§?, . . ;
P well be described as disastrous. Thus taking

01 OC the correlation into account can be presented
Calculatery, A} (takeA=[L P 4L for as keeping some interest in the case studied.
Hao? E The second case is not very noisy either, as
B2 C the real parameter segmentation error ration
e p2 0); is 7=1,00%. When applying the correlated
e O,[ sensors generalized mixture estimation
2.¢) Consider method we propose, this ratio becomes
20 1, =3.03%, which can be seen as a good
z = E@E = Aiq%ylH result. Not taking the correlation into
{st SDSf account leads to the error ratio of

T, =46.27%, which is really quite poor

zZ, = ég = A;‘EYIE compared to 1, =3.03%. The different
$0s¢ $0S9 images corresponding to the case 2 are
2 presented in Figure 1, and, in fact, one can
and use the sample$§)smsf, (ZS)SDS{“ notice that it is very important, visually, to
(Z)_ ., et (252) . to identify the forms of take the correlation into account.
o 0% These two simple examples show that taking
g, ¢,0,,9> and estimate their parametersthe sensor correlation into account is of
The latter is done as follows: estimate thaterest. In some situations the improvement
mean and the variance fro(@)__,, which C&n be moderate, but, in some others, it can
S0y be quite impressive.
gives a Gaussian density on the one hand,
and an exponential densit)? on the other

Calculate the hlstograr‘n from (zi) st &

considerd =I[h'(z) —h(z)] dz for i =12.
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Table 1
GEEG: gl1 and g22 Gaussiangf and g; Exponential.0,, p,: correlation's inl";, T,. mi mf m; and mf:
means ofgi, gf g; and gzz, respectively. Variance of the four distribution equal tdland T,: error rates

of Bayesian classification withoutT() and with (T,) taking the correlation into account. : real parameters
based segmentation.

Case [Laws ool o [ m | m | m | T, T, t

1 GEEG [ 0.8 [ 0.0] -0.5]| 0.5 0.7 [ -0.7 | 38.00% [ 25.25% | 0.65%
2 GEGG [ 08 [ 08] -05]| 05 0.7 -0.7]46.27% [ 3.03% | 1.00%
Figure 1

Visual aspect of the segmentations corresponding to the case 2, Table 1.

Real image Sensor 1, case 2 Sensor 2, case 2

: e T ; Yy : . ’ :

e | T, -‘?m*“""x mﬂ ; i :
Real parameters based Without Dcorrelatlon (ICE [ With Decorrelation (ICE-
segmentation, case 2, GEMI): 1 =46.27% COR):1 =3.03%
7 =100%




4. Conclusions [4] H. Caillol, W. Pieczynski, and A. Hillon,
Estimation of Fuzzy Gaussian Mixture and

In this paper we presented a newnsupervised Statistical Image
unsupervised Bayesian fusion of correlateg€gmentationlEEE Transactions on Image
sensors, called ICE-COR. Unsupervisefrocessing, Vol. 6, No. 3, pp. 425-440,
Bayesian fusion means that the join997.

distribution of the observed and the hidden _

data is previously estimated in some wayl2] R. Chellapa, A. Jain Ed., Markov
Focusing on the Bayesian multisensoiRandom Fields, Theory and Application,
classification in this paper, the latterAcademic Press, San Diego, 1993.

estimation problem is a mixture estimation _ )

problem. Thus we have presented a nelpl Y. Delignon A. Marzouki, andW.
method of multisensor mixture estimationPieczynski Estimation of Generalized
whose originality is that the sensors are ndflixture and Its Application in Image
necessarily Gaussian, and the form of theegmentationlEEE Transactions on Image
noise can vary with the class and the sensofrocessing, Vol. 6, No. 10, pp. 1364-1375,
The method presented generalizes t

method proposed in [10], in which the form _

of the noise was allowed to vary with thd/] J. P. Delmas, An extension to the EM
class and the sensor, but was only valid iglgorithm for exponential family |EEE
the case of independent sensors. Transactions on Sgnal Processing, Vol. 45,
The method proposed is valid in a ratheNO. 10, pp. 2613-2615, 1997.

general setting; in particular, hidden Markov _

fields or hidden Markov chains can bd8] M.M. Dempster, N.M. Laird, and D.B.
treated, with known applications to image oRubin, Maximum likelihood from incomplete
signal restoration. data via the EM algorithmJournal of the
Application of the method proposed to théXoyal Satistical Society, Series B, 39, pp.-1
restoration of real processes is a natura&8, 1977

direction for further work. In particular, _
following the simple simulations presented9] S. Geman, G. Geman, Stochastic
above' we hope to deve|0p Soméelaxayon, Gibbs _dIStI’Ibut_IonS and the
applications of multisensor hidden MarkovBayesian restoration of imagedEEE
field models to unsupervised real worldlransactions on PAMI, Vol. 6, No. 6, pp.
image segmentation. 721-741, 1984.

[10] N. Giordana and W. Pieczynski,
Estimation of Generalized Multisensor
Hidden Markov Chains and Unsupervised
age SegmentationEEE Transactions on
ttern Analysis and Machine Intelligence,
Vol. 19, No. 5, pp. 465-475, 1997.
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