
Second IEEE Interantional Conference on Intelligent Processing Systems (ICIPC'98), Gold Coast, Australia, 4-7 August, 1998.

Multisensor Evidential Hidden Markov Fields and Image Segmentation

Azzedine Bendjebbour Wojciech Pieczynski
Laboratoire de Statistique Théorique et Appliquée Département Signal et Image

Université Paris VI  Institut National des Télécommunications
4, Place Jussieu, 75005 Paris 9, rue Charles Fourier, 91000 Evry

France France

Abstract −  This paper deals with the statistical
segmentation of multisensor images. In a Bayesian
context the interest of using Hidden Markov
Random Fields, which allow one to take contextual
information into account, has been well known for
about twenty years. In other situations, the
Bayesian context is inadequate and one has to make
use of the theory of evidence. The aim of our work
is to propose an evidential model which can take
into account contextual information via Markovian
fields. We define a general evidential Markovian
model and show that it is usable in practice. Some
simulation results attest to the practical interest of
the proposed model.

1. INTRODUCTION

Multisensor image segmentation can take advantage of
the theory of evidence [1, 4, 9, 10, 12-16], which allows one
to take into account sensors of different nature. The
segmentation step is performed after merging different
sensors by applying the Dempster-Shafer combination rule.
The theory of evidence approach can be seen as a
generalization of the classical Bayesian approach, in the
sense that in some situations one obtains the classical
probabilistic framework. In particular, when at least one
sensor is probabilistic, the Dempster-Shafer combination
rule gives a probability distribution and the segmentation is
then performed by some classical Bayesian rule. Otherwise,
it is well known that in a Bayesian context the Hidden
Markov Field model based segmentation methods may be of
exceptional efficiency [5, 7, 11].
The aim of this work is to study how the advantages of the
two approaches can be merged. In other words, the problem
is to examine how the Dempster-Shafer combination rule
can be used in a Markovian framework.
We proposed in [3] some heuristic manners of fusion. In this
paper we introduce a new "evidential Markovian" model and
show that the Dempster-Shafer fusion rule can be applied.
Furthermore, we show that the most effective method
presented in [3] is in fact a classical fusion method applied to
the model we propose (subsection 2.3). The efficiency of the
related segmentation method is illustrated by some
simulations extracted from [3].
The organization of the paper is as follows:
In the next section we introduce a new model for evidential
Markov fields and discuss its use in the problem of
multisensor image segmentation. Section 3 is devoted to
simulations and Section 4 concludes the paper.

II. MULTISENSOR EVIDENTIAL HIDDEN MARKOV
FIELDS

A. Classical Hidden Markov Field Model

Classically, a random field model is as follows: given
the set S  of pixel, we consider two sets of random variables
X = (Xs )s∈S , Y = (Ys )s∈S  called "random fields". For m
sensors, each Xs  takes its values in a finite set of classes

Ω = {ω1,...,ω k} and each Ys = (Ys
1,...,Ys

m )  takes its

values in Rm . The segmentation problem consists in
estimating the unobserved realization X = x  of the field X
from the observed realization Y = y  of the field Y , where

y = (ys )s∈S  are  m  digital images representing the same

scene. It is then generally solved by the use of a Bayesian
strategy which is optimal with respect to some criterion.
The field X = (Xs )s∈S  is said to be Markovian  with

respect to a neighbourhood V  if its distribution can be
written as

PX[x] = γe−U ( x ) (2.1.1)

with

U(x) = Ψe (xe )
e∈E
∑ (2.1.2)

where E  is the set of cliques (a clique being a subset of S
which is either a singleton or a set containing mutual
neighbors with respect to V ), xe  is the restriction of x  to

e , and Ψe  is a function, which depends on e  only, and

which takes its values in R . In order to define the
distributions of Y = (Ys )s∈S  conditional on X = (Xs )s∈S ,

we will assume that the following three conditions hold:

(i) the random variables (Ys )  are independent

conditionally on X ,
(ii) the distribution of each Ys  conditional on X  is its

distribution  conditional on Xs ,

(iii) the random variables Ys
1,...,Ys

m  are independent

conditionally on Xs  (i.e., the sensors are independent).

Due to these hypotheses all the distributions of Y
conditional on X  are defined, for k  classes, by k × m
distributions on R . To be more precise, let f i

j  denote the



density of the distribution of Ys
j  conditional on Xs = ω i .

Thus the distribution of (X,Y) is defined by the functions

Ψe  and the densities f i
j . It is then possible to perform the

segmentation by the maximum posterior mode (MPM)
method:

∀s ∈S ŝMPM (s, y) = argmax
x∈Ω

P[Xs = xs Y = y](2.1.3)

by using the algorithm of Marroquin et al. [11]. Roughly
speaking, realizations of X  according to its posterior
distribution are simulated and serve to estimate the posterior
marginals in (2.1.3) with empirical frequencies.

B. Dempster-Shafer combination rule of evidential sensors.

In this subsection we set ourselves at one pixel. There
are three equivalent ways to introduce the evidential
measures, which are also called "fuzzy" measures on
Ω = {ω1,...,ω k}: plausibilities, belief functions or mass

functions. In this work we will adopt the representation by
mass functions. Let us denote by Ω* = {Ω1,...,Ω2 k } the

set of subsets of Ω = {ω1,...,ω k}. A mass function is a

probability on Ω*. Let us consider m + 1 mass functions

M0
s , M1

s ,..., Mm
s . Roughly speaking, M0  models the prior

information and M1
s ,..., Mm

s  model the information

contained in the observation of m  sensors. The Dempster-
Shafer combination rule, which enables one to aggregate
theses different pieces of information, is as follows:

M s (A) = 1
1 − H

M j
s (Aj )

j =0

m

∏










A0 ∩...∩ Am = A≠∅
∑ (2.2.1)

with  H  the normalizing constant. The probability M s  is

generally denoted by M s = M0
s ⊗ M1

s ⊗...⊗Mm
s . The

mass functions can be seen as generalizations of the
probability distributions in the following way: when the
mass of every set but the singletons is null, it can be
assimilated to a probability distribution. We will say that
such a mass is "probabilistic", or "Bayesian". An important
property is that if at least one mass function among

M0
s , M1

s ,..., Mm
s  i s  p r o b a b i l i s t i c ,  t h e n

M s = M0
s ⊗ M1

s ⊗...⊗Mm
s  is also probabilistic.

Returning to our segmentation problem, we simply replace,
at a given pixel s ,  Ω = {ω1,...,ω k} by

Ω* = {Ω1,...,Ω2 k }. Thus, in the same manner as in the

classical case, we now consider that we have K = 2k

classes. The K × m densities of the distributions of Ys
j

conditional on Xs = Ωi , which correspond to the densities

f i
j  of the classical model, will be denoted by gi

j . For a

given observation ys = (ys
1,..., ys

m ) ,  the mass functions

M1
s ,..., Mm

s   are defined by

M j
s (Ωi ) = gi

j (ys
j )

gq
j (ys

j )
q=1

K

∑
(2.2.2)

and M0
s , modelling the prior information, is independent of

the observation ys = (ys
1,..., ys

m ) . The whole information,

from which we have to perform the segmentation, is then

represented by M s = M0
s ⊗ M1

s ⊗...⊗Mm
s . It is important

to recall that this evidential model is a generalization of the
classical Bayesian model in the following way: when all

mass functions M0
s , M1

s ,..., Mm
s  are probabilistic, then the

mass function M s = M0
s ⊗ M1

s ⊗...⊗Mm
s  is simply the

posterior distribution of Xs .

C. Markovian context

We show in this Section that such a model can be used
in the Markovian context. We assume that X = (Xs )s∈S  is

a classical Markovian field and the observation fields
Y = (Ys )s∈S  can be evidential. In accordance with (2.2.2)

we define the m  mass functions M1,..., Mm  corresponding

to the m  sensors Y1,, ,Y m  with

M j (A) =
gAs

j (ys
j )

s∈S
∏

gBs

j (ys
j )

s∈S
∏








B∈ Ω*[ ]N
∑

(2.2.3)

where N = Card(S)  and A = (As )s∈S  is every element of

(Ω*)N .
First, one can see that the mass function defined with (2.2.3)
is the product, over s ∈S , of the mass functions defined

with (2.2.2) : M j = M j
s

s∈S
∏ . Second, considering

Msen
s = M1

s ⊗...⊗Mm
s  and Msen = M1⊗...⊗Mm , we

have Msen = Msen
s

s∈S
∏ . Thus, we can say that Msen  can be

computed "pixel by pixel", which is feasible.
Keeping in mind that M0  is equal to the distribution PX

defined by (2.1.1) and (2.1.2) of the Markov Field X , we
now have to calculate M0 ⊗ Msen . We can consider that

Msen  is the mass function corresponding to one sensor. Let

us denote by gA  the conditional densities defining it. We
can then state the following:



Proposition

Let M0  be a Markov Field with M0[x] = γe−U ( x )  and

U(x) = Ψe (xe )
e∈E
∑  (formulas  (2.1.1) and (2.1.2)). Then

M0 ⊗ Msen  is a Markov Field, whose distribution

coincides with the posterior distribution of M0  classically

corrupted with the independent noise

hi (ys ) = gA(yA )
A /ω i ∈A
∑ (2.2.4)

As a consequence, the energy of M0 ⊗ Msen  is computable

and the classical segmentation methods, like MPM defined
with (2.1.3), can be used.

Proof
We have

M0 ⊗ Msen[x] ∝ (M0[x]
x∈B
∑ × gBs

(yBs
)

s∈S
∏ ) ∝

∝ e
− ψ e ( xe )

e∈E
∑

x∈B
∑ × gBs

(yBs
)

s∈S
∏ =

= e
− ψ e ( xe )

e∈E
∑

gBs
(yBs

)
s∈S
∏

x∈B
∑ =

= e
− ψ e ( xe )

e∈E
∑

(
s∈S
∏ gBs

(yBs
)

xs ∈Bs

∑ ) =

= e
− ψ e ( xe )

e∈E
∑

hxs
(ys )

s∈S
∏

(2.2.5)

which completes the proof.

Let us notice that when  Msen  is probabilistic,

M0 ⊗ Msen  is the classical posterior distribution of X .

III. SIMULATION RESULTS

A. Model considered

Let Ω = {a,b,c},  Ω* = {A, B,C, D, F} with

A = {a},  B = {b},  C = {c},  D = {a,b},  and

F = {a,b,c}. We consider two sensors; the first one
Bayesian and the second one evidential. Thus the mass
function defined by the second sensor is, for each pixel, a
probability on Ω* = {A, B,C, D, F}. Let us denote the

class field by X B = (Xs
B )s∈S  ( B  for "Bayesian"), and recall

that each random variable Xs
B  takes its values in

Ω = {a,b,c}. Let us artificially introduce an "evidential"

field X E = (Xs
E )s∈S , i.e., such that each random variable

Xs
E  takes its values in Ω* = {A, B,C, D, F}. The field

XC  does not intervene in the model proposed above,
although, it will be useful in what follows. Fields

Y B = (Ys
B )s∈S  and Y E = (Ys

E )s∈S  are the fields of

observations corresponding to the two sensors. Thus the
segmentation problem is the problem of estimating of the

invisible realization of X B = (Xs
B )s∈S  from the realizations

of Y B = (Ys
B )s∈S  and Y E = (Ys

E )s∈S .

The general problem we will study is to see how the

observation of the consonant sensor Y E  can improve the
quality of the segmentations obtained with the sole sensor

Y B . According to Section 2 the combination of the three
mass functions considered gives a Markovian distribution
with a computable energy. Thus it will be possible to
perform the MPM from both sensors and compare its
efficiency with the efficiency of the MPM obtained with the
sole Bayesian sensor. Furthermore, we will compare the
effectiveness of these two methods with the effectiveness of
two blind methods.

B. Algorithms compared

(i) Algorithm A1

We will call A1 the algorithm MPM based on our model.
Here M0  is a classical Markov field, M1 is a Bayesian

sensor, and M2  is an evidential sensor. Thus we have the
following masses:

M0 (x) = γe
− φ ( xs , x t )

t∈Vs

∑
s∈S
∑

(3.1.1)

M1(x) =
gxs

(ys
1)

gzs
(ys

1)
zs ∈{a, b, c}

∑s∈S
∏ (3.1.2)

M2 (x*) =
g

xs
* (ys

2 )

g
zs

* (ys
2 )

zs
* ∈{A, B, C}
∑s∈S

∏ (3.1.3)

According to the results above, M = M0 ⊗ M1 ⊗ M2  is

the Markov distribution

M(x) = M0 ⊗ M1 ⊗ M2 (x) = ξe− η( x ) (3.1.4)

with

η(x) =
s∈S
∑ [φ(xs , xt )

t∈Vs

∑ − Log(gxs
(ys

1)) −

−Log( g
xs

* (ys
2 )

xs ∈xs
*

∑ )]
(3.1.5)

Simulating such Markov fields by using the Gibbs sampler
is possible, so we can estimate the marginal distributions
and apply the MPM as in (3.5).



(ii) ŝMPM  algorithm

Algorithm ŝMPM  is the classical MPM algorithm which
uses only the Bayesian sensor.

(iii) Blind algorithms BL1, BL2

Algorithm  BL1 is the simplest one: the segmentation is
obtained by maximizing at each pixel

p(ω ) = P[Xs
B = ω / Ys

B = ys
B ]

for ω ∈{a,b,c}  (3.1.6)

Algorithm BL2  is obtained by maximizing at each pixel
r = p ⊗ q obtained with Dempster-Shafer fusion from p ,
given by (3.1.6), and q , given by

q(ω *) =
g

ω * (ys )

gλ (ys )
λ ∈{A, B, C}

∑
(3.1.7)

for ω * ∈{A, B,C, D, F}

We can see that the difference between A1 and ŝMPM  is

comparable to the difference  between BL2  and BL1.

C. Numerical results

We consider a realization of a Markov Bayesian field,
which is called "Bayesian image" in Figure 1. The
"Evidential image", Figure 1, is obtained from the Bayesian
image by random sampling. At each pixel s ∈S , one
samples a value in {A, B,C, D, F} in the following way:

Case BM EM
a b c A B C D F

1 0 2 4 0 2 4 1 6
2 0 1 2 0 2 4 1 6
3 0 0.5 1 0 2 4 1 6
4 0 0.2 0.4 0 2 4 1 6
5 0 0.1 0.2 0 2 4 1 6
6 0 0.1 0.2 0 3 6 1 6

Case Error Rate

BL1 BL2 ŝMPM
A1

1 19.92 13.49 2.02 1.09
2 37.70 22.68 7.11 3.13
3 48.91 26.13 20.97 4.85
4 55.84 26.61 46.07 5.85
5 57.26 26.28 54.09 6.02
6 57.26 18.14 54.09 4.76

Table 1

Segmentations of six images. Three basic classes a,b,c and

five evidential classes A = {a}, B = {b}, C = {c},

D = {a,b}, and  F = {a,b,c}. Noise standard deviation
equal to one. BM: Bayesian means, EM: evidential means.
BL1: blind Bayesian sensor based segmentation, BL2 :
fusioned blind Bayesian and evidential sensors based
segmentation, ̂sMPM : Bayesian sensor MPM segmentation,

A1: fusioned evidential MPM segmentation.

Bayesian image (B) Evidential image (E)

segmentation with BL1 segmentation with BL2

 segmentation with ̂sMPM  segmentation with A1

Figure 1
Segmentation of noisy images corresponding to the case 4,

Table 1.

From the results of Table 1 we may put forth the following
remarks:

Contribution of the consonant sensor in the blind context

We do not examine the contribution of the Markovianity
here, and indeed limit our comments to the contribution of
the consonant sensor in the "pixel by pixel" segmentation.
Thus we have to compare results obtained with BL2  with
those obtained with BL1. Since all parameters are known,
the results obtained with BL2  are the best results one can



expect when working "pixel by pixel". We note that the use
of the consonant sensor always improves the results obtained
with the sole Bayesian sensor, and in some situations its
contribution is quite noticeable. The improvement in the
results increases when the information tends to be
concentrated on the consonant sensor; however, even when
both sensors are equally noisy, the improvement can be non
negligible.

Contribution of the contextual information in the Bayesian
and Evidential contexts

The contribution of the contextual information in the
Bayesian context is well known and it appears once again
through results of Table 1. In fact, the error ratio obtained
with ŝMPM  is always lower than the error ratio obtained with

BL1. According to the same Table, we may say that this
contribution is also sizeable in the evidential context; in
fact, method A1 is always more effective than BL2 .

Contribution of the consonant sensor in the Markovian
context

We notice that the Markovian method A1 always performs
better than ̂sMPM . In certain situations, one of which is
presented in Figure 1, the difference is visually quite
significant. As a conclusion, we may say that A1, which is
the classical fusion method directly associated with the new
model proposed, can significantly improve the segmentation
obtained with the only Bayesian sensor.

IV. CONCLUSIONS

The interest of the Hidden Markov Field models in
image processing has been established for about twenty years
[5, 7, 11]. Conversely, the use of "fuzzy measures", as
plausibility or consonant measures, can be judicious in
different image processing situations [1, 4, 9, 10, 12-16]. In
particular, when one deals with the segmentation problem
applied to multisensor images, considering some sensors as
"evidential" can improve classical Bayesian segmentation.
The aim of this work was to propose a model combining
evidential and Markovian advantages. We showed that the
method proposed heuristically in [3] can be seen as a
classical Dempster-Shafer fusion method in the setting of the
new model we propose. The latter model allows one to take
into account evidential sensors, once the prior information
can be modelled by a classical Markov field. In fact, the
Dempster-Shafer combination rule is applicable, and the
result is a classical Markov field. The latter allows one to
apply some classical methods of segmentation, like
Maximum Posterior Mode (MPM [11]), whose good
behaviour in this context has been shown via simulations.
Let us mention that rendering our algorithms unsupervised is
a perspective for future work. Different parameter estimation
methods, which render the classical Markov models based
methods unsupervised, have been proposed. Among others,
it is possible to apply recent methods proposed in [6, 8],
whose novelty is to allow one to also estimate the particular

form of the noise densities gi
j .
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