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Abstract −  This paper deals with fuzzy
statist ical image segmentation. We
introduce a new hierarchical Markovian
fuzzy hidden field model, which extends
to the fuzzy case the classical Pérez and
Heitz hard model. Two fuzzy statistical
segmentation methods related with the
model proposed are defined in this paper
and we show via simulations that they are
competitive with, in some cases than, the
classical Maximum Posterior Mode (MPM)
based methods. Furthermore, they are
faster, which wil l should facil i tate
extensions to more than two hard classes
in future work. In addition, the model
proposed is applicable to the multiscale
segmentation and multiresolution images
fusion problems.

1. INTRODUCTION

This paper deals with fuzzy statistical image
segmentation. We adopt the recent Hidden Fuzzy
Markov Random Fields (HFMRF) model
considered in [12, 13], which simultaneously
models the imprecision of membership of pixels to
a given class, a fuzzy aspect [3, 10, 14] , and the
uncertainty of their belonging to a given class, a
probabilistic aspect. Such a mixed approach differs
from both a purely fuzzy approach [10], and from
purely probabilistic Markov Field Model based
approach [2, 6, 7, 9]. Let us briefly specify the
interest of fuzzy segmentation in some real
situations. Let us consider the problem of
segmenting a satellite image into two classes:
"houses" and "trees". There may be some pixels
with only houses and others with only trees, but
there may also be many pixels, as in suburbs, in
which houses and trees are simultaneously present.
Thus we have two hard classes, say 0  and 1, and a
fuzzy class specified by ε ∈]0,1[ , which can be
seen as the proportion of the area of class 1. Now,
if we wish to use some statistical method we have
to introduce a probability measure p  on  [0,1].
According to one's intuition, p[0] and p[1] can be

strictly positive, but any element of ]0,1[  can also
occur. This is modelled by considering that p  is
defined with a density h  with respect to the
measure ν = δ0 + δ1 + µ , which includes a "hard"

component (Dirac functions δ0 ,δ1 on 0,1{ }), and a
"fuzzy" one, which is the Lebesgue measure µ  on
0,1] [ . Such modelling was first introduced in local

segmentation methods [3, 4] and then generalized
to Markovian methods [10, 11].
Fuzzy segmentation methods presented in [10,11]
are quite efficient, although the computational
burdin can be prohibitive. Thus the aim of the
present paper is to propose faster methods.
Returning to the classical hard case, it is well
known that simulated annealing [7] is time
expensive and the Iterated Conditional Mode, ICM
[2], which is a fast approximation of MAP, is often
used. The problem is that ICM is sensitive to the
initialisation and, when poorly initialized, can give
poor results. To remedy this, Perez and Heitz
proposed a hierarchical structure, which is a set of
compatible Markovian fields [11]. Roughly
speaking, the solution given with ICM at a given
scale serves to initialise ICM at the finest scale.
In this work we adapt the Perez and Heitz model to
the fuzzy case and show, via simulation, its interest
in the fuzzy segmentation.
The organization of the paper is as follows:
In the next section we shortly recall modelling by
Hidden Fuzzy Markov Fields, as proposed in [12,
13]. Section three is devoted to the new hierarchical
model we propose and some related segmentation
methods are specified in section four. Section five
is devoted to the numerical results obtained and
section six contains the conclusion.

A. Distribution X

With V  a neighbourhood and N  the number of
pixels, we consider a function h:[0,1]N → R of the
following form:

h(x) = ce−U ( x )

(2.1)



Here U , called "energy", is a sum of functions
defined on cliques, a clique being either a singleton
or a set of neighbour pixels with respect to V . We
consider the stationary case, i.e., that the functions
defining U  depend only on the shape of cliques
and do not depend on their position in the set of
pixels. Thus, if C  is a clique of a given shape and
n = Card(C), the associated function ϕC  is a

function from Ωn = [0,1]n  into R .
Considering the measure

ν = δ0 + δ1 + µ
(2.2)

where δ0 , δ1 are the Dirac measures on {0,1}, and
µ  is the Lebesgue measure on [0,1], we assume
that h  defined by (2.1) is a density of PX  with

respect to ν⊗ N . Thus one can classically show that
X  is a Markovian field.

B. Distribution of  Y  conditional to X

We  assume that:

(i) The random variables  (Ys ) are independent
conditionally on X ;
(ii) The distribution of each Ys  conditional to X  is
equal to its distribution conditional to Xs .

Distributions of  Y  conditional to X  are then
defined by distributions of Ys  conditional to Xs .

Denoting by N(m,σ 2 )  the normal distribution of

mean m  and variance σ 2 , we take for the
distribution of Ys  conditional to Xs = xs ∈[0,1]:

N((1 − xs )m0 + xsm1,(1 − xs )σ0
2 + xsσ1

2 )
(2.3)

Thus the parameters m0 ,m1,σ0
2 ,σ1

2  define all
distributions of Y  conditional to  X .
Let  ψ xs

 be the Gaussian density defined by (2.3).

The density ψ  of the distribution of (X,Y) with

respect to ν N ⊗ µ N  ( ν  being the measure on [0,1]
defined by (2), µ  the Lebesgue measure on R  and
N  the number of pixels) is then given by

ψ (x, y) = ce
−U f ( x ) ψ xs

(ys )
s∈S
∏ = ce

−Wy ( x )

(2.4)

with Wy (x) = U f (x) + Vx (y) and

Vx (y) = Logψ xs
(ys )

s∈S
∑ .

II. HIDDEN FUZZY MARKOV FIELDS

In this section, we briefly recall the model
presented in [12, 13]. We consider two random
fields X = Xs( )s∈S

 and Y = Ys( )s∈S
, with each  Xs

taking its values in Ω f = [0,1] and each  Ys   taking
its values in R . As usual, the probabilistic link
between X  and Y  is modelled by P( X ,Y ) , which is

the distribution of (X,Y) and which is defined by
the distribution of X  and the distributions of Y
conditional to X .

C. A posteriori distribution of X

The density of the a posteriori  distribution of X
(i.e., conditional to Y = y ) with respect to ν N  i s
thus given by

ψ y (x) = ke
−W y ( x )

ke
−W y ( x )

[0,1]N
∫ dν N (x)

(2.5)

which can be written as

ψ y (x) = k(y)e−W y ( x ) = k(y)e−(U f ( x )+V x ( y))

(2.6)

As in the case of hard Markovian fields, the
Markovian nature of the posterior distribution of X
is thus preserved and one can use the Gibbs
sampler in order to simulate its realizations.

III. HIERARCHICAL FUZZY MARKOV FIELDS

We assume that Card(S) = 4n  and consider
sequence the classical pyramid sequence in which
each "father" has four "so ns", which form, at the
lower lever, a block of four elements. So, there are
n + 1 scales : Sn = S , Sn−1 obtained from Sn  and

having 4n−1 elements, ..., Si  having 4i  elements,
.., and S0 , which is the top of the pyramid, having

40 = 1 element. Then we consider n + 1 random



fields X 0 , ..., X n , with X i = (Xs
i )s∈Si

, such that

each variable Xs
i  takes its values in [0,1].

Thus the realizations of X i  can be seen as
particular realizations of X i+1 in the following
sense :

[Xs
i = xs

i ] ⇔ [ for all t sonsof s Xt
i+1 = xt

i+1]  
(3.1)

Let us assume that we dispose of some iterative
segmentation method ŝ , like ICM, and the
drawback is that ̂s  is sensitive to the initialization.
Roughly speaking, the idea of Pérez and Heitz is
then to use the result obtained with ŝ  at the scale i
in order to initialize ̂s , using (3.1), at the scale
i + 1. Subject to some compatibility of Markovian
structures on different scales, the method they
proposed gives good results in the classical hard
case.

We present below an adaptation of the
hierarchical hidden Markovian structure of Perez
and Heitz to the fuzzy model.

We place ourselves at the base of the pyramid
and consider the markovianity relative to the four
nearest neighbours. The energy is then defined
with functions ϕC , where C  is either a singleton
or a set  {s,t} of neighbours. They will be assumed
null on singletons, and

ϕ{s, t}(xs , xt ) =
−α if xs = xt

α if xs ≠ xt





(3.2)
for (xs , xt ) ∈{0,1}2 ,

ϕ{s, t}(xs , xt ) = −β(1 − 2 xs − xt )
(3.3)
for (xs , xt ) ∈[0,1]2 − {0,1}2

The fuzzy class field is then noise corrupted as
specified in section 2.2 above.
Now, let us consider a scale i . We will define an
energy ϕ i "compatible" with the energy defined by

(3.2), (3.3). Each pixel si  of Si  contains
pi = 2i+1(2i − 1) binary cliques of the basic pixels.
According to (3.2), (3.3) we thus have for
singleton cliques

ϕ i
{s i }(x

s i ) =
− piα if x

s i ∈{0,1}

− piβ if x
s i ∈]0,1[





(3.4)

On the other hand, there are qi = 2i  basic binary

cliques touching si  and t i  for a given binary clique
{si ,t i} of Si . Associated with binary cliques, the

functions ϕ i are

ϕ i
{s i , t i }(x

s i , x
t i ) =

−qiα if x
s i = x

t i

qiα if x
s i ≠ x

t i





(3.5)
for (x

s i , x
t i ) ∈{0,1}2,

ϕ i
{s i , t i }(x

s i , x
t i ) = −qiβ(1 − 2 x

s i − x
t i )

(3.6)
for (x

s i , x
t i ) ∈[0,1]2 − {0,1}2

and the noise inferred at the scale i  is given by

fx
si

(y
s i ) = fxs

(ys )
s∈s i
∏

(3.7)

Finally, (3.4)-(3.7) define a set, indexed to scales,
of hidden Markov fuzzy fields.

IV. CLASSICAL AND HIERARCHICAL FUZZY
MARKOV FIELDS BASED SEGMENTATIONS

We recall in this section two classical Fuzzy
Hidden Markov Field based segmentation method
and two new Hierarchical Fuzzy Hidden Markov
Field based ones.

A. Fuzzy MPM methods

According to the model specified in the section
2, simulations of the fuzzy field X  conditional to
Y  are possible, and thus one can estimate the
posterior marginal of X . Once the distribution of
Xs  conditional to Y = y , given by a density hs

with respect to the measure ν = δ0 + δ1 + µ , is
known the following two methods can be
considered:

1) The Fuzzy MPM1 (FMPM1) method is
defined with

x̂ = FMPM1(y)[ ] ⇔

∀s ∈S hs ( x̂s ) = sup
t∈[0,1]

hs (t)





(4.1)



2) The Fuzzy MPM2 (FMPM2) is defined with

x̂ = FMPM2(y)[ ] ⇔

∀s ∈S, x̂s =

0 if hs (0) ≥ sup(hs (1),1 − hs (0) − hs (1))

1 if hs (1) ≥ sup(hs (0),1 − hs (0) − hs (1))

argmax
t∈]0,1[

hs (t) otherwise
































(4.2)

FMPM1 and FMPM2 give satisfying results,
although the visual effects of the segmented images
by the both methods can be different.

B. Hierarchical Fuzzy ICM methods

First, let us specify how Fuzzy ICM1 (FICM1)
and Fuzzy ICM2 (FICM2) run. According to
section 2, the distribution of X  conditional to
Y = y  is a Markov distribution and thus the
distribution of each Xs  conditional on
(Xt1

, Xt2
, Xt3

, Xt4
) , where t1,t2 ,t3,t4  are neighbours

of s , is computable. In FICM1 we scan the set of
pixels and, at each pixel s , we replace the current
fuzzy value by that which maximises the density,
with respect to ν = δ0 + δ1 + µ , of the distribution
o f  Xs  c o n d i t i o n a l  t o
(Xt1

, Xt2
, Xt3

, Xt4
) = (xt1

, xt2
, xt3

, xt4
),where

xt1
, xt2

, xt3
, xt4

 are the current values of neighbours
of s .  Thus FICM1 runs like the classical hard
ICM, with the difference that one maximises a
density with respect to ν = δ0 + δ1 + µ  instead of
maximizing a finite probability. In the FICM2 we
still scan the set of pixels and, at each pixel s , we
consider the density, with respect to
ν = δ0 + δ1 + µ , of the distribution of Xs

c o n d i t i o n a l  t o
(Xt1

, Xt2
, Xt3

, Xt4
) = (xt1

, xt2
, xt3

, xt4
) = xVs

. Denoting

this density by hVs

s , the new fuzzy value of s  is

chosen using (4.2), in which hs is replaced by hVs

s .
The Hierarchical FICM1 and Hierarchical FICM2
(HFICM1 and HFICM2 respectively) methods are
then obtained from FICM1 and FICM2 using the
hierarchical structure in the following way :

(i) use FICM1 (respectively, FICM2) at the
scale r , which is the top of the pyramid (r = n ), or
near the top.

(ii) initialize FICM1 (respectively, FICM2) at
the scale i − 1 with the segmentation found at the
scale i .

(iii) obtain the final segmentation at the scale
i = 0  (the base of the pyramid)

V. SIMULATION RESULTS

We present in this section three series of results
concerning three fuzzy images : one realization of a
Fuzzy Markov Random Field, and two hand
written ones. Each of them is corrupted by a
Gaussian noise and then segmented with the four
methods MPM1, MPM2, HFICM1, and HFICM2.
The performance of each is evaluated visually and
with the error rate τ , which is defined by

τ = 1
N

x̂s − xs
s∈S
∑

(5.1)

The results are presented in Figures 1 and 2. The
most striking impression is that the hierarchical
methods are visually better behaved than the MPM
methods. This is true in the fuzzy Markov Field
realization case as well as in the hand written fuzzy
image case. Other results presented in [1] confirm
these impressions. On the other hand, the visual
aspects of different methods can be quite different.
This can lead to the conclusion that each method
can be useful in some particular situation. For
instance, HFICM 1 seems to better restore the hard
classes, while HFICM2 better renders the fuzzy
classes. Thus, when we are mainly interested in
detecting spots with hard classes, HFICM1 is
better suited, but HFICM2 should be chosen when
we are interested in fuzzy spots.

Fuzzy Markov Field Noisy field. Noise
variances equal to 1,
means 0 and 4.



Segmentation with
HFICM1, τ = 11,6%

Segmentation with
HFICM2, τ = 12,2%

Segmentation with
MPM1, τ = 16,9%

Segmentation with
MPM2, τ = 14,4%

Figure 1
Fuzzy Markov Field realization, its noisy version,
and segmentations with MPM1, MPM2, HFICM1,
and HFICM2. τ  designates the error ration defined
with (5.1).

Hand written fuzzy
image

Noisy version. Noise
variances equal to 1,
means 0 and 4.

Segmentation with
HFICM1, τ = 11,45%

Segmentation with
HFICM2, τ = 13,00%

Segmentation with
MPM1, τ = 12,68%

Segmentation with
MPM2, τ = 12,70%

Figure 2
Hand written fuzzy image, its noisy version, and
segmentations with MPM1, MPM2, HFICM1, and
HFICM2. τ  designates the error ration defined
with (5.1).

VI. CONCLUSIONS

We presented in this paper a new hierarchical
Hidden Fuzzy Markov Random Field model, along
with some applications to statistical fuzzy image
segmentation. The methods so obtained are quite
competitive, and sometimes visually more
appealing, that the classical fuzzy Maximum
Posterior Mode (MPM) based methods [12, 13].
However, the very visual richness of the results
seems to attest that every method tested could keep
its interest in some particular cases. The
computational load has been reduced by a factor 3,
which is of clear interest for further developments
concerning more than two hard classes.
In addition, the fact that the model we propose can
take the same ground reality at different
resolutions, will undoubtedly make it useful in
multiscale segmentation and multiresolution images
fusion problems.
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