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Abstract - This paper deals with fuzzy strictly positive, but any element ¢6,1 can also
statistical image segmentation. We occur. This is modelled by considering thatis
introduce a new hierarchical Markovian defined with a densityh with respect to the

fuzzy hidden field model, which extends measurev = &, + 8, + u, which includes a "hard"
to the fuzzy case the classical Pérez and 0 .
Heitz hard model. Two fuzzy statistical component (Dirac function§,, s, on{0,1}), and a

segmentation methods related with the "fuzzy" one, which is the Lebesgue measpren

model proposed are defined in this paper ]0,1. Such modelling was first introduced in local
and we show via simulations that they are segmentation methods [3, 4] and then generalize
competitive with, in some cases than, the g Markovian methods [10, 11].

classical Maximum Posterior Mode (MPM) Fyzzy segmentation methods presented in [10,1
based methods. Furthermore, they are gre quite efficient, although the computationa
faster, which will should facilitate pyrdin can be prohibitive. Thus the aim of the
_eXtenSIOnS to more than _tWO hard ClasseSpresent paper is to propose faster method
in future work. In addition, the model Returning to the classical hard case, it is wel
proposed is applicable to the multiscale known that simulated annealing [7] is time
segmentation and multiresolution images expensive and the Iterated Conditional Mode, ICN

fusion problems. [2], which is a fast approximation of MAP, is often
used. The problem is that ICM is sensitive to the
1. INTRODUCTION initialisation and, when poorly initialized, can give

. _ o oor results. To remedy this, Perez and Heit

This paper deals with fuzzy statistical lmagéroposed a hierarchical structure, which is a set «
segmentation. We adopt the recent Hidden Fuz Ympatible Markovian fields [11]. Roughly
Markov Random Fields (HFMRF) modelspeaking, the solution given with ICM at a given
considered in [12, 13], which simultaneousl¥cale serves to initialise ICM at the finest scale.
models the imprecision of membership of pixels t this work we adapt the Perez and Heitz model t
a given class, a fuzzy aspect [3, 10, 14] , and thge fuzzy case and show, via simulation, its intere:
uncertainty of their belonging to a given class, @ the fuzzy segmentation.
probabilistic aspect. Such a mixed approach diffefge organization of the paper is as follows:
from both a purely fuzzy approach [10], and froniy the next section we shortly recall modelling by
purely probabilistic Markov Field Model basedyjdden Fuzzy Markov Fields, as proposed in [12
approach [2, 6, 7, 9]. Let us briefly specify the 3] Section three is devoted to the new hierarchic:
interest of fuzzy segmentation in some regpodel we propose and some related segmentati
situations. Let us consider the problem Ofethods are specified in section four. Section fiv
segmenting a satellite image into two classeg devoted to the numerical results obtained an

"houses” and "trees". There may be some pixedaction six contains the conclusion.
with only houses and others with only trees, but

there may also be many pixels, as in suburbs, X pistribution X

which houses and trees are simultaneously present.

Thus we have two hard classes, éagnd1, and a  wjith V a neighbourhood antl the number of
fuzzy class specified by LJO,1{, which can be 05 e consider a functiom[0,1]" - R of the
seen as the proportion of the area of classlow, following form:

if we wish to use some statistical method we have

to introduce a probability measum@ on [0,1]. h(x) = ce V™
According to one's intuitionp[0] and p[1] can be (2.1)



Here U, called "energy”, is a sum of functionswith W (x) =U,(x) +V,(y) and

defined on cliques, a clique being either a singlet (y)= 5 Logu, (v.)

or a set of neighbour pixels with respecMoWe ™ y S%S 95, Ys)-

consider the stationary case, i.e., that the functions

defining U depend only on the shape of cliques

and do not depend on their position in the set of Il. HIDDEN FUZZY MARKOV FIELDS
pixels. Thus, ifC is a clique of a given shape and

n=Car th iated functi - In this section, we briefly recall the model
C,ta d(C), the assoc.la ed functiog. is a presented in [12, 13]. We consider two randon
function from Q" =[0,1]" into R.

Considering the measure ﬁelgls )_(: (XS)SDS.and Y= (YS)SDS’ with each _XS
taking its values i2, =[0,1] andeach Y, taking
Vv=9,+0,+U its values inR. As usual, the probabilistic link
(2.2) betweenX andY is modelled byR, ,,, which is
. the distribution of(X,Y) and which is defined by
where o, o, are the Dirac measures 1L, and e gistribution of X and the distributions of
U is the Lebesgue measure[@ql], we assume  conditional toX.

that h defined by (2.1) is a density & with

respect tov”". Thus one can classically show thatC- A Posteriori distribution o

X is a Markovian field. The density of the a posteriori distribution Xf

B. Distribution of Y conditional to X (i.e., conditional toY = y) with respect tov" is
thus given by
We assume that:

ke "™

ke " ™dyN(x)
ot

(i) The random variables Y() are independent — ¥’(X) =
conditionally onX;
(ii) The distribution of eacly, conditional toX is (2.5)
equal to its distribution conditional t&,.

which can be written as
Distributions of Y conditional to X are then
defined by distributions of, conditional toX..  ¢¥(x) = k(y)e "™ = k(y)e ")
Denoting by N(m,g?) the normal distribution of

mean m and varianceg?, we take for the As in the case of hard Markovian fields, the

distribution of Y, conditional to X = x; LJ[0,1]: Markovian nature of the posterior distribution Xf
is thus preserved and one can use the Gibl
N((L= x)m, + x.m,, (L - x.) 0% + x.0?) sampler in order to simulate its realizations.
S s s/~0 sl
(2.3)

_ lll. HIERARCHICAL FUZZY MARKOV FIELDS
Thus the parametersn,m,o;,0; define all

distributions ofY conditional to X.
Let ¢, be the Gaussian density defined by (2.3). We assume thaCard(S)=4" and consider

The densityy of the distribution of(X,Y) with ~Séguence the classical pyramid sequence in whi
N N . each "father" has four "so ns", which form, at the

respect tov™ [1 u~ (v being the measure d0,1]  |ower lever, a block of four elements. So, there ar

defined by (2),u the Lebesgue measure 8hand  n+1 scales :S =S, S,_, obtained fromS, and

N the number of pixels) is then given by having 4" elements, ...§ having 4 elements,

Wxy) = eV rl W, (y,) = ce ™ .., and §,, which is the top of the pyramid, having
sl

(2.4) 4° =1 element. Then we consider+1 random



fields X°, ..., X", with X' =(X{) . such that

each variableX! takes its values if0,1]. On the other hand, there age=2' basic binary

Thus the realizations ob¢ can be seen as cidues touchings andt' for a given binary clique
. o 1 . {s,t'} of S. Associated with binary cliques, the

particular realizations oX'" in the following : i

sense : functions ¢' are

[X=x] < [ foralltsonsof sX* = x*!] - _Orda if x, =x,
(3.1) o (X %) = Eq‘a it x, #x,

Let us assume that we dispose of some iterative (3.5) ,
segmentation method, like ICM, and the for  (x;,x;) {017,
drawback is thag is sensitive to the initialization.
Roughly speaking, the idea of Pérez and Heitz igi; ,(x,,x,) = —q‘ﬁ(l—z‘xi ~X, ‘)
then to use the result obtained withat the scale (3.6) st st
in order to initializeS, using (3.1), at the scale ' 2 2
i +1. Subject to some compatibility of Markovianfor (¢ %) 004" ~{0.%
structures on different scales, the method they . _ i
proposed gives good results in the classical hafid the noise inferred at the scals given by
case.

We present below an adaptation of the f o (y,)= |‘| f (y.)
hierarchical hidden Markovian structure of Perez R
and Heitz to the fuzzy model. (3.7)

We place ourselves at the base of the pyramid
and consider the markovianity relative to the foufinally, (3.4)-(3.7) define a set, indexed to scales,
nearest neighbours. The energy is then defineflhidden Markov fuzzy fields.
with functions ¢., whereC is either a singleton
or a set{s,t} of neighbours. They will be assumeoj\l\ilA%Llf‘os\? Ilgéll:éo‘SNBD A'gggéﬁgmgﬁ% AI\:TLfCZ)ZN\é
null on singletons, and

We recall in this section two classical Fuzzy

o if X =x Hidden Markov Field based segmentation metho
Pron (X X) = Ha if x #x and two new Hierarchical Fuzzy Hidden Markov
(3.2) s Field based ones.
for (x,,x) 0{0, 37, A. Fuzzy MPM methods
.o (X, %) =—B(- 2|x _ X1|) According to the model specified in the sectior
(3{5;,;,}) s’ s 2, simulations of the fuzzy fiel& conditional to
' 5 5 Y are possible, and thus one can estimate tf
for (x,,x) 0[0,1]" -{0,3 posterior marginal ofX. Once the distribution of
The fuzzy class field is then noise corrupted a>s(_S conditional toY =y, given by a densﬂ;@
specified in section 2.2 above. with respect to the measune=9,+9, +, Is
Now, let us consider a scale We will define an knovyc? tk&e following two methods can be
considered:

energy¢' "compatible” with the energy defined by
(3.2), (3.3). Each pixels of S contains 1) The Fuzzy MPM1 (FMPM1) method is

p' =2 (2" -1) binary cliques of the basic pixels.defined with
According to (3.2), (3.3) we thus have for

singleton cliques [>‘<: FMPM](y)] -
_ Tpa if x, HO, sOS h*(X) = su he(t)C
¢I{Si}(xs\):|]_pi ' X Dog %] 06)= s
o-PB if x, 001 (4.1)

(3.4)



2) The Fuzzy MPM2 (FMPM2) is defined with (iii) obtain the final segmentation at the scale
i =0 (the base of the pyramid)
[X=FMPM2(y)] =

MsOS X, = C

0 L We present in this section three series of resul

%if h*(0) = sup(h®(1),1- h*(0) - h*(1))L concerning three fuzzy images : one realization of
PR s —hS(A) _ S Fuzzy Markov Random Field, and two hand
it h°(1) 2 sup(h*(0).1-h*(0) ~h"(D) C written ones. Each of them is corrupted by ¢

V. SIMULATION RESULTS

%ar%max h°(t) otherwise C Gaussian noise and then segmented with the fo
tHo.1 E methods MPM1, MPM2, HFICM1, and HFICM2.
(4.2) The performance of each is evaluated visually an

_ o with the error rater, which is defined by
FMPM1 and FMPM2 give satisfying results,

although the visual effects of the segmented images 1.
by the both methods can be different. T=4 > % =%
sUS

B. Hierarchical Fuzzy ICM methods (5.1)

First, let us specify how Fuzzy ICM1 (FICM1) The results are presented in Figures 1 and 2. Tl

and Fuzzy ICM2 (FICM2) run. According to most striking impression is that the hierarchica
section 2, the distribution oK conditional to methods are Visua”y better behaved than the MPI

Y=y is a Markov distribution and thus theMethods. This is true in the fuzzy Markov Field
T . realization case as well as in the hand written fuzz
distribution of each X; conditional on jnaqe case. Other results presented in [1] confirt
(X, X, %, X)), Wheret,,t,,t;,t, are neighbours these impressions. On the other hand, the visu
of s, is computable. In FICM1 we scan the set gispects of different methods can be quite differen
pixels and, at each pixal, we replace the current This can lead to the conclusion that each methc
fuzzy value by that which maximises the densityl,artl be uagllgl\l/lnlsome p?rttl)Cl#ar Slttjatlotﬂ. I;o
i - istribiti instance, seems to better restore the ha
with respect tov = o, +51+IJ., O.f the distribution classes, while HFICM2 better renders the fuzz
of X conditional 10 classes. Thus, when we are mainly interested
(X, X, 0 X0 X, ) = (%0 %, 5 %0 %, ), Where detecting spots with hard classes, HFICML1 i

X ,%_,%_,%_are the current values of neighbour?etter suited, but HFICM2 should be chosen whe

of s. Thus FICM1 runs like the classical har(yve are interested in fuzzy spots.
ICM, with the difference that one maximises j;
density with respect tov = 9, + 9, + 1 instead of
maximizing a finite probability. In the FICM2 we
still scan the set of pixels and, at each pxelve
consider the density, with respect tg

v=9,+9,+u, of the distribution of X
conditional to
(X s X, K0 X, ) = (%%, 0%, %, ) = X, Denoting
this density byh;, the new fuzzy value o$ is

- e s
Fuzzy Markov Fiel Noisy field. Noi
chosen using (4.2), in which® is replaced byh; . zzy Markov Field Vf;i?;]c:sdequ%ﬂeo 1,
The Hierarchical FICM1 and Hierarchical FICM2 means 0 and 4.
(HFICM1 and HFICM2 respectively) methods ar¢ :
then obtained from FICM1 and FICM2 using th¢
hierarchical structure in the following way :
(i) use FICM1 (respectively, FICM2) at the
scaler, which is the top of the pyramia € n), or
near the top. Fk 2
(ii) initialize FICM1 (respectively, FICM2) at A
the scalel —1 with the segmentation found at thejie .
scalei.




Segmentation with
HEICM1, T =116%

Segmentation with
HFICM2, 1 =12,2%

T, . gl
Segmentation with
MPM2, 1 =14,4%

et Mol s, oo
Segmentation with
MPM1, 7 =16,9%

Figure 1

Figure 2
Hand written fuzzy image, its noisy version, anc
segmentations with MPM1, MPM2, HFICM1, and
HFICM2. 1 designates the error ration defined
with (5.1).

VI. CONCLUSIONS

We presented in this paper a new hierarchicz
Hidden Fuzzy Markov Random Field model, alonc
with some applications to statistical fuzzy image
segmentation. The methods so obtained are qui
competitive, and sometimes visually more
appealing, that the classical fuzzy Maximum

Fuzzy Markov Field realization, its noisy versionPosterior Mode (MPM) based methods [12, 13]
and segmentations with MPM1, MPM2, HFICM1 However, the very visual richness of the result:
and HFICM2. T designates the error ration definedeems to attest that every method tested could ke

with (5.1).

Hand written fuzzy
image

Noisy version. Noise
variances equal to 1,
means 0 and 4.

Segmentation with
HFICM1, 7=11,45%

Segmentation with
HFICM2, T =13,00%

Segmentation with
MPM2, 1 =12,70%

Segmentation with
MPM1, 1 =12,68%

its interest in some particular cases. The
computational load has been reduced by a factor
which is of clear interest for further developments
concerning more than two hard classes.

In addition, the fact that the model we propose cal
take the same ground reality at different
resolutions, will undoubtedly make it useful in
multiscale segmentation and multiresolution image:
fusion problems.
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